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Software bugs are expensive:
Mars Climate Orbiter Sonde (1999):

Convertion of non-metric to metric units: numbers forgotten
results into loss of sonde

Ariane-5 crash (1996): 
caused in the end by the convertion of a 64-bit floating point 
number into a 16-bit signed integer number

Pentium bug (1994):
certain divisions lead to wrong result
costs Intel nearly 500 million dollar
since then: formal verification of floating point algorithms at Intel

Formal methods, in particular formal verification, to 
avoid financial loss

special cases
cause bugs
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Why formal verification?
Software systems:

behave exclusively according to formal rules

Test and validation:
observing a system for “typical” inputs
does not rule out mistakes

Verification:
proves allquantified statements

“for all conceivable states, it holds that …”
formal verification with a theorem prover

rules out bugs completely
is very expensive 
can nevertheless be worth the extra effort
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Requirements for formal verification

system and software
in real environment

specification
and

proof goal 
via

suitable
semantics

correctness proofs in
formal system

- needs to mirrow reality - needs to be suitable for verification
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Software / system transformations …

do take place very often:
model transformations (e.g. UML to Java)
software reengineering
in compilers
hardware synthesis
…

need to be correct
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Correctness of transformations

Translation correctness
Is the translation algorithm correct?

Does it preserves the semantics during transformation?
semantics = e.g. observable behavior

proof technique: mostly refinement proofs

Implementation correctness
Is the translation algorithm correctly implemented?

[Glesner,Goos,Zimmermann, it 46(5) 2004]
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Implementation correctness via 
program checking

instead of verifying a transformation, verify its result.

Program checking goes back to Blum/Kannan
("Programs that check their work").

yes/don‘t know

source system

target system

transformation checker

to be verified

separatly for each 
transformation

Applications in:
compilers, software libraries 

(e.g. LEDA),
hardware verification …

well suited
for all phases in

compiler frontends

[Glesner,Forster,Jäger: A Program Result Checker for 
the Lexical Analysis of the GNU C Compiler. COCV 2004.]
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Verification of compilers

absolutely essential for software development
relatively large software systems
semantically interesting
results carry over to other software 
(and hardware) areas 

Sabine Glesner 12CAV ARTIST2 Workshop Berlin      July 2007

Overview

Reasons and prerequisites for formal verification
Verification of program / system transformations
Three formal verifications as example:

Verification of optimizing compilers
Verification of model transformations
VATES: Verification of satellite software

Overview about further research projects
Conclusions and perspectives



Sabine Glesner 13CAV ARTIST2 Workshop Berlin      July 2007

Optimization and Verification in a 
Unifying Setting

optimizations
for modern 
processors
(VLIW, e.g. 
Itanium)

verification of 
optimizations in 

Isabelle/HOL 
theorem prover

specification
and

proof goal 
via

suitable
semantics

- needs to mirrow reality - needs to be suitable for verification

compiler in real environment
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Tasks in compiler backends

source 
program

SSA 
form

machine 
code

front 
end

optimizations

SSA: static single assignment 

code 
generator
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Compiler Optimizations for VLIW Processors

VLIW (very long instruction word): 
potential to increase parallelism on instruction level
but current compilers do not use it

Example Intel Itanium:
up to six instructions in parallel are possible
on average only three instructions executed in parallel

Reasons:
memory gap: latency of up to 
200 cycles for memory accesses
performance often domininated by 
memory speed (instead of CPU)
parallelism restricted by conservative
analyses with imprecise results

„points-to“-sets of memory references: 
statically 23, dynamically only 1.06

⇒ Goal:
more precise analyses and speculative optimizations to overcome memory gap

time

pe
rfo

rm
an

ce

memory gapmemory gap
memory

gap

CPU 
speed

memory speed
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Speculation: Implementation

speculative instructions may not change program 
semantics 

without hardware support: 
only instructions without side effects speculatively

with hardware support: 
delay exceptions
run time tests much simpler

hardware support not mandatory but useful
Intel Itanium offers it
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Compiler Optimizations – Platform

Cooperation with ACE (Associated Compiler Experts):
CoSy-System for developing new optimizations 
Current state of the Itanium compiler: 

nearly complete (i.e. nearly all Spec benchmarks run)
speculation prototypically integrated
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Tasks in compiler backends

source 
program

SSA 
form

machine 
code

front 
end

optimizations

SSA: static single assignment 

proof of 
translation and
implementation

correctness

code 
generator
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Formal semantics for SSA

cond

Φ

data flow
control flow

+

*+

cond

Φ

+

*+

Two layers:
- data flow in basic blocks
- control flow connecting basic blocks

In basic blocks:
- functional dependencies
- acyclic data flow graphs

Between basic blocks:
- imperative control flow
- state: active block + predecessor
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Results translation correctness
specification of SSA basic blocks:

as partial order
code generation creates additional dependencies
(⇒ machine order)

machine proof for transformation between 
data-flow driven computation and
sequential instructions 

correct iff data-flow dependencies are remained
correct if SSA order ⊆ machine order

proof statistics:
nearly 900 lopc (lines of proof code)
proof can be reused (general proof princple)

General 
Principle

[Glesner, ASM 2004 + Blech,Glesner,ATPS 2004 + Blech,Glesner,Leitner,Mülling,COCV 2005]
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Formalization of control flow
based on operational semantics
formalization as state transition sequences
state transition sequences in theorem prover:

inductively defined as finite list
problem: non-terminating runs

coinductively defined as lazy lists
can also model non-terminating behavior
problem: Isabelle/HOL (as well as other theorem provers) 
coinductively not powerful enough

as bisimulations
relations that represent state transition behavior
can model non-terminating runs
can be represented adequately in Isabelle/HOL

[Glesner, COCV’04  &  Leitner, Glesner, Blech, COCV 2006]
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Tasks in compiler backends

source 
program

SSA 
form

machine 
code

front 
end

optimizations

SSA: static single assignment 

In our case study:
checker for 

code generators

code 
generator
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Program Checking for Optimizations

Problems in NP:
defined by proofs of polynomial length

…
certificate

Quality of solution:
not relevant for 
correctness
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Program Checking with Certificates

target program

compiler checker yes/don‘t
know

certificate

source program
instrumentation 
of the compiler
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Backend Checking: Results
Compiler = non-deter-
ministic Turing machine:

searches for solution
computes solution

Checker = deterministic
Turing machine:

computes solution
Expectation: checker code is
part of compiler code

1136121836total loc

1057220887loc in .c-
files

789949loc in .h-
files

checkercode 
generator

Result:
Checker code  identical 

with part of
code generator

Consequence:
Substantial reduction 
of verification costs

[Glesner, J.UCS 2003 + Glesner, FME 2003]

(Code generator from AJACS-Project with 
industrial partners)
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generator

theorem
prover

trans-
formator

checker

specification

ok: yes/
don‘t know

ok: yes/
don‘t know

input
system

output
system

automatic if 
specification 

semantically correct

target system enriched
by checker

System Architecture

e.g. a compiler, 
a UML code
generator, …

source
program

machine
program

UML 
model

Java 
program
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An Example for this Scenario: 
Verification of Dead Code Elimination

Verification considers correctness of algorithm and 
correctness of implementation 
Correctness of algorithm verified within Isabelle/HOL

Formal Semantics for Static Single Assignment (SSA) Form 
Formalization of Dead Code Algorithm 

Correctness of Implementation
Checker approach
Implemented as CoSy Engine code

DCE

code

Checker yes/don't 
know

[Blech,Gesellensetter,Glesner; SEFM’05]

Further Verification 
Scenario presented 

at FMICS
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Model transformations
Model Driven Architecture (MDA) der Object Management Group 
(OMG)

model not only for documentation but also for development process

models often represented by graphs
as relations between different objectes, etc.
see Unified Modeling Language (UML) as example

specify transformation on models or transformations from models to 
code by graph transformation rules

Fujaba (From UML to Java and back again) tool suite at Paderborn

model
program

code

model 
driven 

development

model
transformation
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Example: simple TGG rule 

Statement Corr
End

Begin

ifStatement

Condition
Statement

Corr

Statement

Corr

Corr
End

Begin

Cond End

Begin

End

Begin

::= ::=::=
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Verification of TGG transformations

To show: 
pairs of models as well as pairs of models and their 
corresponding programs are semantically equivalent
verify semantic equivalence of all possible pairs inductively

axiom that models and programs, resp., in simple starting pair are 
equivalent
induction step that TGG rules preserve semantic equivalence

can be expressed in Isabelle/HOL by inductive data types
has been verified in Isabelle/HOL for basic transformations

[ Blech, Glesner, Leitner, Fujaba Days 2005  +  
Giese, Glesner, Leitner, Schäfer, Wagner, MoDeVa 2006]

Sabine Glesner 32CAV ARTIST2 Workshop Berlin      July 2007

Overview

Reasons and prerequisites for formal verification
Verification of program / system transformations
Three formal verifications as example:

Verification of optimizing compilers
Verification of model transformations
VATES: Verification of satellite software

Overview about further research projects
Conclusions and perspectives



Sabine Glesner 33CAV ARTIST2 Workshop Berlin      July 2007

VATES
new project: VATES 
Verification and Transformation of Embedded Systems
construct and verify
embedded, reactive, 
and concurrent systems
verification throughout the
whole process, from
specification to machine
code
application:
verification of BOSS,
a RTOS used in practice
for the BiRD satellite
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Optimizations for Aspect-Oriented 
Programming Languages

Aspect-orientation:
extension of the object-oriented paradigm
new modularization concept for 
system requirements that are orthogonal 
to the usual module structure
e.g. logging, synchronization, …

In embedded systems:
variability at run time
dynamic extension and removal of aspects 
necessary: optimization of the execution model
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Optimized Aspect-Oriented Programming Languages

for use in mobile embedded systems (low resources)
concepts for optimizations to 
case study: dynamically adaptable mobile application

compiler

load-time
aspect
weaver

JVM

woven 
bytecode

source
code

augmented
bytecode

compiler

aspect-
aware

JVM (KVM)

source
code

special
bytecode

future work

state-of-the-art

build-in aspect dispatch
enhanced data structures
additional instructions 

dynamic aspect activation (API)
goal: efficient, dynamically 
adaptable program execution
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HW/SW Co-Design

= integrated design of hardware and software 
parts of embedded systems

Goals:
early analysis of HW/SW-borders
simplified system integration
simulation, testing, verification
evaluation of design alternatives
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doing projects and 

master theses with us
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Conclusions and Perspectives

Verification and system construction/maintenance:
best if from one source
together with optimizations (cf. compilers as example)

Formal verification:
possible for large systems
generates engineering knowledge concerning 

design, construction and maintenance
for reliable software systems

Future application areas:
software engineering
model transformations
hardware/software co-design
embedded systems
in general: safe and efficient systems

Thank you!

More information at:
pes.cs.tu-berlin.de


