

Coral: a tool for Compositional Reliability and Availability analysis[†]

Hichem Boudali¹, Pepijn Crouzen², and Mariëlle Stoelinga¹.

¹Formal Methods and Tools group CS, University of Twente, NL.
²Dependable Systems and Software group, CS, Saarland University, Germany

 $^\dagger This$ research has been partially funded by the EU under grant IST-004527 (ARTIST2)

Introduction

- State-space explosion.
- Ambiguous syntax and semantics.
- Lack of modularity:
 - Dynamic modules can not be reused.
 - Restrictions on spares and dependencies.
- Existing analysis technique is hard to extend or modify.

- Case study: FTPP system.
- Dynamic fault trees (DFT).
- DFT semantics in terms of I/O-IMCs.
- Deep compositionality.
- Prototype tool chain.
- Conclusion.

Case study: FTPP

- 16 processors divided into 4 groups
- 4 network elements connect the processors
- Per group 2 processors must be operational
- Different configurations are possible

Monolithic DFT analysis [Dugan et al. 1992]

- Convert the DFT into a Continuous-time Markov chain.
- Analyze CTMC using standard solution techniques.
- In special cases binary decision diagrams can be used!

FTPP Results

Analysis method	Max number of states	Max number of transitions	Unreliability (T=10)
Monolithic	32757	426826	2.55479 · 10 ⁻⁸

- Model local behavior
- Combination of I/O automata and CTMC; closely related to IMCs
- Markovian transitions (CTMC)
- Interactive tran I/O-IMC for
- Action signature Basic event
 - ? Input actions
 - I Output actions
 - ; Internal actions

Input/Output Interactive Markov Chains (I/O-IMC)

DFT semantics DFT gate to I/O-IMC

 Semantics of a DFT arises naturally as composition of the semantics of its building blocks

But: This may lead to huge models.

- Formally define semantics
- Many useful techniques
 - Combining models: Composition
 - Refining models: Abstraction
 - Minimizing models: Aggregation
 - Reusing models: Renaming
- Well supported by CADP toolset (VASY/INRIA)
 - Widely used in industry (e.g. Airbus)

Combat State-space explosion

Conclusion: *How we tackled drawbacks*

- State-space explosion.
- Ambiguous syntax and semantics.
- Lack of modularity:
 - Dynamic modules can not be reused.
 - Restrictions on spares and dependencies.
- Existing analysis technique is hard to extend and/or modify.

Extensions at the lowest level

- Fully automated tool
- More aggressive state reduction
 - Weaker equivalences
 - Interface constraints
 - Phase-type minimization
- Further extensions to DFT modeling capabilities
 - Extension to non-exponential distributions
 - New DFT building blocks
- Apply deep compositionality to other engineering formalisms!
 - E.g. Architectural description languages like AADL

References

- H. Boudali, P. Crouzen, M. Stoelinga. "Dynamic Fault Tree analysis using Input/Output Interactive Markov Chains", to appear, DSN 2007 proceedings.
- H. Boudali, P. Crouzen, M. Stoelinga. "A compositional semantics for Dynamic Fault Trees in terms of Interactive Markov Chains", submitted to ATVA 2007.
- More info:
 - crouzen@alan.cs.uni-sb.de
 - <u>hboudali@cs.utwente.nl</u>
 - marielle@cs.utwente.nl

The END!

Case studies

(a) The cascaded PAND system

(c) A multi-processor distributed computing system

Case study	Analysis method	Max number of states	Max number of transitions	Unreliability (T=1)
(a)	Monolithic	4113	24608	0.00135668
(a)	Compositional	132	426	0.00135668
(b)	Monolithic	8	10	0.657900
(b)	Compositional	36	119	0.657900
(c)	Monolithic	253	1383	2.00025 10-9
(c)	Compositional	157	756	2.00025 10-9

Non-determinism!

