Methodology and Tools for Performance Analysis of
Multiprocessor Embedded Systems

Ismail Assayad and Sergio Yovine

VERIMAG, FRANCE

ARTIST WS 2007, Berlin

\/ ARTIST WS 2007 — Modelling and Performance Analysis — p.1/22

Presentation plan

Motivation
Current practices
Related work
Methodology
Framework

Applications
* Video encoding platform application

Conclusion

ARTIST WS 2007 — Modelling and Performance Analysis — p.2/22

Motivation

* Many embedded applications such as video compression,
HDTV and packet routing require higher and higher
performance —-

1.

Hardware becomes multiprocessor

2. Software becomes parallel

* Significant growth in the demand and workload of
embedded architectures —

1.

Need to be able to predict the mutual impact of software and hardware on
their performance
Framework supporting joint (rather than separate) software and hardware

analysis

ARTIST WS 2007 — Modelling and Performance Analysis — p.3/22

Current practices
* Modelling approaches:

® Analytical models

® Simulation
® Wrapper-based external timing models
® Annotated timing models

* Modelling scope:

® Software-based

® Analysis of hardware performance is not considered

® Hardware-based
® Focuses on hardware design without taking into account software
development or analysis

® Platform-based design
® Abstraction levels for modelling both software and hardware
architectures

V ARTIST WS 2007 — Modelling and Performance Analysis — p.4/22

Related work
* Analytical (Thiele et al):

® Specific to the application domain of packet processing

® Network calculus theory for reasoning about interleaved streams of packets

* MPARM (Benini et al)

® Wrapper-based

® Multiprocessor simulation platform for analysis of hardware design tradeoffs

* ARTS (Madsen et al):

® Annotated DAG for software and communication latencies for hardware

® Software timing models are not resolved to micro-architectures ones

* Metropolis (Vincentelli et al), MESH (Paul et al):

® General-purpose approaches for concurrency modelling at unfixed
abstraction level

e SystemC/TLM (Ghenassia et al):

® Industrial practices use wrapper-based models (PV, PVT) but does not

propose a method

\/ ARTIST WS 2007 — Modelling and Performance Analysis — p.5/22

Our approach

* Qur approach is a simulation and platform based one, it
provides:

® Methodology for concurrency and performance modelling of
micro-architectures

® Modelling hardware at a transaction level and software at a task level

® Wrapper-less annotated-method based timed models for components

* Advantages:

® Semantics and methodology for components construction, connexion, and
performance prediction

® Joint software and hardware model-based performance analysis support

* An implementation of our framework is built using
SystemC and TLM

\/ ARTIST WS 2007 — Modelling and Performance Analysis — p.6/22

Methodology

SW Model

Constraints Synthesis

SW Model

HW Model

'

Mapping

SW Model

user

'

Code Generation

:

Executable SW components

ARTIST WS 2007 — Modelling and Performance Analysis — p.7/22

»

Translation

:

HW components

Simulation
Engine

l

Simulation

Presentation plan

* Framework
* Modelling
* Hardware meta-models
* Example
* Software meta-models
* Tools

* Application

e Conclusion

V ARTIST WS 2007 — Modelling and Performance Analysis — p.8/22

Framework - Modelling

 Components

® They model transactions behavior of the system

® They communicate through transaction requests and state-change based

events

They support profiling of predicted performance (eg. used bandwidth,
conflicts, execution and communication times, etc)

notify
7 .
Consumer Producer ~— | - (SW components)
.......................... \}v}i}éié,'s'z'é,'deﬁ'a{)'m”
......... SRR T PR
P2 N ®
@ } write cmd
@ Lo V write cmd . write data
o
Pl ‘wieomd CMD BUS T

CHANNEL

©)
" DATABUS

write data

write data

; (HW components)

— AHOW3NN

o

V ARTIST WS 2007 — Modelling and Performance Analysis — p.9/22

Framework - Hardware meta-models

* Component meta-models

® can be instantiated for modelling hardware micro-architectures at
transaction-level

® are performance-centric and take into account arbitration policies,
transaction-level latencies and generated transaction request traffic

°

are composed of following blocks:

TR OK

Buffer [—w» Arbiter

'

S
-g OK
Controller | @
. a TR
vy A =
TLTB

Buffered component

V ARTIST WS 2007 — Modelling and Performance Analysis — p.10/22

Framework - Hardware meta-models

* Component behavior
® Blocks are described by automata whose states are instantiated with
hardware specific functions

® Examples: some variables and functions associated to “Running” and
“Executing” states of controller and transaction automata are hardware

dependent

Running

Controller automaton

V ARTIST WS 2007 — Modelling and Performance Analysis — p.11/22

Framework - DRAM example

ey
x N/ N
: - .
2 Ty, @ g @ conditional
1
3 3 \ Q operation
2 e (3)=) @
Q Too @ conflict- group

_____-—

TLTB block model of a two-bank DRAM (instance of the meta-model)

* In the “Running” state of the controller block:

® Upon reception of TR = (4, 7, k) concerning a memory access for data in
column ¢, row 7 and bank k do:

® test if transactions T%; and Tko are enabled
O

if it is the case, fire either T3,1 or T}o according to the preceding
transaction request (TR!25?) of bank by:

if TRLast j = TR.j then fire To
otherwise fire T}

ARTIST WS 2007 — Modelling and Performance Analysis — p.12/22

Framework - Software meta-model

NT, NT

w L]

HTG -
sched Scheduler (S)

ET
\

Dispatcher (D) |——» To a processeur
TR

ET: Enabled tasks

NT;: Completed tasks in other components

Software component

* |t is composed of:
® A hierarchical task graph (HTG)
® Tasks scheduler

® Transaction requests dispatcher

V ARTIST WS 2007 — Modelling and Performance Analysis — p.13/22

Framework - Software meta-model

NT, NT

w L]

HTG >
sched Scheduler (S)

ET

Y

Dispatcher (D) |——» To a processeur
TR

ET: Enabled tasks

NT;: Completed tasks in other components

Software component

* A task is a sequence of transaction requests, example:

[read(@x, 32B);
«x=x+1» — < [...] //increment x
| write(@x, 32B);

V ARTIST WS 2007 — Modelling and Performance Analysis — p.13/22

Framework - Software meta-model

NT, NT

w L]

HTG -
sched Scheduler (S)

ET

Y

Dispatcher (D) |——» To a processeur
TR

ET: Enabled tasks

NT;: Completed tasks in other components

Software component

* Tasks behavior is described using FXML and
implemented by the HTG, example:

while(true) while(true)
while(true) while(true)

Translated to

(i,7)
S.sched(); S.sched();
X++;/ \:x; read(x); [...]; write(x); read(x);[...];

S.notify(); S.notify();
FXML
HTG

V ARTIST WS 2007 — Modelling and Performance Analysis — p.13/22

Framework - Tools

e Jahuel:

® Describes software and hardware models in FXML

® Synthesizes executable code for software model (eg : C+posix)

e P-Ware:

® Takes hardware and software meta-models instances as input from Jahuel

® Provides joint software and hardware performance prediction by simulation

V ARTIST WS 2007 — Modelling and Performance Analysis — p.14/22

Presentation plan

Video encoding platform application

® Constraints synthesis results

® VE Performance results

Conclusion

ARTIST WS 2007 — Modelling and Performance Analysis — p.15/22

VE platform - Hardware components

software environment . JJ

DRAM banks

Req bus

Data bus '

VI VI
D-cache | "~ D-cache
> >

5 -

2 18 2 HE

) o o 3]

= €

Hardware architecture components

V ARTIST WS 2007 — Modelling and Performance Analysis — p.16/22

VE platform - Hardware components

software environment .

DRAM banks

Req bus
Data bus ' .
OK,,t+ (state of DRAM) VI ‘
Buffer Arbiter D—-cache | =~ D-cache
ZKO_M El;i Roung'-rgﬁii‘ré
JE—— over Pi
= 13
*TR g & OKout > >
TR S § n|-— > 5 z
Controller—» &g o E N g 2 8
=) TR
2 T 688 @) o) @) 2
EV} <& Transactor e
10 cycles
T >
TLTB

Data Bus component

Hardware architecture components

V ARTIST WS 2007 — Modelling and Performance Analysis — p.16/22

VE platform - System constraints

par

var K
ﬁ/ msp\@\
par

for(k) for(k) for(k) /[mutex]\
for(k) for(k)
P_1/15 P=1/15 P=1/15 | |
p-1/15 P=1/15
HI F‘C E
CAM IN Mem: CAM_buffer |\ Men?'lsl-lil ufer IN Mem: HI_buffer IN Mem: FC_bufferl & FC_buffe
OUT Mem: CAM_buffer OUT Mem: HI_buffer (H1LK) _; (ISISUP K) OUT Mem: FC_bufferl & FC_buffer2 OUT Mem: VE_buffer
(CAM,K)-> (H1,k) : : (HLK) -> (FC,k) (FC.k)->(VE k)

® Taking into account WCET of CAM, HI, and DISP
(5CAM = 5HI = 5DISP = 3—10) we synthesize:

2

b = bocAM T % HI activated 3—10 after CAM
bpisp = by + % DISP activated % after HI
{ bpc = byt + % FC activated % after HI
byr = bpc + 3—10 VE activated % after FC
1

X opc +ovE < % Execution time of VE and FC smaller than %

1

® With a % X %s format converter (dpc = % X %) oVE < o5

V ARTIST WS 2007 — Modelling and Performance Analysis — p.17/22

Implementations of the MPEG-4 VE

Camera —» L

MVP : Motion Prediction
Picture
<£Extend_rec] ADD

v
[ME : Motion Estimation }
reconstructed
DCTI reference i
Choice
() V
E MVD : Motion Vector Diff. j

v
H‘ []
PRD : Motion Compensation

]

DIFF : Diff. On Prediction
v

DCT : Discrete Cosine Transf.

v
VLC : Variable Length Coding .
1 Quant : Quantization

Zigzag

]

)
RunLevel]
)

]

Layer

Encoded picture

MPEG-4 VE block diagram
* Two Implementations of ENC:

par
_par //4 CPU1 k;(CPU2 [/\CPU:),\\1 CPU4 A\
[CPU1| [CPU2] for(k) for(k) for(k) for(k)
for(k € Grl) foRk € Gr2) i l
MVP, ME, Choice, MVD Prd, DIFF, DCT QUANT, QUANTI DCTI, ADD, extend_rec
ENC(1) ENC(2) HTG with seli - f
: — with a pipeline partition o

HTG with a 2-thread partition of PP P

ENC

\/ ENC

ARTIST WS 2007 — Modelling and Performance Analysis — p.18/22

Performance results of VE

* Results using P-Ware:

Execution time, cache misses and used bandwidth for different implementation:
4 T T T T T T T T

, execution time (in 1/25s) ——+
cache misses quotient (in %) ——e |
Required bandwidth (in 1/800 Mb/s) ——=

15

(b) '
I)=
' -®

1 ___ — - -

05

| | | | | |
6 8 10 12 14 16

Hybrid (parallel of pipelines)

Processors number

® (d), (f) and (g) satisfy execution time constraints
® Hybrid ones, i.e. (f) and (g), produce an increase of bandwidth usage

\/ ® The best compromise seems to be (d), consisting of 4 MPEG-threads

ARTIST WS 2007 — Modelling and Performance Analysis — p.19/22

Conclusion - Framework

* Component-based modelling framework combining
transaction-level HW and programmer-level SW models

e Joint HW and SW modelling and performance analysis
allowing for predicting:
1. Impact of HW on SW performance

2. Ability of HW to accommodate future services

* A programming and simulation tools supporting the
framework

1. Jahuel
2. P-Ware

\/ ARTIST WS 2007 — Modelling and Performance Analysis — p.20/22

Conclusion - Applications

* Application to real-life industrial systems:
® MPEG-4, IPv4, Philips WASABI NoC, and Intel's XP2800

* Models expressiveness:

® Data granularity is easily set-up using the imlementation of software
dispatchers and/or hardware transactors: bus-packet (eg. a line of pixels)
suited for MEPG-4, and bus-size for IPv4.

* Tool performance:
® Scalable prototype: eg. dual IXP NP with 768 memory bank component
® Fast simulation speeds: average 300 000 cycles/s

* Models precision:

® Precise performance results: eg. values are within 5% of the ones obtained
by the IXP2800 cycle-accurate simulator for several data granularities

® Correct performance trends

* Joint software and hardware modelling environment:
® Automatization using Jahuel

® Fast and efficient system design with user-driven joint software and
\/ hardware performance tracking using P-Ware

ARTIST WS 2007 — Modelling and Performance Analysis — p.21/22

Thank youl!

ARTIST WS 2007 — Modelling and Performance Analysis — p.22/22

	Presentation plan
	Motivation
	Current practices
	Related work
	Our approach
	Methodology
	Presentation plan
	Framework - Modelling
	Framework - Hardware meta-models
	Framework - Hardware meta-models
	Framework - DRAM example
	Framework - Software meta-model
	Framework - Tools
	Presentation plan
	VE platform - Hardware components
	VE platform - System constraints
	Implementations of the MPEG-4 VE
	Performance results of VE
	Conclusion - Framework
	Conclusion - Applications
	

