
Bi-Directional Traceability: The Hi-Five Framework Approach to Reliable
Validation of Early System Designs

Martin Ouimet and Kristina Lundqvist
Embedded Systems Laboratory

Massachusetts Institute of Technology
Cambridge, MA, 02139, USA
{mouimet, kristina}@mit.edu

1. Overview

The Hi-Five framework is a holistic framework for
the validation and verification of embedded real-time
systems. The framework reuses the state of the art
in formal verification and test case generation to pro-
vide an end-to-end solution to mitigate the typically
high cost of validation and verification activities. The
framework is based on a literate formal specification
language, the Timed Abstract State Machine (TASM)
language. The TASM language aims to capture the
three key aspects of embedded real-time system behav-
ior, namely functional behavior, timing behavior, and
resource consumption. These three aspects can be cap-
tured and analyzed using the TASM language and its
associated toolset [6]. Using the TASM language, the
Hi-Five framework models systems at multiple levels
of abstraction and provides traceability between related
models. The framework provides an overarching ap-
proach to system engineering by leveraging the formal
semantics of the TASM language to automate verifica-
tion and test case generation.

During the early phases of system engineering, in-
corporating non-functional properties in system mod-
els is an approximate activity at best. For example, be-
fore an implementation exists, it is challenging to spec-
ify behavior related to time and resource consumption.
Nevertheless, gaining insight into the system designs,
before the system is implemented, yields considerable
benefits in terms of cost and time savings. For exam-
ple, evaluating design properties, such as end-to-end
latency and Quality of Service can help optimize de-
signs or select between competing designs. The TASM
approach to resolving this apparent paradox is to use
bi-directional traceability through levels of abstraction.
During the early stages of system designs, time and re-
source behavior can be estimated with a high degree
of uncertainty. As system models get refined all the

way down to implementation, the assumptions and esti-
mates made in higher level models become constraints
on the behavior of lower level models. At each level
of abstraction, analysis of timing behavior and resource
consumption is performed. If undesirable behavior is
found at a lower level of abstraction, the time esti-
mates can be modified, with the changes propagating
upward to higher levels of abstraction. Finally, when
the system is implemented, the Hi-Five framework as-
sociates TASM models with implementation code. By
performing Worst-Case Execution Time (WCET) anal-
ysis [3], exact timing metrics can be obtained and fed
back through the hierarchy of models. The logical
view of the approach, called bi-directional traceability,
is shown in Figure 1.

Figure 1. Logical View of the TASM Approach
to Traceability



2. The TASM Language

The Timed Abstract State Machine (TASM) speci-
fication language was introduced in [5], as a novel spec-
ification language for reactive real-time systems. The
TASM language is based on the theory of Abstract State
Machines (ASM), a method for system design that can
be applied at various levels of abstraction [2]. The
TASM language has formal semantics, which makes
its meaning precise and enables executable specifica-
tions. The time semantics of the language revolve
around the concept of durative actions. The TASM lan-
guage aims to model and analyze embedded real-time
systems whose aggregate behavior is defined by sets of
components whose individual execution semantics can
be synchronous or asynchronous. The target systems
of the TASM language and the Hi-Five framework are
embedded real-time controllers, such as those found in
the automotive and aerospace industries. The TASM
language also contains facilities for hierarchical compo-
sition, parallel composition, and synchronization chan-
nels. The TASM language uses the paradigm of durative
actions to model and reason about time and resources.
In TASM, execution time refers to the time that it takes
to reach a certain reachable state from a start state.

3. The TASM Toolset

The TASM toolset implements the features of the
TASM language through three main components - an
editor, an analyzer, and a simulator. The toolset can
be used during the early phases of development to un-
derstand behavior before the system is built, or it can be
used throughout the development of the system to guide
implementation. The type of analysis that can be per-
formed with the toolset include verifying completeness
and consistency of specifications and verifying timing
properties of the specification such as the absence of
deadlocks, Worst-Case Execution Time (WCET), and
end-to-end latency [7]. The philosophy of the toolset is
to reuse the state of the art in analytical engines to per-
form formal verification. The TASM toolset integrates
the UPPAAL tool suite [1] to verify timing properties
of TASM specifications and uses a SAT Solver to ver-
ify completeness and consistency of TASM specifica-
tions [4].

The TASM toolset includes facilities for creating
and editing TASM specifications, through the TASM
Editor. The editor enables the specification of func-
tional and non-functional behavior, with standard facil-
ities for syntax highlighting and syntax checking. Fur-
thermore, the toolset includes facilities for executing
specifications through the TASM Simulator, to visual-

ize the dynamic behavior of the specified system. Fi-
nally, the TASM Analyzer provides analysis capabili-
ties to verify completeness and consistency of the sys-
tem, and to verify execution time of the system. The
toolset is an open source project, completely written in
Java; it is available, free of charge, from the TASM web
site (http://esl.mit.edu/tasm).

References

[1] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on
UPPAAL. In Proceedings of the 4th International School
on Formal Methods for the Design of Computer, Com-
munication, and Software Systems (SFM-RT’04), volume
3185 of LNCS. Springer-Verlag, 2004.

[2] E. Börger. The Origins and the Development of the
ASM Method for High Level System Design and Anal-
ysis. Journal of Computer Science, 8(5), 2001.

[3] J. Engblom, A. Ermedahl, M. Nolin, J. Gustafsson, and
H. Hansson. Worst-Case Execution-Time Analysis for
Embedded Real-Time Systems. International Journal on
Software Tools for Technology Transfer, 4:437–455, Oc-
tober 2003.

[4] M. Ouimet and K. Lundqvist. Automated Verification
of Completeness and Consistency of Abstract State Ma-
chine Specifications using a SAT Solver. In Proceedings
of the 3rd International Workshop on Model-Based Test-
ing (MBT ’07), Satellite Workshop of ETAPS ’07, April
2007.

[5] M. Ouimet and K. Lundqvist. The Timed Abstract State
Machine Language: An Executable Specification Lan-
guage for Reactive Real-Time Systems. In Proceedings
of the 15th International Conference on Real-Time and
Network Systems (RTNS ’07), March 2007.

[6] M. Ouimet and K. Lundqvist. The Timed Abstract State
Machine Toolset: Specification, Simulation, and Verifi-
cation of Real-Time Systems. In Proceedings of the 19th
International Conference on Computer-Aided Verification
(CAV’07), July 2007.

[7] M. Ouimet and K. Lundqvist. Verifying Execution Time
using the TASM Toolset and UPPAAL, January 2007.
Technical Report ESL-TIK-000212, Embedded Systems
Laboratory, Massachusetts Institute of Technology.


