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Introduction

• Hybrid systems: appropriate high-level model for embedded sys-
tems

• Testing: commonly-used validation method in industry; it suffers less
from the ‘state explosion’ problem and can be applied to the real system
and not only to its model.

• Testing of a reactive system: control the inputs and check whether
the corresponding behaviors are as expected.

• Infiniteness of the admissible input space of a hybrid system ⇒ notion
of coverage

• In software testing, syntactic coverage measures, such as statement
coverage and if-then-else branch coverage, path coverage
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Hybrid Automata

• X ⊆ Rn is the continuous state space

• A set of discrete locations. In each location q, the evolution of the
continuous variables: f (x(t), ẋ(t), u(t), p) = 0 where u(t) ∈ Uq (input
set), p ∈ Wq (parameter set). Each location is associated with a
staying condition.

• A set of discrete transitions. A discrete transition is associated with
a guard condition and a set-valued reset map.

• A hybrid state (q, x) can change in 2 ways: by continuous evolu-
tion and by discrete evolution

• This model allows to capture non-determinism
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Testing Problem

• A system under test (SUT) is modeled by a hybrid automaton. Note:
we do not assume that we know the model of the SUT.

• The tester plays the role of the environment. The tester generates
continuous inputs and controls discrete transitions.

• Implement the tester as a computer program ⇒ continuous inputs are
assumed to be piecewise-constant.

• Hence, there are two types of input actions the tester can perform:
continuous and discrete.
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Conformance

Under any admissible input sequence γ of the specification A (also
admissible for the SUT As)

• The set of observation sequences of the SUT As is included in
the set of observation sequences of the specification A

⇒ We say that the SUT As is conform to the specification A
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Test case

Test case: tree where each node is associated with an observation and
each edge is associated with an input action.

System Under TestTester
(q, x)

v ∈ {P, F, I}

c

The tester produces a verdict (pass, fail, inconclusive)

Infinite number of infinite traces ⇒ Select a finite portion of the input
space of the specification A and test the conformance of As w.r.t. this
portion.

The selection is done using a coverage criterion (see next).
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Test coverage

• Test coverage is a way to evaluate testing quality.

• We are interested in state coverage and focus on a measure that
describes how ‘well’ the visited states represent the reachable set.

• This measure is defined using the star discrepancy notion in statis-
tics, which characterises the uniformity of the distribution of a point
set within a region.

• The star discrepancy is an important notion in equidistribution theory
as well as in quasi-Monte Carlo techniques
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Star discrepancy

• Let P be a set of k points inside B = [l1, L1]× . . .× [ln, Ln].

• A subbox J =
∏n

i=1[li, βi] with βi ∈ [li, Li].

• The local discrepancy: D(P, J) = |nb(P, J)

k
− vol(J)

vol(B)
|

• The star discrepancy: D∗(P,B) = supJD(P, J). Note that 0 <
D∗(P,B) ≤ 1.
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Test Coverage for Hybrid Systems

• Let P = {(q, Pq)} be the set of states. We define the coverage of P
as:

Cov(P) =
1

||Q||
∑
q∈Q

Covq

where Covq = 1−D∗(Pq, Iq) and ||Q||: number of locations.

• A large value of Cov(P) indicates a good space-covering quality.

• IfP is the set of states visited by a test suit, our objective is to maximize
Cov(P).
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Test generation

Essence behind the solution we propose

• Randomized exploration, inspired by probabilistic motion planning
techniques RRT (Random Rapidly-Exploring Trees) in robotics

• Coverage criteria reflects testing quality

• Guided by coverage criteria
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Test generation algorithm

T .init(s0), j = 1 /* s0: initial state */
Repeat

sgoal = Sampling(S) /* S: hybrid state space */
snear = Neighbor(T , sgoal)
(snew, uqnear

) = ContinuousStep(snear, h) /* h: time step */
DiscreteSteps(T , snew), j + +

Until j ≥ Jmax

• Neighbor: we define the distance between hybrid states as the average
length between all (potential) trajectories between the states.

• ContinuousStep: find the input uqnear
to take the system from snear

towards sgoal as closely as possible.

• In the classic (continuous) RRT algorithms, sampling is often uniform,
Neighbor is defined using the Euclidian distance
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RRT-based exploration
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RRT-based exploration
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RRT-based exploration
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RRT-based exploration
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RRT-based exploration



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

RRT-based exploration
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RRT-based exploration
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RRT-based exploration - example
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RRT-based exploration - example



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

RRT-based exploration - example
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Coverage Estimation

• We estimate a lower and upper bound, using a box partition Π of
B

• Given a box b = [α1, β2]× . . .× [αn, βn] ∈ Π, we define b+ = [l1, β1]×
. . .× [ln, βn] and b− = [l1, α1]× . . .× [ln, αn].

• Lower bound C(P, Π) and upper bound C(P, Π) [Thiemard01]

B(P, Π) = max
b∈Π

max{nb(P, b+)

k
− vol(b−)

vol(B)
,

vol(b+)

vol(B)
− A(P, b−)

k
}

C(P, Π) = max
b∈Π

max{|nb(P, b−)

k
− vol(b−)

vol(B)
|, |nb(P, b+)

k
− vol(b+)

vol(B)
|}
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Coverage-Guided Sampling

• Bias the goal state sampling distribution according to the current
coverage.

• To sample a hybrid state, we first sample a discrete location and then
a continuous state.

• The location sampling distribution depends on the current coverage
of each location:

Pr[qgoal = q] =
(1− Covq)∑

q′∈Q(1− Covq′)
.
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Coverage-Guided Sampling (cont’d)

• Suppose that we have already sampled a discrete location qgoal = q.

• The sampling of a continuous state consists of two steps:

1. Sample a box bgoal in the box partition Π

2. Sample a point xgoal in bgoal uniformly.

• The box sampling distribution (first step) is biased in order to im-
prove the current coverage:

– Strategy: reduce both the lower bound and the upper bound

– Defining a potential influence functions, and the information from
the coverage estimation.
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Implementation

Using a hierachical box-partition of the state space, similar to a k-d
tree, which facilitates the required operations:

• Approximate neighbors.

• Update the discrepancy estimation. Error control by fine tuning the
partition granularity.

• Box splitting
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Reachability Completeness

In motion planning

• Given ε > 0, for any point x in the free state space, the probability
that the tree T k at step k contains a node which is ε-close to x

limk→∞Pr[x ∈ N(T k, ε)] = 1

• The free state space is assumed to be controllable

In reachability analysis, not all points in the state space X is control-
lable. We derived more general conditions for completeness:

• Sampling: any subset of X with positive volume has a non-null prob-
ability of being sampled

• Input selection: Non-null probability that each reachable direction
is selected. If the continuous input set is finite, this means ∀u ∈ U :
Pr[uk = u] > 0.
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Transistor Amplifier

The circuit equations are a system of DAEs of index 1 with 8 continuous
variables: Mẏ = f (y, u) where M and f are:

−C1 C1 0 0 0 0 0 0
C1 −C1 0 0 0 0 0 0
0 0 −C2 0 0 0 0 0
0 0 0 −C3 C3 0 0 0
0 0 0 C3 −C3 0 0 0
0 0 0 0 0 −C4 0 0
0 0 0 0 0 0 −C5 C5

0 0 0 0 0 0 C5 −C5

 ,


−Ue/R0 + y1/R0

−Ub/R2 + y2(1/R1 + 1/R2)− (α− 1)g(y2 − y3)
−g(y2 − y3) + y3/R3

−Ub/R4 + y4/R4 + αg(y2 − y3)
−Ub/R6 + y5(1/R5 + 1/R− 6)− (α− 1)g(y5 − y6)

−g(y5 − y6) + y6/R7

−Ub/R8 + y7/R8 + αg(y5 − y6)
y8/R9


The circuit parameters are: Ub = 6; UF = 0.026; R0 = 1000; Rk = 9000,
k = 1, . . . , 9; Ck = k10−6; α = 0.99; β = 10−6.
The initial state yinit = (0, Ub/(R2/R1 + 1), Ub/(R2/R1 +
1), Ub, Ub/(R6/R5 + 1), Ub/(R6/R5 + 1), Ub, 0). The input signal
Ue(t) = 0.1sin(200πt).
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Transistor Amplifier - Results

Circuit parameter uncertainty: perturbation in the relation between
the current through the source of the two transistors and the voltages

at the gate and source IS = g(UG − US) = β(e
UG−US

UF − 1) + ε, with
ε ∈ [−5e− 5, 5e− 5].
We used the gRRT algorithm to generate a test case ⇒ presence of
overshoots (the acceptable interval of U8 in the non-perturbed circuit is
[−3.01, 1.42]).
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Voltage Controlled Oscillator

Circuit equations are DAEs with 55 continuous variables.

Error

x1 = 0
ẋ1 = 0 |x1| ≤ εy := 0
ẏ = 1

y > T + δ ∧

y := 0
T − δ ≤ y ≤ T + δ ∧ |x1| ≤ ε

y ≤ Tp
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Voltage Controlled Oscillator - Results

We consider a constant input voltage uin = 1.7 and a time-variant
deviation of C2 which ranges within ±10% of the value of C2 = 0.1e− 4

The generated test case shows that after the transient time, the variables
vC1

and vC2
oscillate with the period T ∈ [1.25, 1.258]s (with ε = 2.8e−4).

As a mixed-signal circuit example, we also tested on the Delta-Sigma
modulator circuit.
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Aircraft collision avoidance [MitchellTomlin00]

• Continuous dynamics of each aircraft: ẋi = vcos(θi) + d1sin(θi) +
d2cos(θ2), ẏi = vsin(θi)− d1cos(θi) + d2sin(θ2), θ̇i = ω
where xi, yi: position, θi: relative heading. The continuous inputs are
d1 and d2 are external disturbances.

• Three discrete modes: Mode 1, each aircraft begins in straight flight
with a fixed heading. Mode 2: each makes an instantaneous heading
change of 90 degrees, and begins a circular flight for π time units. Mode
3: each makes another instantaneous heading change of 90 degrees and
resumes its original headings. For N aircrafts ⇒ 3N + 1 continuous
variables (one for modeling a clock).

• N = 2 aircrafts, collision distance is 5. No colission was detected after
visiting 10000 states. The computation time was 0.9 min.

• N = 10 aircrafts, the computation time was 10 min and a collision was
detected after visiting 50000 states.
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Aircraft collision avoidance
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Higher dimensional systems

Tested systems ẋ(t) = Ax(t) + u(t) were randomly generated. Ma-
trix A in Jordan canonical form

dim n Lower bound Upper bound
gRRT RRT gRRT RRT

3 0.451 0.546 0.457 0.555
5 0.462 0.650 0.531 0.742
10 0.540 0.780 0.696 0.904

dim n Time (min)
5 1
10 3.5
20 7.3
50 24
100 71
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Conclusions

Results

• Novel test coverage measure

• Coverage-guided test generation tool for hybrid systems

• Encouraging experimental results

Ongoing and Future work

• Partial observability

• Interface with circuit description, application to circuit testing



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

End

Thank You For Your Attention
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Simple randomized exploration



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

RRT-based exploration
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RRT simulation
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RRT simulation
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RRT simulation
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RRT simulation
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RRT simulation
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Hybrid distance

• Two transitions e = (q, q′) and e′ = (q′, q′′), we define σ(e, e′) =
d(R(l,l′)(G(l,l′)),G(l′,l′′)) where d is the Euclidian distance between their
centroids.

• A path γ = e1, e2, . . . em, average length len(γ) =
∑m−1

i=1 σ(ei, ei+1).

• Two hybrid states s = (q, x) and s′ = (q′, x′),

– if q = q′, the hybrid distance dH(s, s′) is the Euclidian distance
between x and x′: dH(s, s′) = ||x− x′||.

– If q 6= q′,

dH(s, s′) =

{
min

γ∈Γ(q,q′)
d(x, fG(γ)) + len(γ) + d(x′, lR(γ)) if Γ(q, q′) 6= ∅

∞ otherwise.

fG(γ) = G(l1,l2) (first guard), and lR(γ) = R(lk,lk+1)(G(lk,lk+1)).

• Neighbor can then be computed using this hybrid distance.
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Coverage-Guided Sampling (cont’d)

C(P, Π) = max
b∈Π

max{|A(P, b−)

k
− λ(b−)

λ(B)
|, |A(P, b+)

k
− λ(b+)

λ(B)
|}

Define a number A∗(b) s.t.
λ(b)

λ(B)
=

A∗(b)

k
. Let ∆A(b) = A(P, b)−A∗(b)

⇒ C(P, Π) = 1
k
maxb∈Π{max{|∆A(b+)|, |∆A(b−)|}}.

Potential influence on the lower bound:

ξ(b) =
1−∆A(b+)/k

1−∆A(b−)/k

Intepretation: (1) If ∆A(b+) < 0 and |∆A(b+)| large, the ‘lack’ of points
in b+ is significant ⇒ ξ(b) large, meaning that the selection of b is favored.
(2) If ∆A(b−) < 0 and |∆A(b−)| is large, it is preferable not to select b to
increase the chance of adding new points in b−.
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Update the discrepancy estimation

• To update the star discrepancy estimation ⇒ find all elementary boxes
b s.t. the new point has increased the number of points in b− and b+.

• These boxes are indeed those which intersect with the box Bx =
[x1, L1]× . . .× [xn, Ln].

– If b is a subset of Bx, increment the numbers of points in both b+

and b−

– If b intersects with Bx but is not entirely inside Bx, only increment
the number of points in b+.


