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Abstract. We have devised an approach, called Generic Upsilon Transformations, which
supports and promotes reusable model transformations. As a proof-of-concept we have de-
veloped an ATL-based tool which realizes the concepts proposed in our framework. Even
though the main focus of GUT is reusable design patterns, our approach is generic enough
to support model transformations for embedded systems. We have successfully applied our
approach on an embedded case study.

1 Model Transformations: State-of-the-art

The development of embedded systems is very difficult. The Y-chart approach is known as a suitable
MDD flow to cope with the complexities. It advocates the separate development of software and
hardware architecture models. The two models are afterwards merged using an allocation model
which specifies the mapping of software to hardware components. As a result an allocated model is
obtained which can be further refined to a platform specific model and source code. MDD supports
this process by providing a technology for automatic model transformations.

In current MDD practices transformations are usually implemented as black-boxes. A typical
black-box consists of a number of patterns which should transform a given source model according
to those patterns. The black-box also includes a mapping/matching mechanism which directs the
transformation engine how to apply this pattern on a set of matched elements. A source model is
annotated with UML stereotypes and tagged values which are used by the transformation engine
to identify a match and map it to a corresponding pattern (fig. 1).

This a black-box approach has a number of disadvantages. Transformations cannot be easily
combined because the combination of 2 black-boxes may produce an unpredictable target model.
Transformation patterns are tangled and woven in transformation implementation. As a result the
relationship between the source and target models is hidden. Transformations are often written
in a complex language which allows only transformation experts to modify them. Most of the
current transformation languages support limited or no parameterization. Input models are often
“polluted” by stereotypes and tagging information which is only used by the transformation engine.

2 Generic Upsilon Transformations (GUTs)

In our approach we try to solve these issues by introducing a conceptual framework for representing
model transformations as graphical models themselves. We can see each transformation as the
Greek letter upsilon, hence the name of the approach. The left and right branches of the upsilon
contain two source models (fig. 2). Along with the two source models we also provide a Mapping
Model that instructs the model transformation engine how elements from the Source Model 1 map
on elements from Source Model 2. Source Model 1 and 2 are standard UML2 class models. The
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Figure 1. Traditional transformations Figure 2. Generic Upsilon Transformation

Mapping Model is a UML class model using a dedicated GUT profile that allows to express different
mapping strategies. The Mapping Model cannot exist on its own, but only contains links to the two
source models. In order to realize different mapping strategies, the mapping links are stereotyped
and may use tagged values for additional mapping parameterization.

The GUT approach can be used in different MDD flows. It is suitable for embedded system
development using the Y-chart approach where approach can be used in two scenarios.

The first scenario realizes the merging of the software and hardware architecture models rep-
resented as Source Model 1 and Source Model 2 respectively. The Mapping Model specifies the
allocation of software entities to hardware components.

In the second scenario GUT can be used to realize refinement transformations on any given
model (software, hardware architecture, allocated system, etc.). We believe that refinement trans-
formations often follow a certain pattern, e.g., software design, architectural, hardware refinement,
etc. Hence we represent the model as Source Model 1 and the pattern as Source Model 2. The
Mapping Model specifies how the pattern model is applied on the source model by defining all
pattern parameters and their bindings.

Currently we have applied our approach on a producer-consumer embedded system case-study
that was defined by CoFluent. We have started from system requirements and modeled software
and hardware aspects of the system separately. Then we have applied refinement transformations
to each of the models. Afterwards we have merged the two models to obtain an allocated system
model. Finally we have applied refinement transformations to the system model and generated
code for the software part.

3 GUT Tool

The GUT tool is implemented using the Eclipse technology. All source models are provided via
the EMF framework using the Ecore implementation of UML. The transformation logic is written
in several ATL modules. These modules contain rule sections which handle each mapping strategy
in our approach. Each element is modified according to the mapping it is involved in. Elements
that are not referenced in the Mapping Model are copied to the Target Model. The GUT tool is
extensible since new mapping strategies can easily be added to the GUT profile and implemented
in an ATL module.

4 Future Work

As a future work we are looking to build libraries of patterns and a methodology to easily incor-
porate patterns from these libraries in model transformations.

Our approach is very related to the Y-chart framework often used in embedded system modeling.
We are investigating to what degree GUT can support embedded system development using the
Y-chart framework. We will validate our approach on a broader embedded system case-study.



