Methodology and Tools for Performance Analysis of Multiprocessor Embedded Systems

Ismail Assayad and Sergio Yovine

VERIMAG, FRANCE

ARTIST WS 2007, Berlin

Presentation plan

- Motivation
- Current practices
- Related work
- Methodology
- Framework
- Applications
 - Video encoding platform application
- Conclusion

Motivation

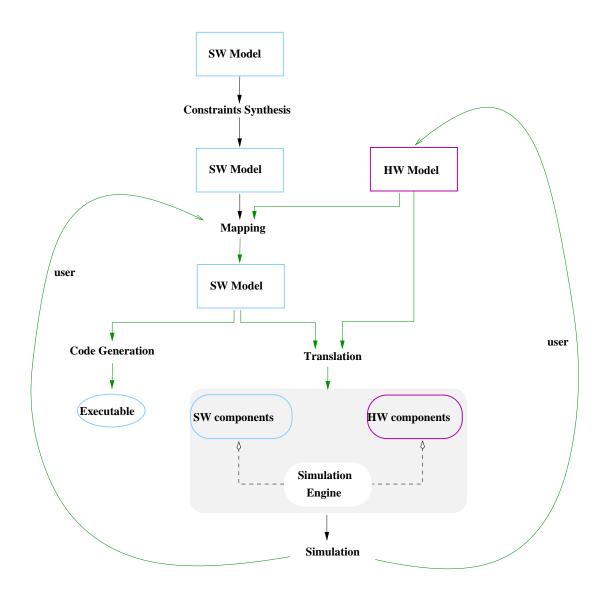
- Many embedded applications such as video compression, HDTV and packet routing require higher and higher performance =>
 - 1. Hardware becomes multiprocessor
 - 2. Software becomes parallel
- Significant growth in the demand and workload of embedded architectures \Longrightarrow
 - 1. Need to be able to predict the mutual impact of software and hardware on their performance
 - 2. Framework supporting joint (rather than separate) software and hardware analysis

Current practices

- Modelling approaches:
 - Analytical models
 - Simulation
 - Wrapper-based external timing models
 - Annotated timing models
- Modelling scope:
 - Software-based
 - Analysis of hardware performance is not considered
 - Hardware-based
 - Focuses on hardware design without taking into account software development or analysis
 - Platform-based design
 - Abstraction levels for modelling both software and hardware architectures

Related work

- Analytical (Thiele et al):
 - Specific to the application domain of packet processing
 - Network calculus theory for reasoning about interleaved streams of packets
- MPARM (Benini et al)
 - Wrapper-based
 - Multiprocessor simulation platform for analysis of hardware design tradeoffs
- ARTS (Madsen et al):
 - Annotated DAG for software and communication latencies for hardware
 - Software timing models are not resolved to micro-architectures ones
- Metropolis (Vincentelli et al), MESH (Paul et al):
 - General-purpose approaches for concurrency modelling at unfixed abstraction level
- SystemC/TLM (Ghenassia et al):
 - Industrial practices use wrapper-based models (PV, PVT) but does not propose a method

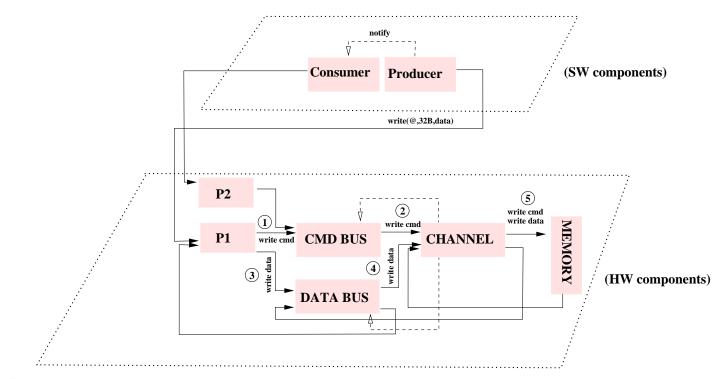


Our approach

- Our approach is a simulation and platform based one, it provides:
 - Methodology for concurrency and performance modelling of micro-architectures
 - Modelling hardware at a transaction level and software at a task level
 - Wrapper-less annotated-method based timed models for components
- Advantages:
 - Semantics and methodology for components construction, connexion, and performance prediction
 - Joint software and hardware model-based performance analysis support
- An implementation of our framework is built using SystemC and TLM

Methodology

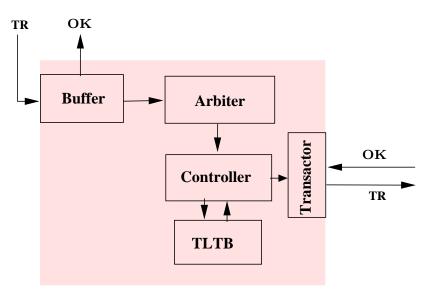
Presentation plan


- Motivation
- Current practices
- Related work
- Methodology
- Framework
 - Modelling
 - Hardware meta-models
 - Example
 - Software meta-models
 - Tools
- Application
- Conclusion

Framework - Modelling

• Components

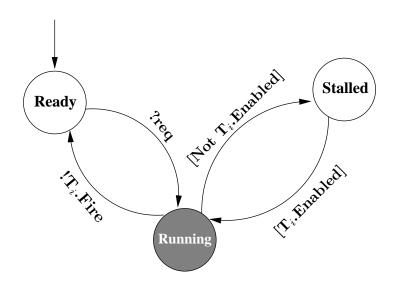
- They model transactions behavior of the system
- They communicate through transaction requests and state-change based events
- They support profiling of predicted performance (eg. used bandwidth, conflicts, execution and communication times, etc)



Framework - Hardware meta-models

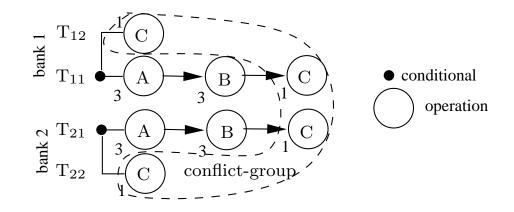
• Component meta-models

- can be instantiated for modelling hardware micro-architectures at transaction-level
- are performance-centric and take into account arbitration policies, transaction-level latencies and generated transaction request traffic
- are composed of following blocks:


Buffered component

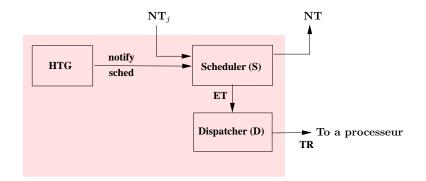
Framework - Hardware meta-models

Component behavior


- Blocks are described by automata whose states are instantiated with hardware specific functions
- Examples: some variables and functions associated to "Running" and "Executing" states of controller and transaction automata are hardware dependent

Controller automaton

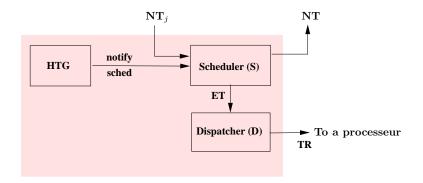
Framework - DRAM example



TLTB block model of a two-bank DRAM (instance of the meta-model)

- In the "Running" state of the controller block:
 - Upon reception of TR = (i, j, k) concerning a memory access for data in column *i*, row *j* and bank *k* do:
 - test if transactions T_{k1} and T_{k2} are enabled
 - if it is the case, fire either T_{k1} or T_{k2} according to the preceding transaction request (TR_k^{last}) of bank b_k :
 - · if $\mathsf{TR}_k^{last}.j = \mathsf{TR}.j$ then fire T_{k2}
 - \cdot otherwise fire T_{k1}

Framework - Software meta-model

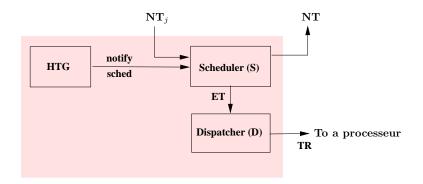

ET: Enabled tasks NT_j : Completed tasks in other components

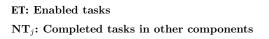
Software component

- It is composed of:
 - A hierarchical task graph (HTG)
 - Tasks scheduler
 - Transaction requests dispatcher

Framework - Software meta-model

ET: Enabled tasks NT_j : Completed tasks in other components


Software component


• A task is a sequence of transaction requests, example:

$$\ll x = x+1 \gg \longrightarrow \begin{cases} read(@x, 32B); \\ [...] //increment x \\ write(@x, 32B); \end{cases}$$

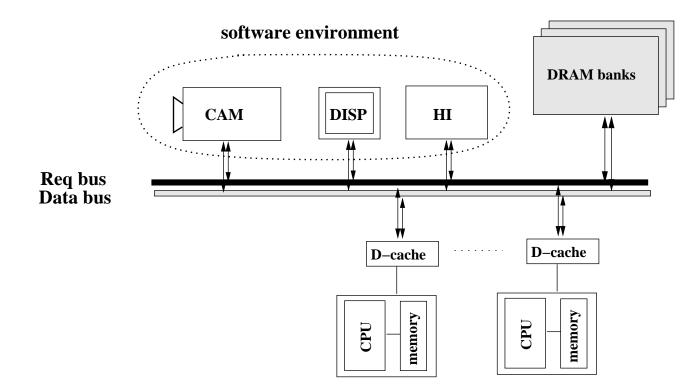
Framework - Software meta-model

Software component

• Tasks behavior is described using FXML and implemented by the HTG, example:

Framework - Tools

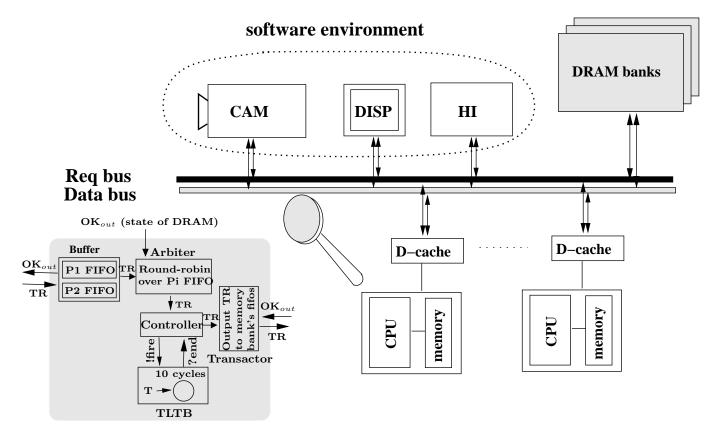
- Jahuel:
 - Describes software and hardware models in FXML
 - Synthesizes executable code for software model (eg : C+posix)
- P-Ware:
 - Takes hardware and software meta-models instances as input from Jahuel
 - Provides joint software and hardware performance prediction by simulation



Presentation plan

- Motivation
- Current practices
- Related work
- Methodology
- Framework
- Video encoding platform application
 - Constraints synthesis results
 - VE Performance results
- Conclusion

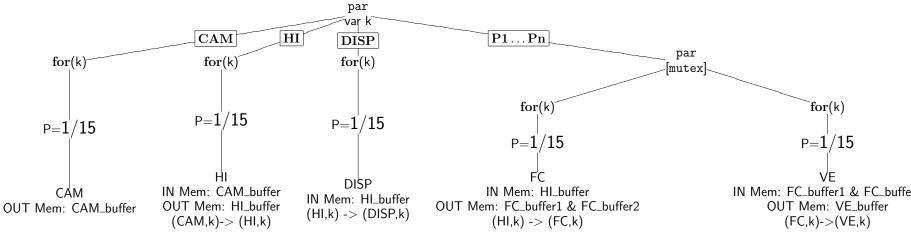
VE platform - Hardware components



Hardware architecture components

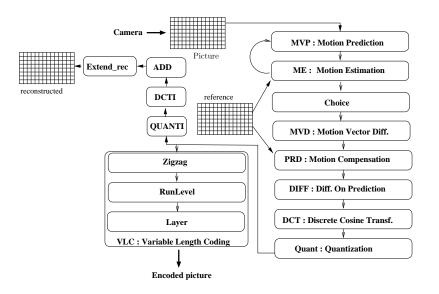
ARTIST WS 2007 – Modelling and Performance Analysis – p.16/22

VE platform - Hardware components

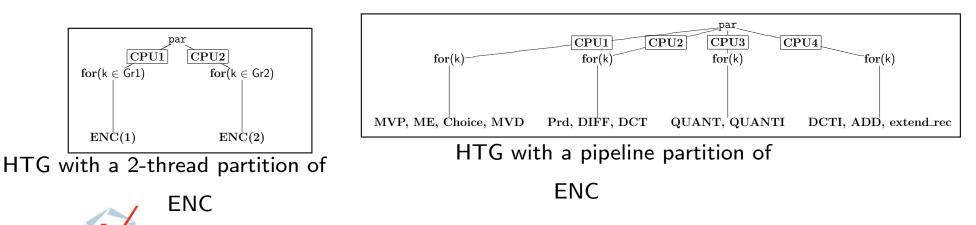

Data Bus component

Hardware architecture components

ARTIST WS 2007 – Modelling and Performance Analysis – p.16/22

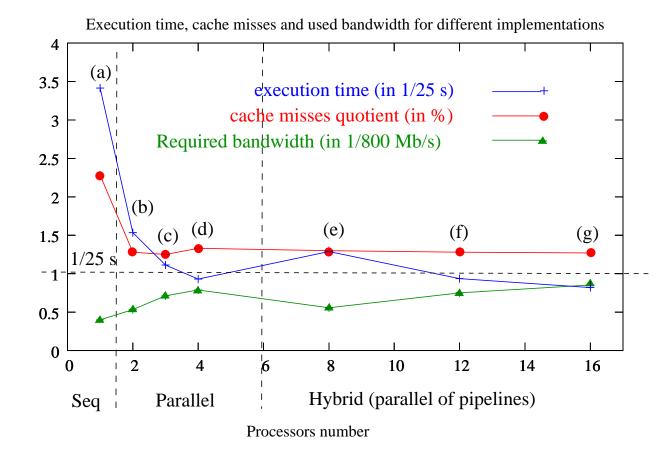

VE platform - System constraints

• With a $\frac{2}{3} \times \frac{1}{25}s$ format converter $(\delta_{\text{FC}} = \frac{2}{3} \times \frac{1}{25})$: $\delta_{\text{VE}} \le \frac{1}{25}$



Implementations of the MPEG-4 VE

MPEG-4 VE block diagram

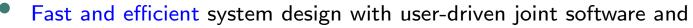

• Two Implementations of ENC:

ARTIST WS 2007 – Modelling and Performance Analysis – p.18/22

Performance results of VE

Results using P-Ware:

- (d), (f) and (g) satisfy execution time constraints
- Hybrid ones, i.e. (f) and (g), produce an increase of bandwidth usage
- The best compromise seems to be (d), consisting of 4 MPEG-threads ARTIST WS 2007 – Modelling and Performance Analysis – p.19/22


Conclusion - Framework

- Component-based modelling framework combining transaction-level HW and programmer-level SW models
- Joint HW and SW modelling and performance analysis allowing for predicting:
 - 1. Impact of HW on SW performance
 - 2. Ability of HW to accommodate future services
- A programming and simulation tools supporting the framework
 - 1. Jahuel
 - 2. P-Ware

Conclusion - Applications

- Application to real-life industrial systems:
 - MPEG-4, IPv4, Philips WASABI NoC, and Intel's IXP2800
- Models expressiveness:
 - Data granularity is easily set-up using the imlementation of software dispatchers and/or hardware transactors: bus-packet (eg. a line of pixels) suited for MEPG-4, and bus-size for IPv4.
- Tool performance:
 - Scalable prototype: eg. dual IXP NP with **768** memory bank component
 - Fast simulation speeds: average **300** 000 cycles/s
- Models precision:
 - Precise performance results: eg. values are within 5% of the ones obtained by the IXP2800 cycle-accurate simulator for several data granularities
 - Correct performance trends
- Joint software and hardware modelling environment:
 - Automatization using Jahuel

hardware performance tracking using P-Ware ARTIST WS 2007 – Modelling and Performance Analysis – p.21/22

Thank you!

