The
Embedded Systems Design
Challenge

Tom Henzinger Joseph Sifakis
EPFL Verimag

Formal Methods:
A Tale of Two Cultures

Engineering

Differential Equations
Linear Algebra
Probability Theory

Computer Science

Logic
Discrete Structures
Automata Theory

fAin exception 06 has occured at 0028:C11B3ADC in WD DiskTSD{03) +
00001660, This was called from 0028:C11B40C8 in WxD voltrack(04) +
00000000, It may be possible to continue normally,

* Press any key to attempt to continue,
* Press CTRL+ALT+RESET to restart your computer. You will
lose any unsaved information in all applications,

Press any key to continue

So how are we doing?

Brooklyn Bridge HS@cT —-
1883 1983

LSA 20¢

Hindows
An exception

06 has occured at 0028:C11B3ADC in VxD DiskTSD(03) +
00001660, This was called from 0028:C11B40C8 in WD voltrack(04) +
- 00000000, It may be possible to continue normally.

any key to attempt to continue,
CTRL +RESET to restart your computer
aved information in all applications,

You will

Press any key to continue

Uptime: 123 years

What went wrong?

Engineering Computer Science
Differential Equations Logic
Linear Algebra Discrete Structures

Probability Theory Automata Theory

What went wrong?

Engineering

Differential Equations
Linear Algebra
Probability Theory

Mature

Computer Science

Logic
Discrete Structures
Automata Theory

Promising

What went wrong?

Engineering

Differential Equations
Linear Algebra
Probability Theory

Mature

Computer Science

Logic
Discrete Structures
Automata Theory

Pron@ng

What went wrong?

Engineering Computer Science

Theories of estimation Theories of correctness
Theories of robustness

Temptation: “Programs are
mathematical objects.”

What went wrong?

Engineering Computer Science

Theories of estimation Theories of correctness
Theories of robustness

R B

Maybe we went too far?

Engineering Computer Science

Maybe we went too far?

Engineering Computer Science

Embedded Systems are a perfect
playground to readjust the pendulum.

&

Physicality Computation

The Challenge

We need a new formal foundation for embedded systems,
which systematically and even-handedly re-marries
computation and physicality.

The Challenge

We need a new formal foundation for computational systems,
which systematically and even-handedly re-marries
performance and robustness.

T T

What is being computed? How does the performance
At what cost? change under disturbances?
(change of context; change of
resources; failures; attacks)

Execution
constraints

CPU speed ’
power |
failure rates Computation
Embedded algorithms
System protocols
reuse

Reaction
constraints

deadlines
throughput
jitter

Embedded System Design is

generalized hardware design
(e.g. System C)

Execution
constraints

CPU speed
power

Reaction
constraints

Computation
Embedded algorithms
System protocols
reuse

deadlines
throughput
jitter

Execution
constraints

CPU speed
power
failure rate

Reaction
constraints

deadlines
throughput
[itter

Computation

Embeddet

algorithms
protocols
reuse

Embedded System Design is

generalized control design
(e.g. Mathlab Simulink)

Current State of Affairs

50 years of computer science are largely ignored in
embedded systems design: it is as if there were no
choice between automatically synthesizing code on
one hand, and assembly coding on the other hand.

Software is often the most costly and least flexible
part of an embedded system.

Embedded System Design should

Execution not be left to electrical engineers

constraints

CPU speed
power

failure rates !
Reaction
constraints

deadlines
throughput
jitter

Computatio

algorithms
protocols
reuse

Embedded System Design should
Execution not be left to electrical engineers

)/

constraints

failure rates Computatio

Embedded algorithms
System protocols
reuse

Rgaction

deadlines
throughput . :
jitter BUT: we need to revisit and revise our most

basic paradigms to include methods from EE

Subchallenge 1.

Integrate Analytical and Computational Modeling

Engineering Computer Science
Component model: transfer function Component model: subroutine
Composition: parallel Composition: sequential
Connection: data flow Connection: control flow

op 5

Lirli.. Diveiling J-way valve

fie [l VYiew Zimclsion Fomal Tooh

e, tum

Fes Dt

Srerncl ramdlancan

Crarpe. Forum

Fioas frme.

Oy

Lo

I—:r-uhwm

__J_—Tfréf layer of the functional scheme of the valvé ‘model

E ypass resistances

Fle Edt View Simulation Format Tools

Charag.

y

Pox

P>

i S e

Dlract reslitinse

'

-n-nnn:lu
Pas
Dt

_+Exponentiji resistance

h 4
l.-":/l.

mu

Intrirsde

Duct

Sﬂﬂﬂnd inner fﬂ}fﬂé for calculations of bypass resistances

MC_Gearin(Slave)
MW CamingSlave)

C_Movelbzolute
MC_Move Relative
M _PositionProfile
MC_Movelbzolute
MC_MoveRelative
MC_MoveSuperimposed

MC_Stop

MC_hovedbsolute;, MC_hove Relative;

MC_hoveelocity

M GearOut
MC_Camout
C_WelocityProfile
C_AccelerstionProfile

MC_Gearin=lag)
MC_Caming=las

MC_hMoveSuperimpozed
W _hlmwer v rlnrity

MC_hovesddiive
M _PositionProfile

MC_Movedditive, MC_Posit

MC_VelocityProfile
MC_AccelerstionPrafile

brProfile

M hove Velocity; MCYelocityPrafile .
Discrete Maotion S ey P R Lo P Contlﬂ_uous
Motion
MC_Move MC_Stop
-hzolte MC_Stop
Pebiie Miter
st a1
-Superimpnaed ;
MC_PositionProfile StDD Di ng Eifar
M _Mowve Welocity
/ MR Error MC_elocityProfile

MC_AccelerationPrafile

)i

M _Stop

MC_Reszet

Errar

¥

MC_Stop
Daone

Horming

Standstill

MW _Poveer

Analytical Models Computational Models

Defined by equations Defined by programs
Deterministic or probabilistic Executable by abstract machines

Analytical Models Computational Models

Defined by equations Defined by programs

Deterministic or probabilistic Executable by abstract machines
Strengths:

Concurrency Dynamic change

Real time Complexity theory

Quantitative constraints (power, Nondeterminism (abstraction

Qo0S, mean-time-to-failure) hierarchies, partial specifications)

Analytical Models

Defined by equations
Deterministic or probabilistic

Strengths:

Concurrency

Real time

Quantitative constraints (power,
Qo0S, mean-time-to-failure)

Tool support:

Average-case analysis
Optimization

Continuous mathematics
(differential equations,
stochastic processes)

Computational Models

Defined by programs
Executable by abstract machines

Dynamic change

Complexity theory
Nondeterminism (abstraction
hierarchies, partial specifications)

Worst-case analysis
Constraint satisfaction
Discrete mathematics (logic,
combinatorics)

Analytical Models

Defined by equations
Deterministic or probabilistic

Strengths:

Concurrency

Real time

Quantitative constraints (power,
Qo0S, mean-time-to-failure)

Tool support:

Average-case analysis
Optimization

Continuous mathematics
(differential equations,
stochastic processes)

Main paradigm:

Synthesis

Computational Models

Defined by programs
Executable by abstract machines

Dynamic change

Complexity theory
Nondeterminism (abstraction
hierarchies, partial specifications)

Worst-case analysis
Constraint satisfaction
Discrete mathematics (logic,
combinatorics)

Verification

Analytical Models @
Defined by equations Q(/O
Q

Deterministic or prob C
Strengths:

Concurrency
Real time A

aints (power,
o-failure)

Quantitative r (0
QoS, mean __

Tool sur 0)
A |
Averac Q— 2 analysis
1

-

Optir O

Cor ((.S mathematics
(d’ Q Jal equations,
3 <,</5tic processes)

('0 N paradigm:

éU nthesis

Computational Models

Defined by programs A
Executable by abs’ Q— €S

O
oynamic char A&
ynamic char
Complexity t’ <,</ CQ%
Nondeterm’ Q action

N
hierarchie Q/ Q(/O ecifications)

Verification

Subchallenge 1.

Integrate Analytical and Computational Modeling

Best-Effort Guaranteed-Effort
Systems Design Systems Design

We need both.
We need to be able to intelligently trade off costs and risks.

We need effective model transformations.

Subchallenge 1.

Integrate Analytical and Computational Modeling

Best-Effort Guaranteed-Effort
Systems Design Systems Design

We need both.
We need to be able to intelligently trade off costs and risks.

We need effective model transformations.

We need engineers that understand both complexities.

Subchallenge 2:

Balance the Opposing Demands of
Heterogeneity and Constructivity

Subchallenge 2:

Balance the Opposing Demands of
Heterogeneity and Constructivity

Sources of heterogeneity

Components

Levels of abstraction
Views (aspects)
Operating contexts

Degrees of constructivity

1 Synthesis / compilation

2 Correctness by design disciplines
3 Automatic verifiability

4 Formal verifiability

Difficulties

Models and methods need to be compositional in order to scale.

Whenever possible: noninterference

Model-based Design

Requirements
A

Verification ideally automatic (model checking)

@odel>< Environment

Implementation ideally automatic (compilation)

\4

Resources

Model-based Design

Requirements

A A

Verification

Implementation

v v

Resources

Noninterference

Requirements

A A
oL no change
Verification necessary
Composition
: no change
Implementation necessary
\ 4 v

Resources

Noninterference

Requirements (time, fault tolerance, etc.)

A A
e no change
Verification necessary
Composition
: no change
Implementation necessary
v v

Resources

Difficulties

Models and methods need to be compositional in order to scale.

Whenever possible: noninterference
Next best solution: check interface compatibility

Difficulties

Models and methods need to be compositional in order to scale.

Whenever possible: noninterference
Next best solution: check interface compatibility

Models and methods need to support robustness in addition to
functionality.

Whenever possible: continuity

Difficulties

Models and methods need to be compositional in order to scale.

Whenever possible: noninterference
Next best solution: check interface compatibility

Models and methods need to support robustness in addition to
functionality.

Whenever possible: continuity
Next best solution: guantify overengineering

Some Examples

1 Heterogeneity through hybrid automata
2 Continuity through discounting
3 Noninterference through fixed logical execution times

4 Compositionality through automaton interfaces

Continuous Dynamical Systems

State space: R"
Dynamics: initial condition + differential equations

A Room temperature: X(0) = X,
X X'(t) = -K-x(t)

Analytic complexity.

Discrete Transition Systems

State space: B™
Dynamics: initial condition + transition relation

Heater:
heat off

\4

on

N

Off p— —

on

Combinatorial complexity.

Hybrid Automata

State space: B™ x R"
Dynamics: initial condition + transition relation
+ differential equations

off

on

Some Examples

1 Heterogeneity through hybrid automata
2 Continuity through discounting
3 Noninterference through fixed logical execution times

4 Compositionality through automaton interfaces

(Non)Robustness

Hybrid Automaton

slightly perturbed automaton

(Non)Robustness

Hybrid
Automaton

Safe

(Non)Robustness

Hybrid
Automaton

—— Unsafe

A Continuous Theory of Systems

value(Model,Property). States — B

. B

value(Model,Property): States > R

A Continuous Theory of Systems

value(Model,Property). States — B
value(m,&T) = (uX) (T v pre(X))

. B

discountedValue(Model,Property). States —» R
discountedValue(m,T) = (uX) max(T, A-pre(X))

|

discount factor O<A<1

Reachability

T
1

()

undiscounted property
discounted property

()

Reachability

(FCpre(T)) =T

.
1

()

undiscounted property
discounted property

()

Reachabillity

(FCpre(T)) =T
max(0, A¢ pre(1)) = A

.
1

()

. undiscounted property
discounted property

()

Reachability

(FCpre(T)) =T
max(0, A¢ pre(1)) = A

.
1

()

undiscounted property
discounted property

()

A Continuous Theory of Systems

Robustness Theorem [de Alfaro, H, Majumdary:

If discountedBisimilarity(m,,m,) > 1 - g,
then |discountedValue(m,,p) - discountedValue(m,,p)| < f(¢).

A Continuous Theory of Systems

Robustness Theorem [de Alfaro, H, Majumdary:

If discountedBisimilarity(m,,m,) > 1 - g,
then |discountedValue(m,,p) - discountedValue(m,,p)| < f(¢).

Further advantages of discounting:

-approximability because of geometric convergence
(avoids non-termination of verification algorithms)

-applies also to probabilistic systems and to games
(enables reasoning under uncertainty, and control)

Some Examples

1 Heterogeneity through hybrid automata
2 Continuity through discounting
3 Noninterference through fixed logical execution times

4 Compositionality through automaton interfaces

Compositionality

Requirements (time, fault tolerance, etc.)

A

Verification

Implementation

v

A

Composition

no change
necessary

no change
necessary

Resources

Compositionality

Requirements (time, fault tolerance, etc.)

A A

. . FET model nNo Change
Verification | [__FETmoser] | nochange

Composition

: no change

v v

Resources

The FET (Fixed Execution Time) Assumption

SN NS

Software Task

read sensor
Input at time t

write actuator
output at time
t+d, for fixed d

The FET (Fixed Execution Time) Assumption

SN NS

Software Task

read sensor
Input at time t

d>0 is the
task's “fixed
execution time"

write actuator
output at time
t+d, for fixed d

The FET Programming Model

The programmer specifies d (could be any event)
to solve the problem at hand.

The compiler ensures that d is met on a given
platform (hardware performance and utilization);
otherwise it rejects the program.

The FET (Fixed Execution Time) Assumption

SN NS

time t T/ | time t+d

real execution
on CPU buffer output

Portability

SN NS

50% CPU speedup

Composability

Verifiability through Predictability (Internal Determinism)

Timing predictability: minimal jitter
Function predictability: no race conditions

Contrast FET with Standard Practice

SN NS

make output available
as soon as ready

Contrast FET with Standard Practice

Race

Some Examples

1 Heterogeneity through hybrid automata
2 Continuity through discounting
3 Noninterference through fixed logical execution times

4 Compositionality through automaton interfaces

A Signature Interface

This interface

constrains the Tal

client’s data. . .
IS_prime
E.g. typed

. bool
programming

languages.

Signature Interface Compatibility

int int
client L IS_prime

bool bool

An Assertional Interface

This interface
still constrains X int h
the client’s data.

y.int;y =0 divide by
E.g. extended
static checking. real Y,

Assertional Interface Compatibility

client

a: int X: int

b:int;b>0 vy:int;y=0

divide_by

8hby.(b>0A&y=b)y=0)

Assertional Interface Compatibility

client

a: int X: int

b:int;b>0 vy:int;y=0

real

divide_by

8hy. (b>0A&y=b)y=0)

Preconditions are assumptions on the input.
Postconditions are guarantees on the output.

An Automaton Interface

open (file)

This interface
close open? close?

constrains the

client’s control.
read
read? data!

data /

Automaton Interface Compatibility

_

open
open!
close
close! read!
read
data?
data

Client

file

open?

read?

close?

data!

Automaton Interface Incompatibility

2 open (file)

close open? close?
open! T

read
open! read? datal

_ " data /

Client

Automaton Interface Incompatibility

2 open (file)

close open? close?
open! Ty

read
open! read? data!

_ " data /

Client

Summary

Verifying properties is not an end but a mean.
The end is designing reliable systems.

The challenge is to come up with a formal foundation
for systems design that lets us quantify how the effort
spent during design relates to the quality (functionality,
performance, robustness) of the product.

Credits

Hybrid Automata: R. Alur, P.-H. Ho, J. Sifakis, et al.
Discounting: L. de Alfaro, R. Majumdar, et al.
Giotto: B. Horowitz, C. Kirsch, et al.

Interfaces: A. Chakrabarti, L. de Alfaro, et al.

	The Embedded Systems Design Challenge

