
Methodology and tools for performance analysis of embedded
multiprocessor industrial applications

Ismail Assayad and Sergio Yovine
ismail.assayad@imag.fr sergio.yovine@imag.fr

CNRS/VERIMAG France

Abstract— We present a framework and its supporting simulation tool
for modelling and performance analysis of multiprocessor embedded
systems. Our framework consists of component-based models for modelling
parallel software and multiprocessor hardware, and tools for code gener-
ation and performance analysis. The framework component meta-model
relies on transaction-level description of hardware and programmer-level
description of software where timing properties of the hardware micro-
architectures are modelled as annotations in the concurrency meta-model.
The framework has the advantage of allowing fast precise andscalable joint
analysis of software and hardware performance. Keywords: Multiprocessor
Embedded Systems, performance, software/Hardware Analysis.

I. I NTRODUCTION

Video compression, HDTV, packet routing and other high perfor-
mance embedded applications motivate the use of off-the-shelf, config-
urable, heterogeneous hardware platforms offering multiple processing
units, such as Philips’ VIPERand Wasabi/Cakearchitectures, and Intel’s
IXP family of network processors. However, the complexity of such
multiprocessor embedded systems (MES) makes software program-
ming and analysis difficult, leading to sub-optimal software and hard-
ware performances. An integrated software/hardware modelling and
performance analysis methodology, supported by the appropriate tools,
gives system developers means to improve field upgradability and
time to market, and therefore lower development costs, of embedded
product lines.

A. Current practices

Several techniques have been proposed to address this issue. These
techniques are classified into three categories according to their
modelling scope, namelysoftware, hardware and platform based
approaches; and into two categories according to their modelling
method, i.e.analytical and simulation approaches.

In contrast to software- and hardware-based design, platform-based
design (PBD) [1] provides the adequate level of abstraction that can
be used for analyzing the impact of software implementation choices
into hardwaremicro-architectures performance, and evaluating the im-
pact into software performance of changing a hardware configuration
parameter.

Simulation-based techniques use eitherwrapper-based orannotated
approaches. In the wrapper-based approach, the actual timing behavior
is modelled independently of the micro-architecture’s functionality
model in such a way that delays are computed during the execution of
an external existing timing model. Wrappers then have to synchronize
between timing and functionality. In the annotation-based approach,
timing delays at the micro-architecture level are given as annotations
attached to the functional model operations.

B. Related work

Most PBD approaches found in the literature are not thought to
provide complete solutions for MES performance modelling and anal-
ysis. ARTS [2] aims at porting communication concurrency modelling
of micro-architectures at system-level by describing them using an
abstract RTOS model. This approach uses annotated DAGs of tasks
for modelling software and reduces the hardware model to commu-
nication latencies. Therefore, it does not resolve software timing into

hardware performance. METROPOLIS [3] provide general purpose
frameworks in the sense that they do not make any assumption
about the functional and timed models of micro-architectures. This
has the advantage of broadening the applicability of the frameworks
for modelling concurrency at unfixed abstraction levels. Nevertheless,
none of these approaches proposes amethodology for modelling
and micro-architectures performance analysis (and, thus, concurrency)
which resorts to the specific skills of the designer. The industrial
applications of SystemC/TLM [4] and MPARM [5] use the wrapper-
based timing model as a method for performance modelling. Here, we
propose an original PBD approach for, not only modelling concurrency,
but also handling the issue of performance modelling and prediction
of MES, using time-annotated simulation meta-models.

C. Contribution

In addition to the generality of its application to MES modelling and
analysis, the contribution of our PBD approach are manyfold. First, it
providescomponents meta-models for assembling and binding micro-
architectures and software components without the need of interfacing
wrappers, and a formal semantics for composing software tasks and
hardware. Second, components are self-contained with a well-defined
structure composed of a set of blocks whose characteristics are shown
to be pertinent not only for capturing MES concurrency but also for
precisepredictions of MES performance.

Third, our simulation tool, P-WARE, providesjoint, scalable, and
fast performance analysis of concurrent embedded software and mul-
tiprocessor hardware. Fourth, themethodology supported by our tools
starts from a high-level modelling of software and hardware, all the
way down to the implementation of software on the hardware, while
going through the synthesis of an application-specific software sched-
uler, the analysis of software-hardware joint performance simulation,
and the generation of executable code.

II. FRAMEWORK OVERVIEW

We developed a PBD framework which supports MES modelling at
transaction-level for hardware components and task-level for software
components. We also proposed a methodology for composing software
and hardware and analyzing their joint performance. To support this
framework, compilation and simulation tools which enable automated
settings of the components, fast performance prediction and automated
code generation have been developed.

A. Tools

1) Jahuel: The first tool is a compilation chain, called JAHUEL, for
a high-level formal language, called FXML, for modelling software
hierarchical task graphs [6]. The purpose of the language is threefold.
First, it provides simple and platform-independent constructs to specify
the behavior of the application using an abstract execution model.
Second, it provides semantic and syntactic support for correctly
refining the abstract execution model into the concrete one. Third, the
language and the compilation chain are extensible to easily support
new concrete execution models, without semantic break-downs.

2) P-Ware: The second tool is a SystemC-based simulation plat-
form, called P-WARE [7], for jointly predicting and analyzing perfor-
mance of software and hardware components generated by JAHUEL.
The hardware view decomposes software tasks into flows of compo-
nents’ transactions. P-WARE combines several hardware transaction-
level components and programmer-level software components and
allows for composing software tasks with hardware.

B. Methodology

Setting up a system with this framework is operated as follows.
First of all, JAHUEL is used to define the models of the application
and the architecture. The application is the software (eg., a video
encoder) and its environment (eg., camera and display devices), while
the architecture is the underlying execution hardware (eg., processors,
buses, caches, etc.).

Then, the step “constraint synthesis” [8] derives a scheduler of this
application and a constraint on the parameters which must be satisfied
at runtime, by any parallel mapping of software which will be defined
later. After that, we look for software implementations, i.e., mappings,
which must satisfy the latter constraint. This is done by considering
several classes of parallel implementations (eg., data parallel, task
parallel and hybrid implementations).

Software components corresponding to each of these implementa-
tions are generated, in addition to the hardware ones and their bindings,
as input to P-WARE. The correctness of the implementation is guaran-
teed if two performance objectives are met: (1) software constraints are
satisfied, and (2) the predicted hardware performance (eg., available
bandwidth) covers the environment communication needs. The first
condition states that the requirements of the application model are
met. The second condition guarantees that hardware-dependent issues
will not affect the predicted software execution times.

If performance objectives are met, JAHUEL synthesizes the exe-
cutable code of software.

III. V IDEO ENCODING PLATFORM

Let us see the results of applying the framework to the encoding
platform of figure 1. The software, which runs on the processors, is
made up of a format converter (FC) and a video encoder (VE), in
charge of converting then encoding the images in a MPEG-4 format.

C
P

U

m
em

or
y

D−cache

C
P

U

m
em

or
y

D−cache

Controller

OK$_{out}$

TR

software environment

Data bus
Req bus

Data Bus component

CAM HIDISP

!fi
re

?e
nd

Arbiter

TR

P1 FIFO

P2 FIFO

Buffer
OK$_{out}$

Transactor

TR
TR

T

10 cycles

TLTB

TR

OK$_{out}$ (state of DRAM)

O
ut

pu
t T

R
to

 m
em

or
y

ba
nk

’s
 fi

fo
s

over Pi FIFO
Round−robin

DRAM banks

Fig. 1. Video encoding platform

The execution times of the software including communication are
treated as parameters, whereas timing values of the environment (i.e.
CAM, HI, and DISP) are known and equal to a half of the period:

1

15
.

The synthesis procedure [8] derives a scheduler and a constraint over
the execution times of the software. The constraint is a deadline of
1

25
over the execution time of the encoder VE. It gives the condition

under which the scheduler respects the requirements of the model.
We programmed several implementations: a is the sequential imple-

mentation, b, c and d are implementations of the first class with data

Implementation Proc execution times used bandwidth cache misses
of VE (s) (MB/s) (%)

a (sequential) 1 0.13 320.43 2.28
b (parallel) 2 0.06 426.14 1.28
c (parallel) 3 0.044 570.90 1.25

d (parallel) 4 0.036 ≤ 1

25
630.9 1.33

e (hybrid) 8 0.05 445.8 1.30

f (hybrid) 12 0.036 ≤ 1

25
600.9 1.28

g (hybrid) 16 0.032 ≤ 1

25
682.72 1.27

TABLE I
PREDICTED PERFORMANCE

oriented parallelism using two, three and four processors respectively.
e, f and g are hybrid implementations using two, three and four
pipelines respectively.

Table I shows the predicted performance results for these im-
plementations, by using P-WARE. This joint analysis shows that
implementations d, f and g are realizable implementations. However,
implementation d is by far the one which provides the best compromise
since it consumes slightly more bandwidth than f but uses less
processors than f and g.

IV. CONCLUSION

We have proposed a framework and a simulation tool for analyzing
software and hardware performance rather than inefficiently evaluating
each one in isolation. The framework relies on an annotated and
component-based modelling and analysis approach which combines
transaction-level hardware and task-level software models.

The framework has the advantage of providing (1) component meta-
models having a well defined structure, which is to be instantiated
by the designer for modelling concurrency and performance of micro-
architectures, (2) a precise semantics for composing task-level software
and transaction-level hardware, and (3) a joint evaluation which
enables predicting impact of hardware on software performance and
the ability of hardware performance to accommodate other services or
applications.

Moreover, the experiments carried out on complex real-life industrial
MES show that our simulation prototype is scalable while achieving
fast simulation speeds, and delivers correct performance trends.We
have successfully used our framework to analyze the performance
of several parallel implementations of a MPEG-4 video encoder and
a IPv4 packet forwarder on NP architectures such as the Philips’
Wasabi/Cake and Intel’s IXP2800 [7].

Acknowledgment

This work has been partially supported by projects MEDEA+ NEVA
and Minalogic SCEPTRE. The first author has been funded by a joint
CNRS/STMicroelectronics research grant.

REFERENCES

[1] A. Sangiovanni-Vincentelli, “Defining platform-based design,” EEdesign,
EETimes, February 2002.

[2] S. Mahadevan, M. Storgaard, J. Madsen, and K. M. Virk, “ARTS: A system-
level framework for modeling mpsoc components and analysis of their
causality,” inMASCOTS’05. IEEE, 2005.

[3] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic system
design environment,”Computer, vol. 36, no. 4, pp. 45–52, 2003.

[4] F. Ghenassia,Transaction Level Modelling with SystemC. TLM Concepts
and Applications for embedded systems. Springer, 2006.

[5] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri,
“Mparm: Exploring the multi-processor soc design space with systemc,”
J. VLSI Signal Process. Syst., vol. 41, no. 2, pp. 169–182, 2005.

[6] I. Assayad, V. Bertin, F.-X. Defaut, P. Gerner, O. Quévreux, and S. Yovine,
“JAHUEL: A formal framework for software synthesis,” inICFEM’05,
LNCS.

[7] I. Assayad and S. Yovine, “P-ware: A precise and scalablecomponent-
based simulation tool for embedded multiprocessor industrialapplications,”
EUROMICRO DSD’07, IEEE CS.

[8] ——, “Compositional constraints generation for concurrent real time loops
with interdependent iterations,” inI2CS’05, LNCS.

