

Integrated Embedded System Development for **Automotive and Aerospace Applications:** The DECOS Concepts

András Balogh, György Csertán, András Pataricza, Balázs Polgár

Budapest University of Technology and Economics

Wolfgang Herzner, Rupert Schlick, Egbert Althammer, Erwin Schoitsch

Austrian Research Centers GmbH - ARC

Martin Schlager, Bernhard Leiner

TTTech Computertechnik AG

Bernhard Huber

Vienna University of Technology

Alain Le Guennec, Thierry Le Sergent, Bruno Martin

Esterel Technologies

Neeraj Suri, Shariful Islam

Darmstadt University of Technology

Jonny Vinter

SP Technical Research Institute of Sweden

Dependable Embedded Components and Systems (IP-Project #511764 in EU FP6 / Priority [2] IST)

- Partner (19)
 - Industry

Airbus, AEV, EADS, Infineon, TTTech, Fiat, Profactor, Hella, Liebherr, Thales, **Esterel**

Universities

TU Vienna, TU Darmstadt, TU Hamburg, Uni Kassel, Uni Kiel, **Budapest Uni of Techn. and Economics**

Research Centres

ARCS, SP Swedish Test. & Res. Inst.

DECOS Goals

- **Uniform platform for integration** of embedded distributed (real-time) applications of mixed (up to highest) criticality
 - hardware reduction
 - flexibility increase
- ⇒ from federated to integrated systems
- Implication: fault-isolation of and non-interference between integrated systems has to be guaranteed
- ⇒ provision of appropriate
 - architectures
 - components and services
 - development and verification tools

DECOS "Wasteline" Architecture Model

- **DECOS** high-level services
 - **Encapsulated Execution Environment**
 - Virtual networks
 - Gateways
 - **Diagnosis service**
 - **Fault Tolerance Layer**
- **DECOS** core services
 - **Prevalidated (FIT, NEXT TTA)**
- **Domain and Platform** Independence:
 - Any core technology providing core services suffices
 - (TTP/C, FlexRay, TT-Ethernet, ...)

DECOS Cluster Architecture (Example)

Fault-Containment Units (FCU): Hardware – Node, Software – Job (all replicas)

Implementation on DECOS Platform

Encapsulated Execution Environment 'EEE' (TC 1796)

EEE-Support Layer: oFTL + SIL

Per partition: - memory protection (optimized FTL + System Interface Layer)

- execution time slot "separation in space and time"

* Hardware FTL

Tool Chain: Model-Based Integrated Development Support

"From Requirements To Deployment"

- Requirements
 - functional, performance, dependability
- 2. Cluster modelling
 - nodes, network
- 3. Behaviour modelling
 - of jobs
- 4. Configuration
 - allocation and scheduling
- 5. Middleware generation
 - APIs, fault-tolerance
- 6. Deployment
 - compile, link, download
- 7. Verification & Validation (V&V)
 - accompanying (Test Bench)

Tool-chain Integration

Generic Test Bench – V&V Tool Integration

Tool integration levels

- No external tool: e.g. Checklist
 - Tool implemented in DOORS
- Manually executed external tool: e.g. PROPANE (SWIFI)
 - Start of tool in dialog ("pressing a button")
- Automatically executed external tool: e.g. RACER (Ontology based consistency and completeness check)
 - Start of tool by "mailing" to corresponding server (no user interaction)
- External test bench: e.g. EMI Hardware Test Bench
 - Tool runs on separate hardware, feedback by email/message flow

For all levels, corresponding interaction workflows provided

Example for automatically executed external tool

PIM-validation with Racer

VIATRA2 by BUTE

DECOS

Modelspace

- Multi level metamodeling
- Base concepts:
 - entity, relation
 - inheritance, instantiation
- Multiple domains
- Multiple source
 - Import, export
 - > Tool integration!
- Multiple views (e.g. DSE)
- Transformation language
 - Graph transformation part
 - with patterns & rules
 - Abstract State Machine part
 - with control structures
 - Interpreted execution
 - Big abstraction level differences are easy to handle with it
 - e.g. xforms to formal analysis domains
- Implemented as Eclipse plug-in
- Open source version is available, commercial is coming soon (Spin-off SME: OptXWare)

Summary

- Architecture and methodology has been elaborated for specify, design, implement, validate & verify real-time embedded systems with safety-critical and non safety-critical components in an integrated way.
 - Model Driven Development
 - Model Driven Architecture
 - Demonstrated in automotive, aerospace, industrial control domains
- Tool integration is realized by
 - 1. well defined architecture & development process
 - 2. well defined extension points for development steps (Generic Test Bench for verification & validation)