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The ldea of Feedback

e Feedback:

— Compare the actual result with the desired result.
— Take actions based on the difference.

e A seemingly simple idea that is temendously powerful.
e Use of feedback has often been revolutionary.
e Feedback is also called close loop control.

e The opposite is feedforward or open loop control: make a plan
and execute it.

e Feedback and feedforward are key ideas ideas in the discipline
of control.



Automatic control

Use of models and feedback
Activities:

e Modeling

e Analysis and simulation
e Control design

e Implementation

Disturbance




Basic setting

Disturbance

—— | u y
Model Control —{ Process

Must handle two tasks:

e Follow reference signals, r
e Compensate for disturbances

How to

e do several things with the control signal u



The feedback principle

A very powerful idea, that often leads to revolutionary changes in
the way systems are designed.

The primary paradigm in automatic control.
Ref. signal e Eeedback u y
'< ; ) "I Controller = Process =~

—1 e

e Base corrective action on an error that has occurred
e Closed loop



-
Properties of feedback

- Reduces influence of disturbances
- Reduces effect of process variations

- Does not require exact models
— Feeds sensor noise into the system
— May lead to instability, e.g.:

— If the controller has too high gain
— If the feedback loop contains too large time delays




The feedforward principle

Measurable
l Disturbance

Feedforward u y
I | Process }——»
controller

Ref. signal

_.>

e Take corrective action before an error has occurred
e Measure the disturbance and compensate for it

e Use the fact that the reference signal is known and adjust the
control signal to the reference signal

e Open loop



Properties of feedforward

+ Reduces effect of disturbances that cannot be reduced by
feedback

Allows faster set-point changes, without introducing control
errors

— Requires good models
— Requires stable systems



Example: Cruise control using feedforward

Desired Measured
speed speed
Table Car

e Open loop
e Problems?



Example: Cruise control using feedback

Measured
speed»

e Closed loop
e Simple controller:

— Error > 0: Increase throttle
— Error < 0: decrease throttle



Exempel: Cruise control using feedback and
feedforward

Desired Measured
speed sgeed

e Both proactive and reactive



Example: Segway

e \Why Is this process more difficult to control?
— Unstable dynamics



The servo problem

Focus on reference value changes:

—= Model ——

Control

=

Process

Typical design criteria:

Rise time, T
Overshoot, M
Settling time, T;
Steady-state error, e
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The regulator problem

Focus on process disturbances:

Typical design criteria:
e Output variance

Control

—— Process

-

‘ Disturbance

u y

e Control signal variance

- Set point for regulator
- with low variance
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Example: Oven

e y — actual temperature
e r — desired temperature
e 1 — heating element power (0 <u <1)



On/off control

Umin, e(t) <0
Umaxs e(t) >0

u(t) =
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e Oscillations



Proportional control

P-controller:  u(t) = Ke(?) (K — gain)
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e Stationary error



Proportional control

Increased gain K:

220

200
180
>
160

140

120
4

15

0 2I0 4IO 6I0 8I0 1(IJO 150 1;10 1é0 1;30 200
e Smaller stationary error
e Larger oscillations



Proportional-Integral control

Pl-controller: u(¢) = K (e(t) + % IK e(s)ds) (T; — integral time)
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Proportional-Integral control

Smaller integral time T; (larger integral action):
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e Larger oscillations
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Proportional-Integral-Derivative control

PID-controller: u(t) = K (e(t) + % f(f e(s)ds + Tddg—g’f)) (T, —
derivative time)
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e The derivative part reduces oscillations



PID: Present, past, and future

e P-part: needed for fast response
e |-part: needed to remove stationary error
e D-part: may be needed to stabilize the process
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Dynamical systems

u Yy
System

y(t) = f(u(?))

(The output at time ¢ only depends on the input at time ¢.)

Static system:

Dynamical system:

y(t) = f(x(0), ugo,n)

(The output at time ¢ depends on the initial state x(0) and the input
from time O to ¢.)



Linear systems

We will mainly deal with linear, time-invariant (LTI) systems

For linear systems, the principle of superposition holds:

Ui Y1
—System|——

Uz Y2
—System|——

auy + Bus ay, + Byq
—System|—




Nonlinear systems

e Almost all real systems are nonlinear

— limited input and output signals
— nonlinear process geometry
— friction, turbulence, ...

e Can be linearized around an operating point
e If there is feedback, a simple linear model is often enough
e But, always remember the limitations of the model!



-
Standard system forms

e State space form

— A number of first-order differential equations

— Describes what happens “inside” the system and how inputs
and output are connected to this

— Numerically superior
— The heritage of mechanics

e Transfer function form

— The transform of a higher-order linear differential equation
— Describes the relationship between the input and the output
— The system is a “black box”

— Compact notation, convenient for hand calculations

— The heritage of electrical engineering



State Space Models

X

/

u / y
—1System

Nonlinear state-space model: Linear state-space model:
dx1 dxl
E=f1(x1,...,xn,u) E=a11x1—|—...—|—a1nxn+b1u
dx dx
dtn — fn(xla---axnau) dtn = Ap1X1 + ... + AppXy + Opu
y=9(x1,...,%,,U) y=cix1+...+c,x, +du




State Space Models

Introduce vectors and matrices for compact notation:

(xl\

X =
\ X, /
n — system order
Nonlinear state-space model: Linear state-space model.
dx dx
I— X, U — = A.’XJ Bu
a =) dt "
y=g(x, u) y=Cx+ Du




Example: Pendulum
u

Nonlinear state-space model (x; = angle, x, = angular velocity):

xl = X9
. . 2 .
KXo = —WySinx1 + k u cos xq

y =X



Linearization

A nonlinear system can be linearized around an equilibrium point,
where it holds

dx 0 0y
;ig-—-O & f(x",u’)=0

e Make first-order Taylor approximations of f and g around
(2%, u®):

af 8f
0 .0 0
0
og 0g
~ o.,0,99 .0 0
g(x,u) - g(x;u 2+8x (x9,u0) (x x ) o ou (x0,u0) (u “ )

:yo



\ gl
Linearization

e Introduce new variables Ax = x—x, Au = u—u® och Ay = y—y
e The system can now be written as

dAx  dx of of
dt dt f(x,u) ox (x9,u0) * ou (x9,u9) “
Ay = g(x,u) — »’ ~ %9 Ax—l—@ Au
’ ox (x9,u9) ou (x0,u0)

In matrix form:

dA
d—tx = AAx + BAu

Ay = CAx + DAu



Example — Pendulum

Linearize
X1 = X2 = f1(x1, x2, u)
X9 = —G)g Sinx1 + kucos X1 - fz(xl, X9, LL)
y=X1 = Q(xl, X2, u)

around the upper (unstable) equilibrium x{ = 7, ) =0, u° = 0.

The linearized system is given by

@ = AAx + BAu
dt

Ay = CAx + DAu



where Ax = x —x°, Au =u —u’, Ay=y—19" and
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A= of,  of . 0 :
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T ( 8961 8.962 ](xo,uo) o ( 1 0 ]

v
|



Solving the system equation

The solution to the system equation
x =Ax + Bu
y=Cx + Du

IS given by

x(t) = e*x(0) + /t """ Bu(r)dr

0

t
y(t) = Ce®'x(0) —I—/ Ce*" Bu(t)dr + Du(t)
0



Stability concepts

2

Stable

Unstable

Asymptotically stable




Stability definitions

Assume
x = Ax, x(0)=x

The system is stable if x(¢) is limited for all xy.

The system is asymptotically stable if x(¢) — 0 for all x,.

The system is unstable if x(¢) is unlimited for some x.



Stability criteria

x = Ax
= x(t) = xge™
x(0) = x

The behavior of the solution depends on the eigenvalues of A

All eigenvalues have negative real part: & As. stab.
Some eigenvalue has positive real part: = Unstable

No eigenvalues with positive real part and no < Stable
multiple eigenvalues on the imaginary axis:
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Transfer function form

Study the system in the (complex) frequency domain:

U (s) Y(s)
G (s)

U (s) — Laplace transform of u(t)
Y (s) — Laplace transform of y(¢)

G (s) — transfer function

Y(s) =G(s)U(s)

(if the initial state is assumed to be zero)



Some operators/signals and their Laplace transforms

Definition: Lf =F(s) = / e ¥ f(t)dt
0
Derivative: L (ﬁ) = sF(s)
dt

1
Integral: L (/ fdt) = EF(S)
Dirac impulse: Lo =1

1
Step function: =

1
Ramp function: L(t0) = )

1

Exponential function: L(e™0) =




B ' U
From transfer function to state space form
x =Ax+ Bu x(0) =0
y=Cx+ Du

{SX (s) =AX(s)+ BU(s)
Y(s)=CX(s)+ DU(s)

Y(s)=[C(sI—A)""B+D| U(s)

G(s)=C(s[ —A)'B+D = pg

q(s) = det(sI — A) is called characteristic polynomial



Poles and zeros

Often,

0= 56

The roots of p(s) are called zeros

The roots of g(s) are called poles

Note that
Poles of G(s) < Eigenvalues of A



Calculating system responses

Find the transfer function G(s) of the system
Find the Laplace transform U (s) of the input u(¢)
Y(s) = G(s)U(s)

Use inverse Laplace transform to find y(t)

W



Calculating system responses

Example:

Compute the step response of G(s) = 1

Input: U(s) = L{6(¢)} =1

S

Output: Y(s) = G(s)U(s) = -

s(s+1)

Output in the time domain:




Step response of first-order systems

1 1 ot
G(s) = P = step response y(t) = 5(1 —e )
G (s) = 1 T

s-I—a= 1+ sT

. 1
Time constant: T' = —
a

Static gain: G(0) = 1/a



Step response of second-order systems

Real poles:

1 1 ae b — e~

G(s) = (51 a)(s 1 b) = step response: y(t) = b ab(b—a)

Complex poles:
602

G(S):sz+2§a)s+a)2 -

step response: y(¢) =1— \/11_7 sin(@/1 — §% + ¢)

¢ = arccos {
@ = undamped frequency (o > 0)

¢ = relative damping (0 < ¢ < 1)



Block diagrams

U Y
— G; 1 Gy [— Y =G,G1 U




Y = GoG1(U — Y)
Y(]_ + GgGl) = GG U
GoGq

Y =
1+ GoGy

U




Freguency response

0.1 Yy

0 5 10 15

1 u
-1
I T T T

0 5 10 15

Given a stable system G(s), the input u(¢) = sin wt will, after a
transient, give the output

y(¢) = |G(io)| sin (a)t +arg G(ia)))

The steady-state output is also sinusoidal



Bode diagram

Draw

e |G(iw)| as a function of o (in log-log scale)
— Amplitude/magnitude/gain diagram

e arg G(iw) as a function of w (in log-lin scale)
— Phase/angle diagram



Example: low-pass filter

dfi—(tt)ﬂ(t)_u(t) & G(s) = Sil
Gliw) = La){l— 1
Glio)] = ———

arg G (iw) = —arctan @



Example: low-pass filter

Bode Diagram

[EE
o
o

Magnitude (abs)
[ERY
o

Phase (deg)

—90 - - . NI s e
1072 10" 10° 10" 10°

Frequency (rad/sec)




Nyquist Diagram

Draw G (iw) in a polar diagram when @ goes from 0 to co
A Im G(iw)

Ultimate point

N N Re G(io)




Example of Nyquist Diagram

Re
G(iw)
1
G(s) = o
, 1 1l —iw
Gliw) = io+1 w241
Small o : G(iw) ~ 1

Large o : G(iw) ~
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Closed-loop control

disturbances

reference
— - control measurement
Controller —1Process —

Primary goals of the controller:

e Follow the reference
e Reject disturbances



Analysis of the standard feedback loop

r e U y

C(s) 1 P(s) -

e (C(s): controller
e P(s): process

Closed-loop transfer function (from r to y):

PC

Y =
1+ PC

R

Control design: Choose C to get the desired behavior! |



Example — cruise control

Assume that the relationship between the throttle and the speed is
given by
dy 5

—~ =-0.2 5 P(s) =
dt y+bu & P(s) s+ 0.2

First try to regulate the speed with a P-controller:
u(t) = Ke(t)

where e(t) = r(t) — y(¢)



The closed-loop transfer function is given by

PC _ s+50.2.K _ 5K
1+PC 1+ 55 K s+02+5K

The gain K affects

e the pole of the closed-loop system
e the static gain of the closed-loop system



Simulation of the control system with different values of K:

Throttle

e Stationary error




Now try a Pl-controller:

u(t) = K (e(t) + %/Ote(r)dr)

U(s) = K (1 + s%) E(s)

\ . J/

C(s)




The closed-loop transfer function is given by

PC o K1+ 7 5K (s + 1)

1+PC ™ 1+ 25 K(1+L%) s+ (5K +02)s+ &

e The poles of the closed-loop system depend on K and T;
e The static gain of the closed-loop system is always 1



Simulation of the control system with » = 20, K = 0.3 and different
values of T;:

T1=0.5 Ti=2

20 — — - = e e e ——
yo!
3 Ti=10
o
10+

0 1

0 1 2 3 4 5

Throttle

e No stationary error



Where to place the poles?

Pole placement according to the characteristic polynomial g(s) =
s2 + 2 wos + wE:

A Im

Re

e Larger oy = faster system response

e Smaller ¢ = better damping (relative damping { = cos @).
(Common choice: { = cos45° = 0.7)



Analysis of the standard loop with disturbances

O™

[
u
P

&

e [: load disturbance
e 1. noise

Y

e

—1




Influence of disturbances

From the block diagram the following relationships can be derived:

PC P
Y=17pctt11pct
C PC
l]_1+PCR_1+PCL
1 P
'E_1+PCR_1+PCL

1
T 11 PC

N

~ C
1+ PC

N

1
1+ PC

N

Since the system is linear, we can analyze the influence of refer-
ence values, load disturbances, and measurement noise separately



Design trade-offs

|deally, one would like to have

o perfect reference tracking, <+ 55 = 1

e no influence of load disturbances, 1+§>c =0

e no influence of measurement noise, 1+§>c =0

Impossible to fulfill

Typical design compromise:

e (C(s) high gain at low frequencies
e C(s) low gain at high frequencies



Stability under Feedback

G() >

—] [———

The closed loop system is asymptotically stable if and only if all the
zeros of

1+ G()(S)

lies in the left half plane.



The Nyquist Criterion

If Gy(s) is stable then the closed loop system [1 + Gy(s)]™! is stable
if and only if the the Nyquist curveG (iw) does not encircle —1.

Go(s) = Gp(s)Gr(s), i.e. modify Gp such that the Nyquist curve
does not encircle —1



Example

K
4<f— s(5+1)(512) >
S ) PE—

K
iw(l+iw)(2+im)
-Ki(l-iw)(2—-iw) —Ki(2—-w®—3io)
o(l+w?)(4+w2)  o(l+0?)(4+ w?)
—3K e K(w? —2)
1+ w?)(4+w?) o(l+ 0?4+ 0?)




Stability for the closed loop system

A
_1 \\\ \\\
BV N I
Go(l(l))/ /,’/
: 3K K
Go(l\/ﬁ) = —ﬁ = —g

Stable if K < 6.



Amplitude and phase margins

Amplitude marginA,,

1
arg G(imo) = —180°, |G (ioo)| = 5~

m

Phase margin ¢,,

G(iw,)| =1, argG(io,) = ¢,, — 180°

(Rules of Thumb: A,, € [2,6], ¢,, € [30°,60°])



Margins in the Bode diagram

arg Gy

Beloppkurva

e

Argumentkurva
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State feedback from an observer

A general controller structure that can be applied to systems of any
order:

________________________________________________

Y

A

Observer

&>




State feedback
Process: I
— =A B
a7 X+ bu
y=Cx

Assume that the full state vector x Is measurable. Control law:

u=—Lx+1[r




Closed-loop system:

% =(A—BL)x+ Bl,r
y=Cx

The closed loop poles are given by

det(sI —-A+BL) =0

Tuning:
e L is chosen to give the desired poles
e /. IS chosen to give the static gain 1 from r to y



Example - Inverted pendulum

State variables x1 =y, x9=y =

dx (0 1 N 0
da |1 0) " 1)"
(

y= 11 O]x

\




Determine a state feedback law (assume r = 0)

u=-Le=— (UL 1) [2]

such that the closed-loop characteristic polynomial becomes
s+ 1.4s+ 1.

Closed-loop poles:
S —1

2
—s“+los—1+1
—1+ll S+l2 ? '

det(sI] —A+ BL) = ‘

A comparison with the desired polynomial gives

[1 =2
[o =14




Simulation from x(0) = [0.75 0]":

1 T T T T T

0.5F i

— m— m— m— — — m— — ]

OR — =
~ x2 - =
— ——"_—

-0.5 .




Observer

It IS most often not possible to measure the full state vector x.

The state can then be estimated using an observer:

u P y_

-| Observer [

X




Observer:

dx . .
%zAx-I—Bu-I—K(y—y)
y=0Cx

Dynamics of the estimation error ¥ = x — &:

%:Ax+Bu—A3€—Bu—KC(x—fc)=(A—KC)5E

Observer poles:
det(sI —A+ KC) =0

Tuning:
e K Is chosen to give the desired poles

— fast poles = fast convergence ¥ — x but sensitive to noise
— slow poles = slow convergence but robust



Example — Inverted pendulum

Determine an observer

%one—l—Bu—l—K(y—Cfc)

with the characteristic polynomial s? 4+ 2.8s + 4.
Observer poles:

S+k1 —1

9
—=s“+hkis—1+kFk
—1+k2 S ! ’

det(s] — A+ KC) =

A comparison with the desired polynomial gives

ki = 2.8
ke =5



Comparison real—estimated states, £(0) = [0 0]":
1 | | T T T




The complete controller (observer + state feedback) is given by

%=A£+Bu+K(y—Cﬁ)

u=—Lx

The transfer function of the controller is given by

C(s)=—-L(sI—A+BL+KC) 'K



State feedback from estimated states:
1




