ARTIST 2007, 1-2 July 2006, Berlin

Coverage-Guided Test Generation Tool for Hybrid Systems

Tarik Nahhal and Thao Dang, VERIMAG Grenoble, France

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Introduction

- Hybrid systems: appropriate high-level model for embedded systems
- **Testing**: commonly-used validation method in industry; it suffers less from the 'state explosion' problem and can be applied to the real system and not only to its model.
- **Testing of a reactive system**: control the inputs and check whether the corresponding behaviors are as expected.
- Infiniteness of the admissible input space of a hybrid system ⇒ notion of coverage
- In **software testing**, syntactic coverage measures, such as statement coverage and if-then-else branch coverage, path coverage

- 1. Introduction: Hybrid systems testing problem
- 2. Test coverage
- 3. Coverage-guided test generation
- 4. Tool and Experimental results

1. Introduction: Hybrid systems testing problem

- 2. Test coverage
- 3. Coverage-guided test generation
- 4. Tool and Experimental results

Hybrid Automata

- $\mathcal{X} \subseteq \mathbb{R}^n$ is the continuous state space
- A set of discrete locations. In each location q, the evolution of the continuous variables: $f(x(t), \dot{x}(t), u(t), p) = 0$ where $u(t) \in U_q$ (input set), $p \in W_q$ (parameter set). Each location is associated with a staying condition.
- A set of **discrete transitions**. A discrete transition is associated with a guard condition and a set-valued reset map.
- A hybrid state (q, x) can change in 2 ways: by continuous evolution and by discrete evolution
- This model allows to capture **non-determinism**

Testing Problem

- A system under test (SUT) is modeled by a hybrid automaton. Note: we do not assume that we know the model of the SUT.
- The **tester** plays the role of the **environment**. The tester generates continuous inputs and controls discrete transitions.
- Implement the tester as a computer program ⇒ continuous inputs are assumed to be piecewise-constant.
- Hence, there are two types of **input actions** the tester can perform: **continuous** and **discrete**.

Conformance

Under any admissible input sequence γ of the specification \mathcal{A} (also admissible for the SUT \mathcal{A}_s)

- The set of observation sequences of the SUT \mathcal{A}_s is included in the set of observation sequences of the specification \mathcal{A}
- \Rightarrow We say that the SUT \mathcal{A}_s is **conform** to the specification \mathcal{A}

Test case

Test case: **tree** where each **node** is associated with an **observation** and each **edge** is associated with an **input action**.

The tester produces a verdict (pass, fail, inconclusive)

Infinite number of infinite traces \Rightarrow Select a finite portion of the input space of the specification \mathcal{A} and test the conformance of \mathcal{A}_s w.r.t. this portion.

The selection is done using a **coverage criterion** (see next).

- 1. Introduction: Hybrid systems testing problem
- 2. Test coverage
- 3. Coverage-guided test generation
- 4. Tool and Experimental results

Test coverage

- **Test coverage** is a way to evaluate testing quality.
- We are interested in **state coverage** and focus on a measure that describes how 'well' the visited states represent the reachable set.
- This measure is defined using the **star discrepancy** notion in statistics, which characterises the uniformity of the distribution of a point set within a region.
- The star discrepancy is an important notion in equidistribution theory as well as in quasi-Monte Carlo techniques

- Let P be a set of k points inside $\mathcal{B} = [l_1, L_1] \times \ldots \times [l_n, L_n].$
- A subbox $J = \prod_{i=1}^{n} [l_i, \beta_i]$ with $\beta_i \in [l_i, L_i]$.
- The local discrepancy: $D(P, J) = \left|\frac{nb(P, J)}{k} \frac{vol(J)}{vol(\mathcal{B})}\right|$
- The star discrepancy: $D^*(P, \mathcal{B}) = sup_J D(P, J)$. Note that $0 < D^*(P, \mathcal{B}) \le 1$.

Test Coverage for Hybrid Systems

• Let $\mathcal{P} = \{(q, P_q)\}$ be the set of states. We define the coverage of \mathcal{P} as:

$$Cov(\mathcal{P}) = \frac{1}{||Q||} \sum_{q \in Q} Cov_q$$

where $Cov_q = 1 - D^*(P_q, \mathcal{I}_q)$ and ||Q||: number of locations.

- A large value of $Cov(\mathcal{P})$ indicates a good **space-covering** quality.
- If \mathcal{P} is the set of states visited by a test suit, our objective is to maximize $Cov(\mathcal{P})$.

- 1. Introduction: Hybrid systems testing problem
- 2. Test coverage
- 3. Coverage-guided test generation
- 4. Tool and Experimental results

Test generation

Essence behind the solution we propose

- **Randomized** exploration, inspired by probabilistic **motion planning** techniques **RRT** (Random Rapidly-Exploring Trees) in robotics
- Coverage criteria reflects testing quality
- **Guided** by coverage criteria

Test generation algorithm

$$\begin{array}{ll} \mathcal{T}.init(s_0), \ j=1 & /* \ s_0: \ \text{initial state }*/\\ \textbf{Repeat} & s_{goal} = \text{SAMPLING}(\mathcal{S}) & /* \ \mathcal{S}: \ \text{hybrid state space }*/\\ s_{near} = \text{NEIGHBOR}(\mathcal{T}, s_{goal}) & /* \ \mathcal{S}: \ \text{hybrid state space }*/\\ (s_{new}, u_{q_{near}}) = \text{CONTINUOUSSTEP}(s_{near}, h) & /* \ h: \ \text{time step }*/\\ \text{DISCRETESTEPS}(\mathcal{T}, s_{new}), \ j++\\ \textbf{Until } j \geq J_{max} \end{array}$$

- NEIGHBOR: we define the distance between hybrid states as the average length between all (potential) trajectories between the states.
- CONTINUOUSSTEP: find the input $u_{q_{near}}$ to take the system from s_{near} towards s_{goal} as closely as possible.
- In the classic (continuous) RRT algorithms, sampling is often uniform, NEIGHBOR is defined using the Euclidian distance

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

RRT-based exploration - example

RRT-based exploration - example

RRT-based exploration - example

• We estimate a lower and upper bound, using a box partition Π of \mathcal{B}

• Given a box
$$\boldsymbol{b} = [\alpha_1, \beta_2] \times \ldots \times [\alpha_n, \beta_n] \in \Pi$$
, we define $\boldsymbol{b}^+ = [l_1, \beta_1] \times \ldots \times [l_n, \beta_n]$ and $\boldsymbol{b}^- = [l_1, \alpha_1] \times \ldots \times [l_n, \alpha_n]$.

• Lower bound $C(P, \Pi)$ and upper bound $C(P, \Pi)$ [THIEMARD01]

$$B(P,\Pi) = \max_{\boldsymbol{b}\in\Pi} \max\{\frac{nb(P,\boldsymbol{b}^{+})}{k} - \frac{vol(\boldsymbol{b}^{-})}{vol(\mathcal{B})}, \frac{vol(\boldsymbol{b}^{+})}{vol(\mathcal{B})} - \frac{A(P,\boldsymbol{b}^{-})}{k}\}$$
$$C(P,\Pi) = \max_{\boldsymbol{b}\in\Pi} \max\{|\frac{nb(P,\boldsymbol{b}^{-})}{k} - \frac{vol(\boldsymbol{b}^{-})}{vol(\mathcal{B})}|, |\frac{nb(P,\boldsymbol{b}^{+})}{k} - \frac{vol(\boldsymbol{b}^{+})}{vol(\mathcal{B})}|\}$$

Coverage-Guided Sampling

- Bias the goal state sampling distribution according to the current coverage.
- To sample a hybrid state, we first sample a discrete location and then a continuous state.
- The **location sampling distribution** depends on the current coverage of each location:

$$Pr[q_{goal} = q] = \frac{(1 - Cov_q)}{\sum_{q' \in Q} (1 - Cov_{q'})}.$$

Coverage-Guided Sampling (cont'd)

- Suppose that we have already sampled a discrete location $q_{goal} = q$.
- The **sampling of a continuous state** consists of two steps:
 - 1. Sample a box \boldsymbol{b}_{goal} in the box partition Π
 - 2. Sample a point x_{goal} in \boldsymbol{b}_{goal} uniformly.
- The **box sampling** distribution (first step) is biased in order to **improve the current coverage**:
 - Strategy: reduce both the lower bound and the upper bound
 - Defining a potential influence functions, and the information from the coverage estimation.

Implementation

Using a hierachical box-partition of the state space, similar to a k-d tree, which facilitates the required operations:

- Approximate neighbors.
- Update the discrepancy estimation. Error control by fine tuning the partition granularity.
- Box splitting

In motion planning

• Given $\varepsilon > 0$, for any point x in the free state space, the probability that the tree \mathcal{T}^k at step k contains a node which is ε -close to x

$$lim_{k\to\infty}Pr[x\in N(\mathcal{T}^k,\varepsilon)]=1$$

• The free state space is assumed to be controllable

In reachability analysis, not all points in the state space \mathcal{X} is controllable. We derived more general conditions for completeness:

- Sampling: any subset of \mathcal{X} with **positive volume** has a non-null probability of being sampled
- Input selection: Non-null probability that each reachable direction is selected. If the continuous input set is finite, this means $\forall u \in U$: $Pr[u^k = u] > 0.$

- 1. Introduction: Hybrid systems testing problem
- 2. Test coverage
- 3. Coverage-guided test generation
- 4. Tool and Experimental results

The circuit equations are a system of DAEs of index 1 with 8 continuous variables: $M\dot{y} = f(y, u)$ where M and f are:

The circuit parameters are: $U_b = 6$; $U_F = 0.026$; $R_0 = 1000$; $R_k = 9000$, $k = 1, \ldots, 9$; $C_k = k10^{-6}$; $\alpha = 0.99$; $\beta = 10^{-6}$. The initial state $y_{init} = (0, U_b/(R_2/R_1 + 1), U_b/(R_2/R_1 + 1), U_b/(R_6/R_5 + 1), U_b/(R_6/R_5 + 1), U_b, 0)$. The input signal $U_e(t) = 0.1sin(200\pi t)$.

Transistor Amplifier - Results

Circuit parameter uncertainty: perturbation in the relation between the current through the source of the two transistors and the voltages at the gate and source $I_S = g(U_G - U_S) = \beta(e^{\frac{U_G - U_S}{U_F}} - 1) + \epsilon$, with $\epsilon \in [-5e - 5, 5e - 5]$. We used the gRRT algorithm to generate a test case \Rightarrow presence of **overshoots** (the acceptable interval of U_8 in the non-perturbed circuit is [-3.01, 1.42]).

Voltage Controlled Oscillator

Circuit equations are DAEs with 55 continuous variables.

 $\begin{array}{l} T-\delta \leq y \leq T+\delta \ \land \ |x_1| \leq \varepsilon \\ y:=0 \end{array}$

Voltage Controlled Oscillator - Results

We consider a constant input voltage $u_{in} = 1.7$ and a **time-variant** deviation of C_2 which ranges within $\pm 10\%$ of the value of $C_2 = 0.1e - 4$

The generated test case shows that after the transient time, the variables v_{C_1} and v_{C_2} oscillate with the period $T \in [1.25, 1.258]s$ (with $\varepsilon = 2.8e - 4$).

As a mixed-signal circuit example, we also tested on the Delta-Sigma modulator circuit.

Aircraft collision avoidance [MITCHELLTOMLIN00]

- Continuous dynamics of each aircraft: $\dot{x}_i = vcos(\theta_i) + d_1 sin(\theta_i) + d_2 cos(\theta_2), \ \dot{y}_i = vsin(\theta_i) d_1 cos(\theta_i) + d_2 sin(\theta_2), \ \dot{\theta}_i = \omega$ where x_i, y_i : position, θ_i : relative heading. The continuous inputs are d_1 and d_2 are external disturbances.
- Three discrete modes: Mode 1, each aircraft begins in straight flight with a fixed heading. Mode 2: each makes an instantaneous heading change of 90 degrees, and begins a circular flight for π time units. Mode 3: each makes another instantaneous heading change of 90 degrees and resumes its original headings. For N aircrafts $\Rightarrow 3N + 1$ continuous variables (one for modeling a clock).
- N = 2 aircrafts, collision distance is 5. No collision was detected after visiting 10000 states. The computation time was 0.9 min.
- N = 10 aircrafts, the computation time was 10 min and a collision was detected after visiting 50000 states.

Aircraft collision avoidance

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Higher dimensional systems

Tested systems $\dot{x}(t) = Ax(t) + u(t)$ were randomly generated. Matrix A in Jordan canonical form

dim n	Lower bound		Upper bound	
	gRRT	RRT	gRRT	RRT
3	0.451	0.546	0.457	0.555
5	0.462	0.650	0.531	0.742
10	0.540	0.780	0.696	0.904

dim n	Time (min)
5	1
10	3.5
20	7.3
50	24
100	71

Conclusions

Results

- Novel test coverage measure
- Coverage-guided test generation tool for hybrid systems
- Encouraging experimental results

Ongoing and Future work

- Partial observability
- Interface with circuit description, application to circuit testing

End Thank You For Your Attention

Simple randomized exploration

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

- Two transitions e = (q, q') and e' = (q', q''), we define $\sigma(e, e') = \overline{d}(\mathcal{R}_{(l,l')}(\mathcal{G}_{(l,l')}), \mathcal{G}_{(l',l'')})$ where \overline{d} is the Euclidian distance between their centroids.
- A path $\gamma = e_1, e_2, \ldots e_m$, average length $len(\gamma) = \sum_{i=1}^{m-1} \sigma(e_i, e_{i+1})$.
- Two hybrid states s = (q, x) and s' = (q', x'),
 - if q = q', the **hybrid distance** $d_H(s, s')$ is the Euclidian distance between x and x': $d_H(s, s') = ||x - x'||$. - If $q \neq q'$,

$$d_{H}(s,s') = \begin{cases} \min_{\gamma \in \Gamma(q,q')} \overline{d}(x, fG(\gamma)) + len(\gamma) + \overline{d}(x', lR(\gamma)) & \text{if } \Gamma(q,q') \neq \\ \infty & \text{otherwise.} \end{cases}$$

$$fG(\gamma) = \mathcal{G}_{(l_1, l_2)}$$
 (first guard), and $lR(\gamma) = \mathcal{R}_{(l_k, l_{k+1})}(\mathcal{G}_{(l_k, l_{k+1})}).$

• NEIGHBOR can then be computed using this hybrid distance.

$$C(P,\Pi) = \max_{\boldsymbol{b}\in\Pi} \max\{|\frac{A(P,\boldsymbol{b}^{-})}{k} - \frac{\lambda(\boldsymbol{b}^{-})}{\lambda(\mathcal{B})}|, |\frac{A(P,\boldsymbol{b}^{+})}{k} - \frac{\lambda(\boldsymbol{b}^{+})}{\lambda(\mathcal{B})}|\}$$

Define a number $A^{*}(\boldsymbol{b})$ s.t. $\frac{\lambda(\boldsymbol{b})}{\lambda(\mathcal{B})} = \frac{A^{*}(\boldsymbol{b})}{k}$. Let $\Delta_{A}(\boldsymbol{b}) = A(P,\boldsymbol{b}) - A^{*}(\boldsymbol{b})$
 $\Rightarrow C(P,\Pi) = \frac{1}{k} \max_{\boldsymbol{b}\in\Pi} \{\max\{|\Delta_{A}(\boldsymbol{b}^{+})|, |\Delta_{A}(\boldsymbol{b}^{-})|\}\}.$

Potential influence on the lower bound:

$$\xi(\boldsymbol{b}) = \frac{1 - \Delta_A(\boldsymbol{b}^+)/k}{1 - \Delta_A(\boldsymbol{b}^-)/k}$$

Intepretation: (1) If $\Delta_A(\boldsymbol{b}^+) < 0$ and $|\Delta_A(\boldsymbol{b}^+)|$ large, the 'lack' of points in \boldsymbol{b}^+ is significant $\Rightarrow \xi(\boldsymbol{b})$ large, meaning that the selection of \boldsymbol{b} is favored. (2) If $\Delta_A(\boldsymbol{b}^-) < 0$ and $|\Delta_A(\boldsymbol{b}^-)|$ is large, it is preferable not to select \boldsymbol{b} to increase the chance of adding new points in \boldsymbol{b}^- .

Update the discrepancy estimation

- To update the star discrepancy estimation \Rightarrow find all elementary boxes \boldsymbol{b} s.t. the new point has increased the number of points in \boldsymbol{b}^- and \boldsymbol{b}^+ .
- These boxes are indeed those which intersect with the box $B_x = [x_1, L_1] \times \ldots \times [x_n, L_n].$
 - If \boldsymbol{b} is a subset of B_x , increment the numbers of points in both \boldsymbol{b}^+ and \boldsymbol{b}^-
 - If **b** intersects with B_x but is not entirely inside B_x , only increment the number of points in b^+ .

