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Maybe we went too far?

Embedded Systems are a perfect 
playground to readjust the pendulum.
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We need a new formal foundation for embedded systems, 
which systematically and even-handedly re-marries 

computation and physicality.

The Challenge



We need a new formal foundation for computational systems, 
which systematically and even-handedly re-marries 

performance and robustness.

The Challenge

What is being computed? 
At what cost?

How does the performance 
change under disturbances? 
(change of context; change of 
resources; failures; attacks)
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Embedded System Design is 
generalized control design  
(e.g. Mathlab Simulink)
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50 years of computer science are largely ignored in 
embedded systems design: it is as if there were no 
choice between automatically synthesizing code on 
one hand, and assembly coding on the other hand. 

Software is often the most costly and least flexible 
part of an embedded system.  

Current State of Affairs
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Execution 
constraints
CPU speed     
power             
failure rates

Reaction 
constraints
deadlines     
throughput      
jitter

Computation 
algorithms         
protocols          
reuse

Embedded System Design should 
not be left to electrical engineers

BUT: we need to revisit and revise our most 
basic paradigms to include methods from EE



Subchallenge 1:                        
Integrate Analytical and Computational Modeling

Engineering
Component model: transfer function    
Composition: parallel          
Connection: data flow

Computer Science
Component model: subroutine 
Composition: sequential           
Connection: control flow
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Subchallenge 1:                        
Integrate Analytical and Computational Modeling

Best-Effort        
Systems Design

Guaranteed-Effort 
Systems Design

We need both.                                                   
We need to be able to intelligently trade off costs and risks.  

We need effective model transformations.



Subchallenge 1:                        
Integrate Analytical and Computational Modeling

Best-Effort        
Systems Design

Guaranteed-Effort 
Systems Design

We need both.                                                   
We need to be able to intelligently trade off costs and risks.  

We need effective model transformations.

We need engineers that understand both complexities.
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Subchallenge 2:                       
Balance the Opposing Demands of                   
Heterogeneity and Constructivity

Sources of heterogeneity
Components 
Levels of abstraction                  
Views (aspects)                        
Operating contexts                  

Degrees of constructivity
1 Synthesis / compilation                
2 Correctness by design disciplines 
3 Automatic verifiability                   
4 Formal verifiability



Difficulties 

Models and methods need to be compositional in order to scale.

Whenever possible:  noninterference              
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Difficulties 

Models and methods need to be compositional in order to scale.

Whenever possible:  noninterference              
Next best solution: check interface compatibility

Models and methods need to support robustness in addition to 
functionality.

Whenever possible: continuity
Next best solution: quantify overengineering



Some Examples

1 Heterogeneity through hybrid automata

2 Continuity through discounting

3 Noninterference through fixed logical execution times

4 Compositionality through automaton interfaces 



Continuous Dynamical Systems

State space: Rn

Dynamics: initial condition + differential equations

Room temperature: x(0) = x0
x’(t) = -K·x(t)x

t

x0

Analytic complexity.



Discrete Transition Systems

State space: Bm

Dynamics: initial condition + transition relation

Heater:

heat

t

off

on

off on

Combinatorial complexity.



Hybrid Automata

State space: Bm × Rn

Dynamics: initial condition + transition relation
+ differential equations

Thermostat:

t

off

on

x0

off
x’ = -K·x

on
x’ = K·(H-x)

x ≤ l x ≥ u

x ≤ U

x ≥ L



Some Examples
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2 Continuity through discounting

3 Noninterference through fixed logical execution times

4 Compositionality through automaton interfaces 



slightly perturbed automaton

(Non)Robustness

Hybrid Automaton Property
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Unsafe

Hybrid 
Automaton

x = 3+ε

(Non)Robustness



value(Model,Property): States → B

value(Model,Property): States → R

A Continuous Theory of Systems



value(Model,Property): States → B

value(m, T) = (μX) (T ∨ pre(X))

discountedValue(Model,Property): States → R

discountedValue(m, T) = (μX) max(T, λ⋅pre(X))

discount factor 0<λ<1

A Continuous Theory of Systems
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Reachability

c … undiscounted property

T
λ2

λ c … discounted property

1max(0, λ¢ pre(1)) = λ
(F Ç pre(T)) = T T



Robustness Theorem [de Alfaro, H, Majumdar]:

If discountedBisimilarity(m1,m2) > 1 - ε,                                    
then |discountedValue(m1,p) - discountedValue(m2,p)| < f(ε).

A Continuous Theory of Systems



Robustness Theorem [de Alfaro, H, Majumdar]:

If discountedBisimilarity(m1,m2) > 1 - ε,                                    
then |discountedValue(m1,p) - discountedValue(m2,p)| < f(ε).

Further advantages of discounting:

-approximability because of geometric convergence 
(avoids non-termination of verification algorithms)

-applies also to probabilistic systems and to games
(enables reasoning under uncertainty, and control)

A Continuous Theory of Systems
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The FET (Fixed Execution Time) Assumption

Software Task

read sensor 
input at time t

write actuator 
output at time 
t+d, for fixed d



Software Task

read sensor 
input at time t

write actuator 
output at time 
t+d, for fixed d

d>0 is the 
task's “fixed 
execution time"

The FET (Fixed Execution Time) Assumption



The programmer specifies d (could be any event) 
to solve the problem at hand.

The compiler ensures that d is met on a given 
platform (hardware performance and utilization); 
otherwise it rejects the program.

The FET Programming Model



time t time t+d

real execution 
on CPU buffer output

The FET (Fixed Execution Time) Assumption



50% CPU speedup

Portability



Task 2

Task 1

Composability



Timing predictability:     minimal jitter                       
Function predictability:  no race conditions                    

Verifiability through Predictability (Internal Determinism)



make output available 
as soon as ready

Contrast FET with Standard Practice



Race

Contrast FET with Standard Practice



Some Examples

1 Heterogeneity through hybrid automata

2 Continuity through discounting

3 Noninterference through fixed logical execution times

4 Compositionality through automaton interfaces



A Signature Interface

is_prime

int

bool

This interface 
constrains the 
client’s data.

E.g. typed 
programming 
languages.



Signature Interface Compatibility

client is_prime

int

bool

int

bool



An Assertional Interface

divide_byy: int; y ≠ 0

real

This interface 
still constrains 
the client’s data.

E.g. extended 
static checking.

x: int
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Assertional Interface Compatibility

client divide_byy: int; y ≠ 0

x: inta: int

b: int; b > 0

8 b,y. (b > 0 Æ y = b ) y ≠ 0)

Preconditions are assumptions on the input.    
Postconditions are guarantees on the output.

real



An Automaton Interface

open

data

close

read

open?

read? data!

close?

file

This interface 
constrains the 
client’s control.
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Summary

Verifying properties is not an end but a mean.               
The end is designing reliable systems.

The challenge is to come up with a formal foundation 
for systems design that lets us quantify how the effort 
spent during design relates to the quality (functionality, 
performance, robustness) of the product. 



Credits

Hybrid Automata: R. Alur, P.-H. Ho, J. Sifakis, et al.

Discounting: L. de Alfaro, R. Majumdar, et al.

Giotto: B. Horowitz, C. Kirsch, et al.

Interfaces: A. Chakrabarti, L. de Alfaro, et al. 


	The                                              Embedded Systems Design   Challenge

