
Computer Implementation of Control Systems

Karl-Erik Årzen, Anton Cervin

Session outline

• Sampled-data control

• Discretization of continuous-time controllers

• Implementation of PID Controllers

Sampled-data control systems

Process

u t()

)

uk

y t(u t()

yk

SamplerHold

Computer
uk

yk

tt

t

y t()

t

D-A A-D

• Mix of continuous-time and discrete-time signals

Networked control systems

uk

uk

ky

ky

Communication network

Computer

Process

y(t).
u(t)

t

.

and
D−A

Hold

Sampler

A−D
and

y(t)u(t)

. . . .
t

. .
.

t

t

• Extra delay, possibly lost packets

Sampling

ProcessA/D D/AAlgorithm

Computer u
y

AD-converter acts as sampler

A/D

DA-converter acts as a hold device

Normally, zero-order-hold is used � piecewise constant control
signals

Aliasing

0 5 10
−1

0

1

Time

ω s = 2π
h = sampling frequency

ω N = ω s
2 = Nyquist frequency

Frequencies above the Nyquist frequency are folded and appear as
low-frequency signals.

The fundamental alias for a frequency f1 is given by

f = �(f1 + fN) mod (fs) − fN �
Above: f1 = 0.9, fs = 1, fN = 0.5, f = 0.1

Anti-aliasing filter

Analog low-pass filter that eliminates all frequencies above the
Nyquist frequency

• Analog filter

– 2-6th order Bessel or Butterworth filter
– Difficulties with changing h (sampling interval)

• Analog + digital filter

– Fixed, fast sampling with fixed analog filter
– Downsampling using digital LP-filter
– Control algorithm at the lower rate
– Easy to change sampling interval

The filter may have to be included in the control design

Example – Prefiltering

0 10 20 30

−1

0

1(a)

0 10 20 30

−1

0

1(b)

0 10 20 30

−1

0

1

Time

(c)

0 10 20 30

−1

0

1

Time

(d)

ω d = 0.9, ω N = 0.5, ω alias = 0.1
6th order Bessel with ω B = 0.25

Design approaches

Digital controllers can be designed in two different ways:

• Discrete-time design – sampled control theory

– Sample the continuous system
– Design a digital controller for the sampled system

∗ Z-transform domain

∗ state-space domain

• Continuous time design + discretization

– Design a continuous controller for the continuous system
– Approximate the continuous design
– Use fast sampling

Disk drive example

Control of the arm of a disk drive

G(s) = k
Js2

Continuous time controller

U(s) = bKa Uc(s) − K
s+ b
s+ aY(s)

Discrete time controller (continuous time design + discretization)

u(tk) = K (bauc(tk) − y(tk) + x(tk))
x(tk + h) = x(tk) + h ((a− b)y(tk) − ax(tk))

1

Disk drive example

y: = adin(in2)
u:=K*(b/a*uc-y+x)
dout(u)
x:=x+h*((a-b)*y-a*x)

Algorithm

Clock

Sampling period h = 0.2/ω 0

0 5 10
0

1

O
u

tp
u

t

0 5 10
−0.5

0

0.5

Time (ω0t)

In
pu

t

1

Increased sampling period

a) h = 0.5/ω 0 b) h = 1.08/ω 0

0 5 10
0

1

(a)

O
u

tp
u

t

0 5 10
0

1

(b)

O
u

tp
u

t

0 5 10 15
−0.5

0

0.5

Time (ω0t)

In
pu

t

0 5 10 15
−0.5

0

0.5

Time (ω0t)

In
pu

t

1

Better performance?

Dead-beat control h = 1.4/ω 0
u(tk) = t0uc(tk) + t1uc(tk−1) − s0y(tk) − s1y(tk−1) − r1u(tk−1)

0 5 10
0

1

P
os

it
io

n

0 5 10

0

0.5

V
el

oc
it

y

0 5 10
−0.5

0

0.5

Time (ω0t)

In
pu

t

1

However, long sampling periods also have problems

• open loop between the samples

• disturbance and reference changes that occur between sam-
ples will remain undetected until the next sample

1

Sampled control theory

Algorithm Process

Clock

A-D D-A

Computer

 y(t) u(t)y(tk){ } u(t k){ }

Basic idea: look at the sampling instances only

• System theory analogous to continuous-time systems

• Better performance can be achieved

• Potential problem with intersample behaviour 1

Sampling of systems

Look at the system from the point of view of the computer

D-A

Clock

System A-D
 {u(tk)} y (tk){ } y(t) u(t)

Zero-order-hold sampling of a system

• Let the inputs be piecewise constant

• Look at the sampling points only

• Solve the system equation
1

Sampling a continuous-time system

Process:
dx
dt = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Solve the system equation:

x(t) = eA(t−tk)x(tk) +
∫ t

tk
eA(t−s′)Bu(s′) ds′

= eA(t−tk)x(tk) +
∫ t

tk
eA(t−s′) ds′ Bu(tk) (u const.)

= eA(t−tk)x(tk) +
∫ t−tk

0
eAs ds Bu(tk) (variable change)

= Φ(t, tk)x(tk) + Γ(t, tk)u(tk) 1

Periodic sampling

Assume periodic sampling, i.e. tk = kh. Then

x(kh+ h) = Φx(kh) + Γu(kh)
y(kh) = Cx(kh) + Du(kh)

where

Φ = eAh

Γ =
∫ h

0
eAs ds B

Time-invariant linear system!

1

Example: Sampling of inverted pendulum

dx
dt =

⎧⎪⎪⎩ 0 1
1 0

⎫⎪⎪⎭ x +
⎧⎪⎪⎩ 01

⎫⎪⎪⎭u
y =

⎧⎩ 1 0
⎫⎭ x

We get

Φ = eAh =
⎧⎪⎪⎩ cosh h sinh h
sinh h cosh h

⎫⎪⎪⎭

Γ =
∫ h

0

⎧⎪⎪⎩ sinh scosh s

⎫⎪⎪⎭ ds =
⎧⎪⎪⎩ cosh h− 1sinh h

⎫⎪⎪⎭

Several ways to calculate Φ and Γ. Matlab
1

Sampling a system with a time delay

Sampling the system

dx(t)
dt = Ax(t) + Bu(t− τ), τ ≤ h

we get the discrete-time system

x(kh+ h) = Φx(kh) + Γ0u(kh) + Γ1u(kh− h)
where

Φ = eAh

Γ0 =
∫ h−τ

0
eAs ds B

Γ1 = eA(h−τ)
∫ τ

0
eAs ds B

We get one extra state
(
u(kh− h)) in the sampled system

2

Stability region

• In continuous time the stability region is the complex left half
plane, i.e., the system is stable if all the poles are in the left
half plane.

• In discrete time the stability region is the unit circle.

1

1

2

Digital control design

Similar to analog control design, but

• Z-transform instead of Laplace transform

– zX (z) � x(tk+1)
– z−1X (z) � x(tk−1)

• Poles are placed within the unit circle

• The frequency response is more difficult to compute

• The sampling interval h is a new design parameter

2

Choice of sampling interval

Nyquist’s sampling theorem:

“We must sample at least twice as fast as the highest
frequency we are interested in”

• What frequencies are we interested in?

2

Typical loop transfer function L(iω) = P(iω)C(iω):

10
−1

10
0

10
−2

10
−1

10
0

10
1

F
ör

st
är

kn
in

g

10
−1

10
0

−250

−200

−150

−100

−50

F
as

Frekvens [rad/s]

ω c

ϕm

• ω c = cross-over frequency, ϕm = phase margin

• We should have ω s ≫ 2ω c 2

Sampling interval rule of thumb

A sample-and-hold (S&H) circuit can be approximated by a delay of
h/2.

GS&H(s) � e−sh/2
This will decrease the phase margin by

argGS&H(iω c) = arg e−iω ch/2 = −ω ch/2

Assume we can accept a phase loss between 5○ and 15○. Then

0.15 < ω ch < 0.5

This corresponds to a Nyquist frequency about 6 to 20 times larger
than the crossover frequency

2

Example: control of inverted pendulum

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

y
u
h = 0.1,

ω ch = 0.28
h = 0.3,

ω ch = 0.78
h = 0.5,

ω ch = 1.12

• Large ω ch may seem OK, but beware!

– Digital design assuming perfect model
– Controller perfectly synchronized with initial disturbance

2

Pendulum with non-synchronized disturbance

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

y
u
h = 0.1,

ω ch = 0.28
h = 0.3,

ω ch = 0.78
h = 0.5,

ω ch = 1.12

2

Accounting for the anti-aliasing filter

Assume we also have a second-order Butterworth anti-aliasing
filter with a gain of 0.1 at the Nyquist frequency. The filter gives an
additional phase margin loss of � 1.4ω ch.

Again assume we can accept a phase loss of 5○ to 15○. Then

0.05 < ω ch < 0.14

This corresponds to a Nyquist frequency about 23 to 70 times
larger than the crossover frequency

2

Session outline

• Sampled-data control

• Discretization of continuous-time controllers

• Implementation of PID Controllers

2

Discretization of continuous-time controllers

Basic idea: Reuse the analog design

Algorithm

Clock

 u kh(){ } y kh(){ }

 H (z) ≈ G (s)

 y(t)u(t)
A-D D-A

Want to get:

• A/D + Algorithm + D/A � G(s)
Methods:

• Approximate s, i.e., H(z) = G(s′)
• Other discretization methods (Matlab) 3

Approximation methods

Forward Difference (Euler’s method):

dx(t)
dt � x(tk+1) − x(tk)h

s′ = z−1
h

Backward Difference:

dx(t)
dt � x(tk) − x(tk−1)h

s′ = z−1
zh

Tustin:
dx(t)
dt + dx(tk+1)

dt
2 � x(tk+1) − x(tk)h

s′ = 2
h
z−1
z+1

3

Stability of approximations

How is the continuous-time stability region (left half plane) mapped?

Forward differences Backward differences Tustin

3

Discretization example

Controller designed in continuous-time:

U(s) = b
s+ aE(s)

Discretization using Forward Euler (s′ = z−1
h):

u(k) = b
(z− 1)/h+ a e(k)

(z− 1+ ha)u(k) = bhe(k)
u(k+ 1) = (1− ha)u(k) + bhe(k)
u(k) = (1− ha)u(k− 1) + bhe(k− 1)

Controller stable if −1 < (1 − ha) < 1, i.e., 0 < h < 2/a (does not
imply that the closed loop system is stable, though)

3

Controller Synthesis
Process Model

G(s) ẋ = Ax+Bu
y = Cx+Du

Control Design in Continuous-Time
• Loop shaping
• Pole placement
• PID
• ….

Discretize the Controller
• Euler
• Tustin
• ….

Difference Equation

Software algorithm

Discretize the process
• e.g. ZOH Sampling

x(k + 1) = Φx(k) + Γu(k)

y(k) = Cx(k) +Du(k)

Control Design in Discrete-Time
• Pole placement
• LQG
• ….

Session outline

• Sampled-data control

• Discretization of continuous-time controllers

• Implementation of PID Controllers

3

PID Algorithm

Textbook Algorithm:

u(t) = K (e(t) + 1
TI

t∫
e(τ)dτ + TD de(t)dt)

U(s) = K (E(s) + 1
sTI E(s) + TDsE(s))

= P + I + D
3

Algorithm Modifications

Modifications are needed to make the controller practically useful

• Limitations of derivative gain

• Derivative weighting

• Setpoint weighting

3

Limitations of derivative gain

We do not want to apply derivation to high frequency measurement
noise, therefore the following modification is used:

sTD � sTD
1+ sTD/N

N = maximum derivative gain, often 10− 20

3

Derivative weighting

The setpoint is often constant for long periods of time

Setpoint often changed in steps → D-part becomes very large.

Derivative part applied on part of the setpoint or only on the mea-
surement signal.

D(s) = sTD
1+ sTD/N (γ Ysp(s) − Y(s))

Often, γ = 0 in process control, γ = 1 in servo control

3

Setpoint weighting

An advantage to also use weighting on the setpoint.

u = K (ysp− y)
replaced by

u = K (β ysp− y)
0 ≤ β ≤ 1
A way of introducing feedforward from the reference signal (position
a closed loop zero)

Improved set-point responses.

3

A better algorithm

U(s) = K (β yr − y+ 1
sTI
E(s) − TDs

1+ sTD/NY(s))

Modifications:

• Setpoint weighting (β) in the proportional term improves set-
point response

• Limitation of the derivative gain (low-pass filter) to avoid deriva-
tion of measurement noise

• Derivative action only on y to avoid bumps for step changes in
the reference signal

4

Control Signal Limitations

All actuators saturate.

Problems for controllers with integration.

When the control signal saturates the integral part will continue to grow –
integrator (reset) windup.

When the control signal saturates the integral part will integrate up to a
very large value. This may cause large overshoots.

0 10 20
0

0.5

1

1.5

2 Output y and yref

0 10 20

−0.2

0

0.2

Control variable u

4

Anti-Reset Windup

Several solutions exist:

• controllers on velocity form (not discussed here))

• limit the setpoint variations (saturation never reached)

• conditional integration (integration is switched off when the
control is far from the steady-state)

• tracking (back-calculation)

4

Tracking

• when the control signal saturates, the integral is recomputed so
that its new value gives a control signal at the saturation limit

• to avoid resetting the integral due to, e.g., measurement noise,
the re-computation is done dynamically, i.e., through a LP-filter
with a time constant Tr.

4

Tracking

Σ

Actuator

–y

v u

– +

K Σ

Σ

 e = r − y

1
Tt

K
Ti

 KTds

1
s

 e s

Actuator

– +Σ

Σ

Σ

 e = r − y

 KTds

K

1
s

1
Tt

K
Ti

–y

 es

Actuator
model

4

Tracking

0 10 20 30
0

0.5

1

0 10 20 30
−0.05

0.05

0.15

0 10 20 30
−0.8

−0.4

0

4

Discretization

P-part:

uP(k) = K (β ysp(k) − y(k))

4

Discretization

I-part:

I(t) = KTI

t∫

0

e(τ)dτ , dIdt =
K
TI
e

• Forward difference

I(tk+1) − I(tk)
h = KTI e(tk)

I(k+1) := I(k) + (K*h/Ti)*e(k)

The I-part can be precalculated in UpdateStates

• Backward difference

The I-part cannot be precalculated, i(k) = f(e(k))

• Others 4

Discretization

D-part (assume γ = 0):

D = K sTD
1+ sTD/N

(−Y(s))

TD
N
dD
dt + D = −KTD

dy
dt

• Forward difference (unstable for small TD)

4

Discretization, cont.

D-part:

• Backward difference

TD
N
D(tk) − D(tk−1)

h + D(tk)

= −KTD y(tk) − y(tk−1)h

D(tk) = TD
TD + NhD(tk−1)

− KTDNTD + Nh(y(tk) − y(tk−1))

4

Discretization

Tracking:

v := P + I + D;
u := sat(v,umax,umin);
I := I + (K*h/Ti)*e + (h/Tr)*(u - v);

5

PID code

PID-controller with anti-reset windup

y = yIn.get(); // A-D conversion
e = yref - y;
D = ad * D - bd * (y - yold);
v = K*(beta*yref - y) + I + D;
u = sat(v,umax,umin)}
uOut.put(u); // D-A conversion
I = I + (K*h/Ti)*e + (h/Tr)*(u - v);
yold = y

ad and bd are precalculated parameters given by the backward
difference approximation of the D-term.

Execution time for CalculateOutput can be minimized even further.

5

Alternative PID Implementation

The PID controller described so far has constant gain, K (1+ N), at
high frequencies, i.e., no roll-off at high frequencies.

An alternative is to instead of having a low pass filter only on the
derivative part use a second-order low-pass filter on the measured
signal before it enters a PID controller with a pure derivative part.

Yf (s) = 1
T2f s2 + 1.4Tf s+ 1

Y(s)

U(s) = K (βYre f (s) − Yf (s) + 1
TIs

(Yre f (s) − Yf (s)) − TDsYf (s))

5

Class SimplePID

public class SimplePID {
private double u,e,v,y;
private double K,Ti,Td,Beta,Tr,N,h;
private double ad,bd;
private double D,I,yOld;

public SimplePID(double nK, double nTi, double NTd,
double nBeta, double nTr, double nN, double nh) {

updateParameters(nK,nTi,nTd,nBeta,nTr,nN,nh);
}

public void updateParameters(double nK, double nTi, double NTd,
double nBeta, double nTr, double nN, double nh) {

K = nK; Ti = nTi; Td = nTd; Beta = nBeta;
Tr = nTr
N = nN;
h = nh;
ad = Td / (Td + N*h);
bd = K*ad*N;

}
5

public double calculateOutput(double yref, double newY) {

y = newY;
e = yref - y;
D = ad*D - bd*(y - yOld);
v = K*(Beta*yref - y) + I + D;
return v;

}

public void updateState(double u) {

I = I + (K*h/Ti)*e + (h/Tr)*(u - v);
yOld = y;

}

}

5

Extract from Regul

public class Regul extends Thread {
private SimplePID pid;

public Regul() {
pid = new SimplePID(1,10,0,1,10,5,0.1);

}

public void run() {
// Other stuff

while (true) {
y = getY();
yref = getYref():
u = pid.calculateOutput(yref,y);
u = limit(u);
setU(u);
pid.updateState(u);
// Timing Code

}
}

}
5

Task Models

5

Further reading

• B. Wittenmark, K. J. Åström, K.-E. Årzén: “Computer Control:
An Overview.” IFAC Professional Brief, 2002.
(Available at http://www.control.lth.se)

• K. J. Åström, B. Wittenmark: Computer-Controlled Systems,
Third Ed. Prentice Hall, 1997.

• K. J. Åström, Tore Hägglund: Advanced PID Control. The
Instrumentation, Systems, and Automation Society, 2005.

5

