
The
Embedded Systems Design

Challenge

Tom Henzinger Joseph Sifakis
EPFL Verimag

Engineering

Differential Equations
Linear Algebra
Probability Theory

Computer Science

Logic
Discrete Structures
Automata Theory

Formal Methods:
A Tale of Two Cultures

Uptime: 123 years

So how are we doing?

Engineering

Differential Equations
Linear Algebra
Probability Theory

Computer Science

Logic
Discrete Structures
Automata Theory

What went wrong?

Engineering

Differential Equations
Linear Algebra
Probability Theory

Mature

Computer Science

Logic
Discrete Structures
Automata Theory

Promising

What went wrong?

Engineering

Differential Equations
Linear Algebra
Probability Theory

Mature

Computer Science

Logic
Discrete Structures
Automata Theory

Promising?

What went wrong?

Engineering

Theories of estimation
Theories of robustness

Computer Science

Theories of correctness

What went wrong?

Temptation: “Programs are
mathematical objects.”

Engineering

Theories of estimation
Theories of robustness

Computer Science

Theories of correctness

What went wrong?

R B

B

Computer ScienceEngineering

Maybe we went too far?

R

B

Computer ScienceEngineering

Maybe we went too far?

Embedded Systems are a perfect
playground to readjust the pendulum.

R
Physicality Computation

We need a new formal foundation for embedded systems,
which systematically and even-handedly re-marries

computation and physicality.

The Challenge

We need a new formal foundation for computational systems,
which systematically and even-handedly re-marries

performance and robustness.

The Challenge

What is being computed?
At what cost?

How does the performance
change under disturbances?
(change of context; change of
resources; failures; attacks)

Embedded
System

Execution
constraints
CPU speed
power
failure rates

Reaction
constraints
deadlines
throughput
jitter

Computation
algorithms
protocols
reuse

Embedded
System

Execution
constraints
CPU speed
power
failure rates

Reaction
constraints
deadlines
throughput
jitter

Embedded System Design is
generalized hardware design
(e.g. System C)

Computation
algorithms
protocols
reuse

Embedded
System

Execution
constraints
CPU speed
power
failure rates

Reaction
constraints
deadlines
throughput
jitter

Embedded System Design is
generalized control design
(e.g. Mathlab Simulink)

Computation
algorithms
protocols
reuse

50 years of computer science are largely ignored in
embedded systems design: it is as if there were no
choice between automatically synthesizing code on
one hand, and assembly coding on the other hand.

Software is often the most costly and least flexible
part of an embedded system.

Current State of Affairs

Embedded
System

Execution
constraints
CPU speed
power
failure rates Computation

algorithms
protocols
reuse

Embedded System Design should
not be left to electrical engineers

Reaction
constraints
deadlines
throughput
jitter

Embedded
System

Execution
constraints
CPU speed
power
failure rates

Reaction
constraints
deadlines
throughput
jitter

Computation
algorithms
protocols
reuse

Embedded System Design should
not be left to electrical engineers

BUT: we need to revisit and revise our most
basic paradigms to include methods from EE

Subchallenge 1:
Integrate Analytical and Computational Modeling

Engineering
Component model: transfer function
Composition: parallel
Connection: data flow

Computer Science
Component model: subroutine
Composition: sequential
Connection: control flow

Analytical Models
Defined by equations
Deterministic or probabilistic

Computational Models
Defined by programs
Executable by abstract machines

Analytical Models
Defined by equations
Deterministic or probabilistic

Strengths:

Concurrency
Real time
Quantitative constraints (power,
QoS, mean-time-to-failure)

Computational Models
Defined by programs
Executable by abstract machines

Dynamic change
Complexity theory
Nondeterminism (abstraction
hierarchies, partial specifications)

Analytical Models
Defined by equations
Deterministic or probabilistic

Strengths:

Concurrency
Real time
Quantitative constraints (power,
QoS, mean-time-to-failure)

Tool support:

Average-case analysis
Optimization
Continuous mathematics
(differential equations,
stochastic processes)

Computational Models
Defined by programs
Executable by abstract machines

Dynamic change
Complexity theory
Nondeterminism (abstraction
hierarchies, partial specifications)

Worst-case analysis
Constraint satisfaction
Discrete mathematics (logic,
combinatorics)

Analytical Models
Defined by equations
Deterministic or probabilistic

Strengths:

Concurrency
Real time
Quantitative constraints (power,
QoS, mean-time-to-failure)

Tool support:

Average-case analysis
Optimization
Continuous mathematics
(differential equations,
stochastic processes)

Main paradigm:

Synthesis

Computational Models
Defined by programs
Executable by abstract machines

Dynamic change
Complexity theory
Nondeterminism (abstraction
hierarchies, partial specifications)

Worst-case analysis
Constraint satisfaction
Discrete mathematics (logic,
combinatorics)

Verification

Analytical Models
Defined by equations
Deterministic or probabilistic

Strengths:

Concurrency
Real time
Quantitative constraints (power,
QoS, mean-time-to-failure)

Tool support:

Average-case analysis
Optimization
Continuous mathematics
(differential equations,
stochastic processes)

Main paradigm:

Synthesis

Computational Models
Defined by programs
Executable by abstract machines

Dynamic change
Complexity theory
Nondeterminism (abstraction
hierarchies, partial specifications)

Worst-case analysis
Constraint satisfaction
Discrete mathematics (logic,
combinatorics)

Verification

BE
ST

-E
FF

OR
T

SY
ST

EM
S

DE
SI

GN

GU
AR

AN
TE

ED
-E

FF
OR

T

SY
ST

EM
S

DE
SI

GN

Subchallenge 1:
Integrate Analytical and Computational Modeling

Best-Effort
Systems Design

Guaranteed-Effort
Systems Design

We need both.
We need to be able to intelligently trade off costs and risks.

We need effective model transformations.

Subchallenge 1:
Integrate Analytical and Computational Modeling

Best-Effort
Systems Design

Guaranteed-Effort
Systems Design

We need both.
We need to be able to intelligently trade off costs and risks.

We need effective model transformations.

We need engineers that understand both complexities.

Subchallenge 2:
Balance the Opposing Demands of
Heterogeneity and Constructivity

Subchallenge 2:
Balance the Opposing Demands of
Heterogeneity and Constructivity

Sources of heterogeneity
Components
Levels of abstraction
Views (aspects)
Operating contexts

Degrees of constructivity
1 Synthesis / compilation
2 Correctness by design disciplines
3 Automatic verifiability
4 Formal verifiability

Difficulties

Models and methods need to be compositional in order to scale.

Whenever possible: noninterference

Model

Requirements

Resources

Verification

Implementation

Environment

ideally automatic (model checking)

ideally automatic (compilation)

Model-based Design

Component

Requirements

Resources

Verification

Implementation

Component

Model-based Design

Component

Requirements

Resources

Verification

Implementation

Component
Composition

no change
necessary

no change
necessary

Noninterference

Component

Requirements

Resources

Verification

Implementation

Component
Composition

(time, fault tolerance, etc.)

no change
necessary

no change
necessary

Noninterference

Difficulties

Models and methods need to be compositional in order to scale.

Whenever possible: noninterference
Next best solution: check interface compatibility

Difficulties

Models and methods need to be compositional in order to scale.

Whenever possible: noninterference
Next best solution: check interface compatibility

Models and methods need to support robustness in addition to
functionality.

Whenever possible: continuity

Difficulties

Models and methods need to be compositional in order to scale.

Whenever possible: noninterference
Next best solution: check interface compatibility

Models and methods need to support robustness in addition to
functionality.

Whenever possible: continuity
Next best solution: quantify overengineering

Some Examples

1 Heterogeneity through hybrid automata

2 Continuity through discounting

3 Noninterference through fixed logical execution times

4 Compositionality through automaton interfaces

Continuous Dynamical Systems

State space: Rn

Dynamics: initial condition + differential equations

Room temperature: x(0) = x0
x’(t) = -K·x(t)x

t

x0

Analytic complexity.

Discrete Transition Systems

State space: Bm

Dynamics: initial condition + transition relation

Heater:

heat

t

off

on

off on

Combinatorial complexity.

Hybrid Automata

State space: Bm × Rn

Dynamics: initial condition + transition relation
+ differential equations

Thermostat:

t

off

on

x0

off
x’ = -K·x

on
x’ = K·(H-x)

x ≤ l x ≥ u

x ≤ U

x ≥ L

Some Examples

1 Heterogeneity through hybrid automata

2 Continuity through discounting

3 Noninterference through fixed logical execution times

4 Compositionality through automaton interfaces

slightly perturbed automaton

(Non)Robustness

Hybrid Automaton Property

Safe

Hybrid
Automaton

x = 3

(Non)Robustness

Unsafe

Hybrid
Automaton

x = 3+ε

(Non)Robustness

value(Model,Property): States → B

value(Model,Property): States → R

A Continuous Theory of Systems

value(Model,Property): States → B

value(m, T) = (μX) (T ∨ pre(X))

discountedValue(Model,Property): States → R

discountedValue(m, T) = (μX) max(T, λ⋅pre(X))

discount factor 0<λ<1

A Continuous Theory of Systems

a cb

Reachability

c … undiscounted property

T

λ c … discounted property

1

a cb

Reachability

c … undiscounted property

(F Ç pre(T)) = T T

λ c … discounted property

1

a cb

Reachability

c … undiscounted property

(F Ç pre(T)) = T T

λ c … discounted property

1max(0, λ¢ pre(1)) = λ

a cb

Reachability

c … undiscounted property

T
λ2

λ c … discounted property

1max(0, λ¢ pre(1)) = λ
(F Ç pre(T)) = T T

Robustness Theorem [de Alfaro, H, Majumdar]:

If discountedBisimilarity(m1,m2) > 1 - ε,
then |discountedValue(m1,p) - discountedValue(m2,p)| < f(ε).

A Continuous Theory of Systems

Robustness Theorem [de Alfaro, H, Majumdar]:

If discountedBisimilarity(m1,m2) > 1 - ε,
then |discountedValue(m1,p) - discountedValue(m2,p)| < f(ε).

Further advantages of discounting:

-approximability because of geometric convergence
(avoids non-termination of verification algorithms)

-applies also to probabilistic systems and to games
(enables reasoning under uncertainty, and control)

A Continuous Theory of Systems

Some Examples

1 Heterogeneity through hybrid automata

2 Continuity through discounting

3 Noninterference through fixed logical execution times

4 Compositionality through automaton interfaces

Component

Requirements

Resources

Verification

Implementation

Component
Composition

(time, fault tolerance, etc.)

no change
necessary

no change
necessary

Compositionality

Component

Requirements

Resources

Verification

Implementation

Component
Composition

(time, fault tolerance, etc.)

no change
necessary

no change
necessary

FET model

E machine

Compositionality

The FET (Fixed Execution Time) Assumption

Software Task

read sensor
input at time t

write actuator
output at time
t+d, for fixed d

Software Task

read sensor
input at time t

write actuator
output at time
t+d, for fixed d

d>0 is the
task's “fixed
execution time"

The FET (Fixed Execution Time) Assumption

The programmer specifies d (could be any event)
to solve the problem at hand.

The compiler ensures that d is met on a given
platform (hardware performance and utilization);
otherwise it rejects the program.

The FET Programming Model

time t time t+d

real execution
on CPU buffer output

The FET (Fixed Execution Time) Assumption

50% CPU speedup

Portability

Task 2

Task 1

Composability

Timing predictability: minimal jitter
Function predictability: no race conditions

Verifiability through Predictability (Internal Determinism)

make output available
as soon as ready

Contrast FET with Standard Practice

Race

Contrast FET with Standard Practice

Some Examples

1 Heterogeneity through hybrid automata

2 Continuity through discounting

3 Noninterference through fixed logical execution times

4 Compositionality through automaton interfaces

A Signature Interface

is_prime

int

bool

This interface
constrains the
client’s data.

E.g. typed
programming
languages.

Signature Interface Compatibility

client is_prime

int

bool

int

bool

An Assertional Interface

divide_byy: int; y ≠ 0

real

This interface
still constrains
the client’s data.

E.g. extended
static checking.

x: int

Assertional Interface Compatibility

client divide_byy: int; y ≠ 0

x: inta: int

b: int; b > 0

8 b,y. (b > 0 Æ y = b) y ≠ 0)

real

Assertional Interface Compatibility

client divide_byy: int; y ≠ 0

x: inta: int

b: int; b > 0

8 b,y. (b > 0 Æ y = b) y ≠ 0)

Preconditions are assumptions on the input.
Postconditions are guarantees on the output.

real

An Automaton Interface

open

data

close

read

open?

read? data!

close?

file

This interface
constrains the
client’s control.

Automaton Interface Compatibility

open

data

close

read

open?

read? data!

close?
open!

data?

read!close!

Client

file

Automaton Interface Incompatibility

open

data

close

read

open?

read? data!

close?
open!

open!

Client

file

Automaton Interface Incompatibility

open

data

close

read

open?

read? data!

close?
open!

open!

Client

file

Summary

Verifying properties is not an end but a mean.
The end is designing reliable systems.

The challenge is to come up with a formal foundation
for systems design that lets us quantify how the effort
spent during design relates to the quality (functionality,
performance, robustness) of the product.

Credits

Hybrid Automata: R. Alur, P.-H. Ho, J. Sifakis, et al.

Discounting: L. de Alfaro, R. Majumdar, et al.

Giotto: B. Horowitz, C. Kirsch, et al.

Interfaces: A. Chakrabarti, L. de Alfaro, et al.

	The Embedded Systems Design Challenge

