
Sabine Glesner

Software Engineering for Embedded Systems

Technical University of Berlin

Verification of
Optimizing Compilers

Sabine Glesner 2CAV ARTIST2 Workshop Berlin July 2007

Software bugs are expensive:
Mars Climate Orbiter Sonde (1999):

Convertion of non-metric to metric units: numbers forgotten
results into loss of sonde

Ariane-5 crash (1996):
caused in the end by the convertion of a 64-bit floating point
number into a 16-bit signed integer number

Pentium bug (1994):
certain divisions lead to wrong result
costs Intel nearly 500 million dollar
since then: formal verification of floating point algorithms at Intel

Formal methods, in particular formal verification, to
avoid financial loss

special cases
cause bugs

Sabine Glesner 3CAV ARTIST2 Workshop Berlin July 2007

Overview

Reasons and prerequisites for formal verification
Verification of program / system transformations
Three formal verifications as example:

Verification of optimizing compilers
Verification of model transformations
VATES: Verification of satellite software

Overview about further research projects
Conclusions and perspectives

Sabine Glesner 4CAV ARTIST2 Workshop Berlin July 2007

Overview

Reasons and prerequisites for formal verification
Verification of program / system transformations
Three formal verifications as example:

Verification of optimizing compilers
Verification of model transformations
VATES: Verification of satellite software

Overview about further research projects
Conclusions and perspectives

Sabine Glesner 5CAV ARTIST2 Workshop Berlin July 2007

Why formal verification?
Software systems:

behave exclusively according to formal rules

Test and validation:
observing a system for “typical” inputs
does not rule out mistakes

Verification:
proves allquantified statements

“for all conceivable states, it holds that …”
formal verification with a theorem prover

rules out bugs completely
is very expensive
can nevertheless be worth the extra effort

Sabine Glesner 6CAV ARTIST2 Workshop Berlin July 2007

Requirements for formal verification

system and software
in real environment

specification
and

proof goal
via

suitable
semantics

correctness proofs in
formal system

- needs to mirrow reality - needs to be suitable for verification

Sabine Glesner 7CAV ARTIST2 Workshop Berlin July 2007

Overview

Reasons and prerequisites for formal verification
Verification of program / system transformations
Three formal verifications as example:

Verification of optimizing compilers
Verification of model transformations
VATES: Verification of satellite software

Overview about further research projects
Conclusions and perspectives

Sabine Glesner 8CAV ARTIST2 Workshop Berlin July 2007

Software / system transformations …

do take place very often:
model transformations (e.g. UML to Java)
software reengineering
in compilers
hardware synthesis
…

need to be correct

Sabine Glesner 9CAV ARTIST2 Workshop Berlin July 2007

Correctness of transformations

Translation correctness
Is the translation algorithm correct?

Does it preserves the semantics during transformation?
semantics = e.g. observable behavior

proof technique: mostly refinement proofs

Implementation correctness
Is the translation algorithm correctly implemented?

[Glesner,Goos,Zimmermann, it 46(5) 2004]

Sabine Glesner 10CAV ARTIST2 Workshop Berlin July 2007

Implementation correctness via
program checking

instead of verifying a transformation, verify its result.

Program checking goes back to Blum/Kannan
("Programs that check their work").

yes/don‘t know

source system

target system

transformation checker

to be verified

separatly for each
transformation

Applications in:
compilers, software libraries

(e.g. LEDA),
hardware verification …

well suited
for all phases in

compiler frontends

[Glesner,Forster,Jäger: A Program Result Checker for
the Lexical Analysis of the GNU C Compiler. COCV 2004.]

Sabine Glesner 11CAV ARTIST2 Workshop Berlin July 2007

Verification of compilers

absolutely essential for software development
relatively large software systems
semantically interesting
results carry over to other software
(and hardware) areas

Sabine Glesner 12CAV ARTIST2 Workshop Berlin July 2007

Overview

Reasons and prerequisites for formal verification
Verification of program / system transformations
Three formal verifications as example:

Verification of optimizing compilers
Verification of model transformations
VATES: Verification of satellite software

Overview about further research projects
Conclusions and perspectives

Sabine Glesner 13CAV ARTIST2 Workshop Berlin July 2007

Optimization and Verification in a
Unifying Setting

optimizations
for modern
processors
(VLIW, e.g.
Itanium)

verification of
optimizations in

Isabelle/HOL
theorem prover

specification
and

proof goal
via

suitable
semantics

- needs to mirrow reality - needs to be suitable for verification

compiler in real environment

Sabine Glesner 14CAV ARTIST2 Workshop Berlin July 2007

Tasks in compiler backends

source
program

SSA
form

machine
code

front
end

optimizations

SSA: static single assignment

code
generator

Sabine Glesner 15CAV ARTIST2 Workshop Berlin July 2007

Compiler Optimizations for VLIW Processors

VLIW (very long instruction word):
potential to increase parallelism on instruction level
but current compilers do not use it

Example Intel Itanium:
up to six instructions in parallel are possible
on average only three instructions executed in parallel

Reasons:
memory gap: latency of up to
200 cycles for memory accesses
performance often domininated by
memory speed (instead of CPU)
parallelism restricted by conservative
analyses with imprecise results

„points-to“-sets of memory references:
statically 23, dynamically only 1.06

⇒ Goal:
more precise analyses and speculative optimizations to overcome memory gap

time

pe
rfo

rm
an

ce

memory gapmemory gap
memory

gap

CPU
speed

memory speed

Sabine Glesner 16CAV ARTIST2 Workshop Berlin July 2007

Speculation: Implementation

speculative instructions may not change program
semantics

without hardware support:
only instructions without side effects speculatively

with hardware support:
delay exceptions
run time tests much simpler

hardware support not mandatory but useful
Intel Itanium offers it

Sabine Glesner 17CAV ARTIST2 Workshop Berlin July 2007

Compiler Optimizations – Platform

Cooperation with ACE (Associated Compiler Experts):
CoSy-System for developing new optimizations
Current state of the Itanium compiler:

nearly complete (i.e. nearly all Spec benchmarks run)
speculation prototypically integrated

Sabine Glesner 18CAV ARTIST2 Workshop Berlin July 2007

Tasks in compiler backends

source
program

SSA
form

machine
code

front
end

optimizations

SSA: static single assignment

proof of
translation and
implementation

correctness

code
generator

Sabine Glesner 19CAV ARTIST2 Workshop Berlin July 2007

Formal semantics for SSA

cond

Φ

data flow
control flow

+

*+

cond

Φ

+

*+

Two layers:
- data flow in basic blocks
- control flow connecting basic blocks

In basic blocks:
- functional dependencies
- acyclic data flow graphs

Between basic blocks:
- imperative control flow
- state: active block + predecessor

Sabine Glesner 20CAV ARTIST2 Workshop Berlin July 2007

Results translation correctness
specification of SSA basic blocks:

as partial order
code generation creates additional dependencies
(⇒ machine order)

machine proof for transformation between
data-flow driven computation and
sequential instructions

correct iff data-flow dependencies are remained
correct if SSA order ⊆ machine order

proof statistics:
nearly 900 lopc (lines of proof code)
proof can be reused (general proof princple)

General
Principle

[Glesner, ASM 2004 + Blech,Glesner,ATPS 2004 + Blech,Glesner,Leitner,Mülling,COCV 2005]

Sabine Glesner 21CAV ARTIST2 Workshop Berlin July 2007

Formalization of control flow
based on operational semantics
formalization as state transition sequences
state transition sequences in theorem prover:

inductively defined as finite list
problem: non-terminating runs

coinductively defined as lazy lists
can also model non-terminating behavior
problem: Isabelle/HOL (as well as other theorem provers)
coinductively not powerful enough

as bisimulations
relations that represent state transition behavior
can model non-terminating runs
can be represented adequately in Isabelle/HOL

[Glesner, COCV’04 & Leitner, Glesner, Blech, COCV 2006]

Sabine Glesner 22CAV ARTIST2 Workshop Berlin July 2007

Tasks in compiler backends

source
program

SSA
form

machine
code

front
end

optimizations

SSA: static single assignment

In our case study:
checker for

code generators

code
generator

Sabine Glesner 23CAV ARTIST2 Workshop Berlin July 2007

Program Checking for Optimizations

Problems in NP:
defined by proofs of polynomial length

…
certificate

Quality of solution:
not relevant for
correctness

Sabine Glesner 24CAV ARTIST2 Workshop Berlin July 2007

Program Checking with Certificates

target program

compiler checker yes/don‘t
know

certificate

source program
instrumentation
of the compiler

Sabine Glesner 25CAV ARTIST2 Workshop Berlin July 2007

Backend Checking: Results
Compiler = non-deter-
ministic Turing machine:

searches for solution
computes solution

Checker = deterministic
Turing machine:

computes solution
Expectation: checker code is
part of compiler code

1136121836total loc

1057220887loc in .c-
files

789949loc in .h-
files

checkercode
generator

Result:
Checker code identical

with part of
code generator

Consequence:
Substantial reduction
of verification costs

[Glesner, J.UCS 2003 + Glesner, FME 2003]

(Code generator from AJACS-Project with
industrial partners)

Sabine Glesner 26CAV ARTIST2 Workshop Berlin July 2007

generator

theorem
prover

trans-
formator

checker

specification

ok: yes/
don‘t know

ok: yes/
don‘t know

input
system

output
system

automatic if
specification

semantically correct

target system enriched
by checker

System Architecture

e.g. a compiler,
a UML code
generator, …

source
program

machine
program

UML
model

Java
program

Sabine Glesner 27CAV ARTIST2 Workshop Berlin July 2007

An Example for this Scenario:
Verification of Dead Code Elimination

Verification considers correctness of algorithm and
correctness of implementation
Correctness of algorithm verified within Isabelle/HOL

Formal Semantics for Static Single Assignment (SSA) Form
Formalization of Dead Code Algorithm

Correctness of Implementation
Checker approach
Implemented as CoSy Engine code

DCE

code

Checker yes/don't
know

[Blech,Gesellensetter,Glesner; SEFM’05]

Further Verification
Scenario presented

at FMICS

Sabine Glesner 28CAV ARTIST2 Workshop Berlin July 2007

Overview

Reasons and prerequisites for formal verification
Verification of program / system transformations
Three formal verifications as example:

Verification of optimizing compilers
Verification of model transformations
VATES: Verification of satellite software

Overview about further research projects
Conclusions and perspectives

Sabine Glesner 29CAV ARTIST2 Workshop Berlin July 2007

Model transformations
Model Driven Architecture (MDA) der Object Management Group
(OMG)

model not only for documentation but also for development process

models often represented by graphs
as relations between different objectes, etc.
see Unified Modeling Language (UML) as example

specify transformation on models or transformations from models to
code by graph transformation rules

Fujaba (From UML to Java and back again) tool suite at Paderborn

model
program

code

model
driven

development

model
transformation

Sabine Glesner 30CAV ARTIST2 Workshop Berlin July 2007

Example: simple TGG rule

Statement Corr
End

Begin

ifStatement

Condition
Statement

Corr

Statement

Corr

Corr
End

Begin

Cond End

Begin

End

Begin

::= ::=::=

Sabine Glesner 31CAV ARTIST2 Workshop Berlin July 2007

Verification of TGG transformations

To show:
pairs of models as well as pairs of models and their
corresponding programs are semantically equivalent
verify semantic equivalence of all possible pairs inductively

axiom that models and programs, resp., in simple starting pair are
equivalent
induction step that TGG rules preserve semantic equivalence

can be expressed in Isabelle/HOL by inductive data types
has been verified in Isabelle/HOL for basic transformations

[Blech, Glesner, Leitner, Fujaba Days 2005 +
Giese, Glesner, Leitner, Schäfer, Wagner, MoDeVa 2006]

Sabine Glesner 32CAV ARTIST2 Workshop Berlin July 2007

Overview

Reasons and prerequisites for formal verification
Verification of program / system transformations
Three formal verifications as example:

Verification of optimizing compilers
Verification of model transformations
VATES: Verification of satellite software

Overview about further research projects
Conclusions and perspectives

Sabine Glesner 33CAV ARTIST2 Workshop Berlin July 2007

VATES
new project: VATES
Verification and Transformation of Embedded Systems
construct and verify
embedded, reactive,
and concurrent systems
verification throughout the
whole process, from
specification to machine
code
application:
verification of BOSS,
a RTOS used in practice
for the BiRD satellite

Sabine Glesner 34CAV ARTIST2 Workshop Berlin July 2007

Overview

Reasons and prerequisites for formal verification
Verification of program / system transformations
Three formal verifications as example:

Verification of optimizing compilers
Verification of model transformations
VATES: Verification of satellite software

Overview about further research projects
Conclusions and perspectives

Sabine Glesner 35CAV ARTIST2 Workshop Berlin July 2007

Optimizations for Aspect-Oriented
Programming Languages

Aspect-orientation:
extension of the object-oriented paradigm
new modularization concept for
system requirements that are orthogonal
to the usual module structure
e.g. logging, synchronization, …

In embedded systems:
variability at run time
dynamic extension and removal of aspects
necessary: optimization of the execution model

Sabine Glesner 36CAV ARTIST2 Workshop Berlin July 2007

Optimized Aspect-Oriented Programming Languages

for use in mobile embedded systems (low resources)
concepts for optimizations to
case study: dynamically adaptable mobile application

compiler

load-time
aspect
weaver

JVM

woven
bytecode

source
code

augmented
bytecode

compiler

aspect-
aware

JVM (KVM)

source
code

special
bytecode

future work

state-of-the-art

build-in aspect dispatch
enhanced data structures
additional instructions

dynamic aspect activation (API)
goal: efficient, dynamically
adaptable program execution

Sabine Glesner 37CAV ARTIST2 Workshop Berlin July 2007

HW/SW Co-Design

= integrated design of hardware and software
parts of embedded systems

Goals:
early analysis of HW/SW-borders
simplified system integration
simulation, testing, verification
evaluation of design alternatives

Sabine Glesner 38CAV ARTIST2 Workshop Berlin July 2007

Members of my research group

Dipl.-Inform. E. SaleckerDipl.-Inform. L. Gesellensetter

Dipl.-Ing. P. HerberDipl.-Inform. C. Hundt

Dipl.-Ing. M. Beyer
T. Göthel (ab Aug.’07)

?? ??

… and many students
doing projects and

master theses with us

Sabine Glesner 39CAV ARTIST2 Workshop Berlin July 2007

Conclusions and Perspectives

Verification and system construction/maintenance:
best if from one source
together with optimizations (cf. compilers as example)

Formal verification:
possible for large systems
generates engineering knowledge concerning

design, construction and maintenance
for reliable software systems

Future application areas:
software engineering
model transformations
hardware/software co-design
embedded systems
in general: safe and efficient systems

Thank you!

More information at:
pes.cs.tu-berlin.de

