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The Idea of Feedback

• Feedback:

– Compare the actual result with the desired result.
– Take actions based on the difference.

• A seemingly simple idea that is temendously powerful.

• Use of feedback has often been revolutionary.

• Feedback is also called close loop control.

• The opposite is feedforward or open loop control: make a plan
and execute it.

• Feedback and feedforward are key ideas ideas in the discipline
of control.



Automatic control

Use of models and feedback

Activities:

• Modeling

• Analysis and simulation

• Control design

• Implementation

Disturbance

Input Output
Process

Controller

Reference



Basic setting

Model Control Process

r u y

Disturbance

Must handle two tasks:

• Follow reference signals, r
• Compensate for disturbances

How to

• do several things with the control signal u



The feedback principle

A very powerful idea, that often leads to revolutionary changes in
the way systems are designed.

The primary paradigm in automatic control.

Process
Ref. signal u yΣ  Feedback

Controller

−1

e

• Base corrective action on an error that has occurred

• Closed loop



Properties of feedback

+ Reduces influence of disturbances

+ Reduces effect of process variations

+ Does not require exact models

− Feeds sensor noise into the system

− May lead to instability, e.g.:

– if the controller has too high gain
– if the feedback loop contains too large time delays



The feedforward principle

Process

Measurable
Disturbance

u yRef. signal Feedforward
  controller

• Take corrective action before an error has occurred

• Measure the disturbance and compensate for it

• Use the fact that the reference signal is known and adjust the
control signal to the reference signal

• Open loop



Properties of feedforward

+ Reduces effect of disturbances that cannot be reduced by
feedback

+ Allows faster set-point changes, without introducing control
errors

− Requires good models

− Requires stable systems



Example: Cruise control using feedforward

Desired
speed

Table Car

Measured
speed

• Open loop

• Problems?

1



Example: Cruise control using feedback

Desired
speed

Throttle

Controller Car

−1

Error
Σ

Measured
speed

• Closed loop

• Simple controller:

– Error > 0: increase throttle
– Error < 0: decrease throttle

1



Exempel: Cruise control using feedback and
feedforward

Desired
speed

Controller Car

−1

Table

Σ Σ

Measured
speed

• Both proactive and reactive

1



Example: Segway

• Why is this process more difficult to control?

– Unstable dynamics
1



The servo problem

Focus on reference value changes:

Model Control Process

r u y

Disturbance

Typical design criteria:

• Rise time, Tr
• Overshoot, M
• Settling time, Ts
• Steady-state error, e0
• . . .

1.0
2p

y

M

Tr
t

e 0

Ts 1



The regulator problem

Focus on process disturbances:

Model Control Process

r u y

Disturbance

Typical design criteria:

• Output variance

• Control signal variance

−2 0 2 4 6
0

0.5

Process output

P
ro

ba
bi

li
ty

 d
en

si
ty

Set point for regulator
with low variance

Set point for regulator
with high variance

Test limit
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Example: Oven

Σ
r = 200 ○C ue y

Controller Oven

−1

• y – actual temperature

• r – desired temperature

• u – heating element power (0 ≤ u ≤ 1)

1



On/off control

u(t) =
{
umin, e(t) < 0
umax, e(t) > 0
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• Oscillations
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Proportional control

P-controller: u(t) = K e(t) (K – gain)
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• Stationary error
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Proportional control

Increased gain K :

40 60 80 100 120 140 160 180 200
120

140

160

180

200

220

y

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

1.5

u

r

y

u

• Smaller stationary error

• Larger oscillations 2



Proportional–Integral control

PI-controller: u(t) = K
(
e(t) + 1

Ti

∫ t
0 e(s)ds

)
(Ti – integral time)
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Proportional–Integral control

Smaller integral time Ti (larger integral action):
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• Larger oscillations
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Proportional–Integral–Derivative control

PID-controller: u(t) = K
(
e(t) + 1

Ti

∫ t
0 e(s)ds+ Td de(t)dt

)
(Td –

derivative time)

40 60 80 100 120 140 160 180 200
120

140

160

180

200

220
y

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

1.5

u

r

y

u

• The derivative part reduces oscillations 2



PID: Present, past, and future
e

t

D

I P

• P-part: needed for fast response

• I-part: needed to remove stationary error

• D-part: may be needed to stabilize the process

2
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Dynamical systems

u y
System

Static system:
y(t) = f (u(t))

(The output at time t only depends on the input at time t.)

Dynamical system:

y(t) = f (x(0), u[0, t])
(The output at time t depends on the initial state x(0) and the input
from time 0 to t.)

2



Linear systems

We will mainly deal with linear, time-invariant (LTI) systems

For linear systems, the principle of superposition holds:

u1 y1
System

u2 y2
System

αu1 + βu2 α y1 + β y2
System

2



Nonlinear systems

• Almost all real systems are nonlinear

– limited input and output signals
– nonlinear process geometry
– friction, turbulence, . . .

• Can be linearized around an operating point

• If there is feedback, a simple linear model is often enough

• But, always remember the limitations of the model!

2



Standard system forms

• State space form

– A number of first-order differential equations
– Describes what happens “inside” the system and how inputs

and output are connected to this
– Numerically superior
– The heritage of mechanics

• Transfer function form

– The transform of a higher-order linear differential equation
– Describes the relationship between the input and the output
– The system is a “black box”
– Compact notation, convenient for hand calculations
– The heritage of electrical engineering 2



State Space Models

u

x

y
System

Nonlinear state-space model:

dx1
dt = f1(x1, . . . , xn,u)

...

dxn
dt = fn(x1, . . . , xn,u)
y= �(x1, . . . , xn,u)

Linear state-space model:

dx1
dt = a11x1 + . . .+ a1nxn + b1u

...

dxn
dt = an1x1 + . . .+ annxn + bnu
y = c1x1 + . . .+ cnxn + du

3



State Space Models

Introduce vectors and matrices for compact notation:

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎩
x1
...

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎭
n – system order

Nonlinear state-space model:

dx
dt = f (x, u)
y = �(x, u)

Linear state-space model:

dx
dt = Ax + Bu
y = Cx + Du

3



Example: Pendulum

y

u

Nonlinear state-space model (x1 = angle, x2 = angular velocity):

ẋ1 = x2
ẋ2 = −ω 20 sin x1 + ku cos x1
y = x1

3



Linearization

A nonlinear system can be linearized around an equilibrium point,
where it holds

dx
dt = 0 � f (x0,u0) = 0

• Make first-order Taylor approximations of f and � around
(x0,u0):

f (x,u) � f (x0,u0)︸ ︷︷ ︸
=0

+� f�x
∣∣∣
(x0,u0)

(x − x0) + � f�u
∣∣∣
(x0,u0)

(u− u0)

�(x,u) � �(x0,u0)︸ ︷︷ ︸
=y0

+���x
∣∣∣
(x0,u0)

(x − x0) + ���u
∣∣∣
(x0,u0)

(u− u0)

3



Linearization

• Introduce new variables Δx = x−x0, Δu = u−u0 och Δy= y−y0
• The system can now be written as

dΔx
dt =

dx
dt = f (x,u) �

� f
�x

∣∣∣
(x0,u0)

Δx + � f�u
∣∣∣
(x0,u0)

Δu

Δy= �(x,u) − y0 � ���x
∣∣∣
(x0,u0)

Δx + ���u
∣∣∣
(x0,u0)

Δu

In matrix form:

dΔx
dt = AΔx + BΔu

Δy= CΔx + DΔu

3



Example – Pendulum

Linearize

ẋ1 = x2 = f1(x1, x2, u)
ẋ2 = −ω 20 sin x1 + ku cos x1 = f2(x1, x2, u)
y = x1 = �(x1, x2, u)

around the upper (unstable) equilibrium x01 = π , x02 = 0, u0 = 0.

The linearized system is given by

dΔx
dt = AΔx + BΔu

Δy= CΔx + DΔu

3



where Δx = x − x0, Δu = u− u0, Δy= y− y0 and

A =
⎧⎪⎪⎪⎩ � f1

�x1
� f1
�x2

� f2
�x1

� f2
�x2

⎫⎪⎪⎪⎭
(x0,u0)

=
⎧⎪⎪⎩ 0 1
−ω 20 cos x1 − ku sin x1 0

⎫⎪⎪⎭
(x0,u0)

=
⎧⎪⎪⎩ 0 1

ω 20 0

⎫⎪⎪⎭
B =

⎧⎪⎪⎩ � f1
�u
� f2
�u

⎫⎪⎪⎭
(x0,u0)

=
⎧⎪⎪⎩ 0
k cos x1

⎫⎪⎪⎭
(x0,u0)

=
⎧⎪⎪⎩ 0
−k

⎫⎪⎪⎭
C =

⎧⎩ ��
�x1

��
�x2

⎫⎭
(x0,u0)

=
⎧⎩ 1 0

⎫⎭
D = ��

�u = 0 3



Solving the system equation

The solution to the system equation{
ẋ = Ax + Bu
y = Cx + Du

is given by

x(t) = eAtx(0) +
∫ t

0
eA(t−τ )Bu(τ )dτ

y(t) = CeAtx(0) +
∫ t

0
CeA(t−τ )Bu(τ )dτ + Du(t)

3



Stability concepts

Stable

Unstable

Asymptotically stable

3



Stability definitions

Assume
ẋ = Ax, x(0) = x0

The system is stable if x(t) is limited for all x0.

The system is asymptotically stable if x(t) → 0 for all x0.

The system is unstable if x(t) is unlimited for some x0.

3



Stability criteria

{
ẋ = Ax
x(0) = x0

	 x(t) = x0eAt

The behavior of the solution depends on the eigenvalues of A

All eigenvalues have negative real part: � As. stab.

Some eigenvalue has positive real part: 	 Unstable

No eigenvalues with positive real part and no
multiple eigenvalues on the imaginary axis:

� Stable

4
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Transfer function form

Study the system in the (complex) frequency domain:

U(s) Y(s)
G(s)

U(s) – Laplace transform of u(t)
Y(s) – Laplace transform of y(t)
G(s) – transfer function

Y(s) = G(s)U(s)
(if the initial state is assumed to be zero)

4



Some operators/signals and their Laplace transforms

Definition: L f = F(s) =
∫ ∞

0
e−st f (t)dt

Derivative: L
(
d f
dt

)
= sF(s)

Integral: L
(∫

f dt
)
= 1s F(s)

Dirac impulse: Lδ = 1
Step function: Lθ = 1s
Ramp function: L(tθ ) = 1s2
Exponential function: L(eatθ ) = 1

s− a
4



From transfer function to state space form

{
ẋ = Ax + Bu x(0) = 0
y = Cx + Du

{
sX (s) = AX (s) + BU(s)
Y(s) = CX (s) + DU(s)

Y(s) = [
C(sI − A)−1B + D]

U(s)

G(s) = C(sI − A)−1B + D = p(s)q(s)

q(s) = det(sI − A) is called characteristic polynomial
4



Poles and zeros

Often,

G(s) = p(s)q(s)
The roots of p(s) are called zeros

The roots of q(s) are called poles

Note that
Poles of G(s) � Eigenvalues of A

4



Calculating system responses

1. Find the transfer function G(s) of the system

2. Find the Laplace transform U(s) of the input u(t)
3. Y(s) = G(s)U(s)
4. Use inverse Laplace transform to find y(t)

4



Calculating system responses

Example:

Compute the step response of G(s) = 1
s+1

Input: U(s) = L{θ (t)} = 1
s

Output: Y(s) = G(s)U(s) = 1
s(s+1)

Output in the time domain:

y(t) = L−1
{

1
s(s+ 1)

}
= 1− e−t

4



Step response of first-order systems

G(s) = 1
s+ a 	 step response y(t) = 1a(1− e

−at)

G(s) = 1
s+ a =

T
1+ sT

Time constant: T = 1a
Static gain: G(0) = 1/a

4



Step response of second-order systems

Real poles:

G(s) = 1
(s+ a)(s+ b) 	 step response: y(t) = 1

ab
ae−bt − be−at
ab(b− a)

Complex poles:

G(s) = ω 2

s2 + 2ζ ω s+ω 2
	

step response: y(t) = 1− 1√
1−ζ 2
sin(ω

√
1− ζ 2t+ φ)

φ = arccosζ

ω = undamped frequency (ω > 0)
ζ = relative damping (0 < ζ < 1) 4



Block diagrams

U
G1 G2

Y Y = G2G1 U

U
G1

G2

Y
Σ Y = (

G1 + G2
)
U

5



U
G1 G2

−1

Y
Σ

Y = G2G1
(
U − Y)

Y(1+ G2G1) = G2G1U
Y = G2G1

1+ G2G1U

5



Frequency response

0 5 10 15

0

0.1

0 5 10 15

−1

1

y

u

Given a stable system G(s), the input u(t) = sinω t will, after a
transient, give the output

y(t) = �G(iω )� sin
(

ω t+ argG(iω )
)

The steady-state output is also sinusoidal
5



Bode diagram

Draw

• �G(iω )� as a function of ω (in log-log scale)

– Amplitude/magnitude/gain diagram

• argG(iω ) as a function of ω (in log-lin scale)

– Phase/angle diagram

5



Example: low-pass filter

dy(t)
dt + y(t) = u(t) � G(s) = 1

s+ 1

G(iω ) = 1
iω + 1

�G(iω )� = 1√
ω 2 + 1

argG(iω ) = − arctanω

5



Example: low-pass filter
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Nyquist Diagram

Draw G(iω ) in a polar diagram when ω goes from 0 to ∞

ω

ϕ−1

Ultimate point

a
    G(iω)  Re

    G(iω)  Im

5



Example of Nyquist Diagram

Im

Re

G(iω )
G(s) = 1

s+ 1
G(iω ) = 1

iω + 1 =
1− iω
ω 2 + 1

Small ω : G(iω ) � 1
Large ω : G(iω ) � 1

ω 2
− i 1

ω

5
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Closed-loop control

reference

disturbances

measurementcontrol
Controller Process

Primary goals of the controller:

• Follow the reference

• Reject disturbances

5



Analysis of the standard feedback loop

Σ
r e u y

C(s) P(s)

−1

• C(s): controller

• P(s): process

Closed-loop transfer function (from r to y):

Y = PC
1+ PCR

Control design: Choose C to get the desired behavior! 6



Example – cruise control

Assume that the relationship between the throttle and the speed is
given by

dy
dt = −0.2y+ 5u � P(s) = 5

s+ 0.2

First try to regulate the speed with a P-controller:

u(t) = K e(t)
where e(t) = r(t) − y(t)

6



The closed-loop transfer function is given by

PC
1+ PC =

5
s+0.2 ⋅ K

1+ 5
s+0.2 ⋅ K

= 5K
s+ 0.2+ 5K

The gain K affects

• the pole of the closed-loop system

• the static gain of the closed-loop system

6



Simulation of the control system with different values of K :
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T
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K=0.1

K=0.3
K=1 

K=1 

K=0.3

K=0.1

• Stationary error 6



Now try a PI-controller:

u(t) = K
(
e(t) + 1Ti

∫ t

0
e(τ )dτ

)

U(s) = K
(
1+ 1
sTi

)
︸ ︷︷ ︸

C(s)

E(s)

6



The closed-loop transfer function is given by

PC
1+ PC =

5
s+0.2 ⋅ K

(
1+ 1

sTi

)
1+ 5

s+0.2 ⋅ K
(
1+ 1

sTi

) = 5K
(
s+ 1

Ti

)
s2 + (5K + 0.2)s+ 5K

Ti

• The poles of the closed-loop system depend on K and Ti
• The static gain of the closed-loop system is always 1

6



Simulation of the control system with r = 20, K = 0.3 and different
values of Ti:
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Ti=10
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Ti=10
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• No stationary error 6



Where to place the poles?

Pole placement according to the characteristic polynomial q(s) =
s2 + 2ζ ω 0s+ω 20:

Im

Re

ϕ
ω 0

• Larger ω 0 	 faster system response

• Smaller ϕ 	 better damping (relative damping ζ = cosϕ ).
(Common choice: ζ = cos 45○ = 0.7) 6



Analysis of the standard loop with disturbances

ΣΣΣ
r e u

l n
y

C P

−1

• l: load disturbance

• n: noise

6



Influence of disturbances

From the block diagram the following relationships can be derived:

Y = PC
1+ PCR +

P
1+ PC L +

1
1+ PCN

U = C
1+ PCR −

PC
1+ PC L −

C
1+ PCN

E = 1
1+ PCR −

P
1+ PC L −

1
1+ PCN

Since the system is linear, we can analyze the influence of refer-
ence values, load disturbances, and measurement noise separately.

6



Design trade-offs

Ideally, one would like to have

• perfect reference tracking, PC
1+PC = 1

• no influence of load disturbances, P
1+PC = 0

• no influence of measurement noise, C
1+PC = 0

• . . .

Impossible to fulfill

Typical design compromise:

• C(s) high gain at low frequencies

• C(s) low gain at high frequencies

7



Stability under Feedback

� G0��

−1

�

�

�
Σ

The closed loop system is asymptotically stable if and only if all the
zeros of

1+ G0(s)
lies in the left half plane.

7



The Nyquist Criterion

If G0(s) is stable then the closed loop system [1+ G0(s)]−1 is stable
if and only if the the Nyquist curveG(iω ) does not encircle −1.
G0(s) = GP(s)GR(s), i.e. modify GP such that the Nyquist curve
does not encircle −1

7



Example

� K
s(s+1)(s+2)��

−1

�

�

�
Σ

G0(iω ) = K
iω (1+ iω )(2+ iω )

= −Ki(1− iω )(2− iω )
ω (1+ω 2)(4+ω 2) = −Ki(2−ω 2 − 3iω )

ω (1+ω 2)(4+ω 2)
= −3K
(1+ω 2)(4+ω 2) + i

K (ω 2 − 2)
ω (1+ω 2)(4+ω 2)

7



Stability for the closed loop system

−1

G0(iω )

G0(i
√
2) = − 3K3 ⋅ 6 = −

K
6

Stable if K < 6.
7



Amplitude and phase margins

Amplitude marginAm

argG(iω 0) = −180○, �G(iω 0)� = 1
Am

Phase margin φm

�G(iω c)� = 1, argG(iω c) = φm − 180○

(Rules of Thumb: Am ∈ [2, 6], φm ∈ [30○, 60○])
7



Margins in the Bode diagram

7
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State feedback from an observer

A general controller structure that can be applied to systems of any
order:

r lr Σ u P

Observer

−L

y

x̂

7



State feedback

Process: dx
dt = Ax + Bu
y = Cx

Assume that the full state vector x is measurable. Control law:

u = −Lx + lrr

r lr Σ u P

−L

y

x

8



Closed-loop system:

dx
dt = (A− BL)x + Blrr
y = Cx

The closed loop poles are given by

det(sI − A+ BL) = 0

Tuning:

• L is chosen to give the desired poles

• lr is chosen to give the static gain 1 from r to y

8



Example - Inverted pendulum

y

u
State variables x1 = y, x2 = ẏ 	

dx
dt =

⎧⎪⎪⎩ 0 1
1 0

⎫⎪⎪⎭ x +⎧⎪⎪⎩ 01
⎫⎪⎪⎭u

y =
⎧⎩ 1 0

⎫⎭ x
8



Determine a state feedback law (assume r = 0)

u = −Lx = −
⎧⎩ l1 l2

⎫⎭⎧⎪⎪⎩ x1x2
⎫⎪⎪⎭

such that the closed-loop characteristic polynomial becomes
s2 + 1.4s+ 1.

Closed-loop poles:

det(sI − A+ BL) =
∣∣∣∣ s −1
−1+ l1 s+ l2

∣∣∣∣ = s2 + l2s− 1+ l1
A comparison with the desired polynomial gives

l1 = 2
l2 = 1.4

8



Simulation from x(0) = [ 0.75 0 ]T :

0 1 2 3 4 5 6
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−0.5

0

0.5

1

0 1 2 3 4 5 6
−2

−1

0

1

2

y= x1

x2

u
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Observer

It is most often not possible to measure the full state vector x.

The state can then be estimated using an observer:

u P

Observer

y

x̂

8



Observer:
dx̂
dt = Ax̂ + Bu+ K

(
y− ŷ)

ŷ = Cx̂
Dynamics of the estimation error x̃ = x − x̂:

dx̃
dt = Ax + Bu− Ax̂ − Bu− KC(x − x̂) = (A− KC)x̃

Observer poles:
det(sI − A+ KC) = 0

Tuning:

• K is chosen to give the desired poles

– fast poles 	 fast convergence x̂ → x but sensitive to noise
– slow poles 	 slow convergence but robust 8



Example – Inverted pendulum

Determine an observer

dx̂
dt = Ax̂ + Bu+ K

(
y− Cx̂

)
with the characteristic polynomial s2 + 2.8s+ 4.
Observer poles:

det(sI − A+ KC) =
∣∣∣∣ s+ k1 −1
−1+ k2 s

∣∣∣∣ = s2 + k1s− 1+ k2
A comparison with the desired polynomial gives

k1 = 2.8
k2 = 5

8



Comparison real–estimated states, x̂(0) = [ 0 0 ]T :
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The complete controller (observer + state feedback) is given by

dx̂
dt = Ax̂ + Bu+ K

(
y− Cx̂)

u = −Lx̂

The transfer function of the controller is given by

C(s) = −L(sI − A+ BL + KC)−1K

8



State feedback from estimated states:

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6
−2

−1

0

1

2

y= x1

x2

u

9


