Computer Implementation of Control Systems

Karl-Erik Årzen, Anton Cervin

Session outline

- Sampled-data control
- Discretization of continuous-time controllers
- Implementation of PID Controllers

Sampled-data control systems

• Mix of continuous-time and discrete-time signals

artit

Networked control systems

• Extra delay, possibly lost packets

Sampling

AD-converter acts as sampler

DA-converter acts as a hold device

Normally, zero-order-hold is used \Rightarrow piecewise constant control signals

Aliasing

$$\omega_s = \frac{2\pi}{h} =$$
sampling frequency

$$\omega_N = \frac{\omega_s}{2} = Nyquist frequency$$

Frequencies above the Nyquist frequency are folded and appear as low-frequency signals.

The fundamental alias for a frequency f_1 is given by

$$f = |(f_1 + f_N) \mod (f_s) - f_N|$$

Above: $f_1 = 0.9, f_s = 1, f_N = 0.5, f = 0.1$

Anti-aliasing filter

Analog low-pass filter that eliminates all frequencies above the Nyquist frequency

- Analog filter
 - 2-6th order Bessel or Butterworth filter
 - Difficulties with changing h (sampling interval)
- Analog + digital filter
 - Fixed, fast sampling with fixed analog filter
 - Downsampling using digital LP-filter
 - Control algorithm at the lower rate
 - Easy to change sampling interval

The filter may have to be included in the control design

OTLIT

Example – Prefiltering

 $\omega_d = 0.9, \ \omega_N = 0.5, \ \omega_{alias} = 0.1$

6th order Bessel with $\omega_B = 0.25$

Design approaches

Digital controllers can be designed in two different ways:

- Discrete-time design sampled control theory
 - Sample the continuous system
 - Design a digital controller for the sampled system
 - * Z-transform domain
 - * state-space domain
- Continuous time design + discretization
 - Design a continuous controller for the continuous system
 - Approximate the continuous design
 - Use fast sampling

Disk drive example

Control of the arm of a disk drive

$$G(s) = rac{k}{Js^2}$$

Continuous time controller

$$U(s) = \frac{bK}{a}U_c(s) - K\frac{s+b}{s+a}Y(s)$$

Discrete time controller (continuous time design + discretization)

$$u(t_k) = K(\frac{b}{a}u_c(t_k) - y(t_k) + x(t_k))$$

$$x(t_k + h) = x(t_k) + h((a - b)y(t_k) - ax(t_k))$$

Disk drive example

y: = adin(in2) u:=K*(b/a*uc-y+x) dout(u) x:=x+h*((a-b)*y-a*x)

antin

Sampling period $h = 0.2/\omega_0$

antin

Increased sampling period

Better performance?

Dead-beat control $h = 1.4/\omega_0$

atut

$$u(t_k) = t_0 u_c(t_k) + t_1 u_c(t_{k-1}) - s_0 y(t_k) - s_1 y(t_{k-1}) - r_1 u(t_{k-1})$$

However, long sampling periods also have problems

- open loop between the samples
- disturbance and reference changes that occur between samples will remain undetected until the next sample

Sampled control theory

Basic idea: look at the sampling instances only

- System theory analogous to continuous-time systems
- Better performance can be achieved
- Potential problem with intersample behaviour

Sampling of systems

Look at the system from the point of view of the computer

Zero-order-hold sampling of a system

- Let the inputs be piecewise constant
- Look at the sampling points only
- Solve the system equation

Sampling a continuous-time system

Process:

arturt

$$\frac{dx}{dt} = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Solve the system equation:

$$\begin{aligned} x(t) &= e^{A(t-t_k)} x(t_k) + \int_{t_k}^t e^{A(t-s')} Bu(s') \, ds' \\ &= e^{A(t-t_k)} x(t_k) + \int_{t_k}^t e^{A(t-s')} \, ds' \, Bu(t_k) \quad (u \text{ const.}) \\ &= e^{A(t-t_k)} x(t_k) + \int_0^{t-t_k} e^{As} \, ds \, Bu(t_k) \quad (\text{variable change}) \\ &= \Phi(t,t_k) x(t_k) + \Gamma(t,t_k) u(t_k) \end{aligned}$$

Periodic sampling

Assume periodic sampling, i.e. $t_k = kh$. Then

$$x(kh+h) = \Phi x(kh) + \Gamma u(kh)$$
$$y(kh) = Cx(kh) + Du(kh)$$

where

$$\Phi = e^{Ah}$$
$$\Gamma = \int_0^h e^{As} \, ds \, B$$

Time-invariant linear system!

Example: Sampling of inverted pendulum

$$\frac{dx}{dt} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 0\\ 1 \end{pmatrix} u$$
$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} x$$

We get

OT

$$\Phi = e^{Ah} = \begin{pmatrix} \cosh h & \sinh h \\ \sinh h & \cosh h \end{pmatrix}$$
$$\Gamma = \int_{0}^{h} \begin{pmatrix} \sinh s \\ \cosh s \end{pmatrix} ds = \begin{pmatrix} \cosh h - 1 \\ \sinh h \end{pmatrix}$$

Several ways to calculate Φ and Γ . Matlab

Sampling a system with a time delay

Sampling the system

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t - \tau), \quad \tau \le h$$

we get the discrete-time system

$$x(kh+h) = \Phi x(kh) + \Gamma_0 u(kh) + \Gamma_1 u(kh-h)$$

where

$$egin{aligned} \Phi &= e^{Ah} \ \Gamma_0 &= \int_0^{h- au} e^{As} \, ds \; B \ \Gamma_1 &= e^{A(h- au)} \int_0^ au e^{As} \, ds \; B \end{aligned}$$

We get one extra state (u(kh - h)) in the sampled system

Stability region

- In continuous time the stability region is the complex left half plane, i.e., the system is stable if all the poles are in the left half plane.
- In discrete time the stability region is the unit circle.

Digital control design

Similar to analog control design, but

• Z-transform instead of Laplace transform

$$- zX(z) \Leftrightarrow x(t_{k+1})$$

- $z^{-1}X(z) \Leftrightarrow x(t_{k-1})$
- Poles are placed within the unit circle
- The frequency response is more difficult to compute
- The sampling interval h is a new design parameter

Choice of sampling interval

Nyquist's sampling theorem:

"We must sample at least twice as fast as the highest frequency we are interested in"

• What frequencies are we interested in?

artit

Typical loop transfer function $L(i\omega) = P(i\omega)C(i\omega)$:

- $\omega_c = \text{cross-over frequency}, \ \varphi_m = \text{phase margin}$
- We should have $\omega_s \gg 2\omega_c$

Sampling interval rule of thumb

A sample-and-hold (S&H) circuit can be approximated by a delay of h/2.

$$G_{S\&H}(s)pprox e^{-sh/2}$$

This will decrease the phase margin by

$$rg G_{S\&H}(i\omega_c) = rg e^{-i\omega_c h/2} = -\omega_c h/2$$

Assume we can accept a phase loss between 5° and 15°. Then

 $0.15 < \omega_c h < 0.5$

This corresponds to a Nyquist frequency about 6 to 20 times larger than the crossover frequency

Example: control of inverted pendulum

- Large $\omega_c h$ may seem OK, but beware!
 - Digital design assuming perfect model
 - Controller perfectly synchronized with initial disturbance

Pendulum with non-synchronized disturbance

Accounting for the anti-aliasing filter

Assume we also have a second-order Butterworth anti-aliasing filter with a gain of 0.1 at the Nyquist frequency. The filter gives an additional phase margin loss of $\approx 1.4\omega_c h$.

Again assume we can accept a phase loss of 5° to 15°. Then

 $0.05 < \omega_c h < 0.14$

This corresponds to a Nyquist frequency about 23 to 70 times larger than the crossover frequency

Session outline

- Sampled-data control
- Discretization of continuous-time controllers
- Implementation of PID Controllers

Discretization of continuous-time controllers

Basic idea: Reuse the analog design

Want to get:

• A/D + Algorithm + D/A $\approx G(s)$

Methods:

- Approximate s, i.e., H(z) = G(s')
- Other discretization methods (Matlab)

Approximation methods

Forward Difference (Euler's method):

$$rac{dx(t)}{dt} pprox rac{x(t_{k+1}) - x(t_k)}{h} \ s' = rac{z-1}{h}$$

Backward Difference:

$$\frac{dx(t)}{dt} \approx \frac{x(t_k) - x(t_{k-1})}{h}$$

$$s' = \frac{z-1}{zh}$$

$$\frac{\frac{dx(t)}{dt} + \frac{dx(t_{k+1})}{dt}}{2} \approx \frac{x(t_{k+1}) - x(t_k)}{h}$$

$$s' = \frac{2}{h} \frac{z-1}{z+1}$$

 $-\overline{h}$ $\overline{z+1}$

Tustin:

Stability of approximations

How is the continuous-time stability region (left half plane) mapped?

Discretization example

Controller designed in continuous-time:

$$U(s) = \frac{b}{s+a}E(s)$$

Discretization using Forward Euler ($s' = \frac{z-1}{h}$):

$$u(k) = \frac{b}{(z-1)/h + a}e(k)$$
$$(z - 1 + ha)u(k) = bhe(k)$$
$$u(k+1) = (1 - ha)u(k) + bhe(k)$$
$$u(k) = (1 - ha)u(k - 1) + bhe(k - 1)$$

Controller stable if -1 < (1 - ha) < 1, i.e., 0 < h < 2/a (does not imply that the closed loop system is stable, though)

Controller Synthesis

Session outline

- Sampled-data control
- Discretization of continuous-time controllers
- Implementation of PID Controllers

PID Algorithm

Textbook Algorithm:

$$u(t) = K(e(t) + \frac{1}{T_I}\int_{\tau}^{t} e(\tau)d\tau + T_D\frac{de(t)}{dt})$$

 $U(s) = K(E(s) + \frac{1}{sT_I}E(s) + T_DsE(s))$

= P + I + D

Algorithm Modifications

Modifications are needed to make the controller practically useful

- Limitations of derivative gain
- Derivative weighting
- Setpoint weighting

Limitations of derivative gain

We do not want to apply derivation to high frequency measurement noise, therefore the following modification is used:

$$sT_D pprox rac{sT_D}{1+sT_D/N}$$

N = maximum derivative gain, often 10 - 20

Derivative weighting

The setpoint is often constant for long periods of time Setpoint often changed in steps \rightarrow D-part becomes very large. Derivative part applied on part of the setpoint or only on the measurement signal.

$$D(s) = \frac{sT_D}{1 + sT_D/N} (\gamma Y_{sp}(s) - Y(s))$$

Often, $\gamma = 0$ in process control, $\gamma = 1$ in servo control

Setpoint weighting

An advantage to also use weighting on the setpoint.

$$u = K(y_{sp} - y)$$

replaced by

$$u = K(\beta y_{sp} - y)$$

 $0\leq\beta\leq 1$

A way of introducing feedforward from the reference signal (position a closed loop zero)

Improved set-point responses.

A better algorithm

$$U(s) = K(\beta y_r - y + \frac{1}{sT_I}E(s) - \frac{T_D s}{1 + sT_D / N}Y(s))$$

Modifications:

- Setpoint weighting (β) in the proportional term improves setpoint response
- Limitation of the derivative gain (low-pass filter) to avoid derivation of measurement noise
- Derivative action only on *y* to avoid bumps for step changes in the reference signal

Control Signal Limitations

All actuators saturate.

Problems for controllers with integration.

When the control signal saturates the integral part will continue to grow – integrator (reset) windup.

When the control signal saturates the integral part will integrate up to a very large value. This may cause large overshoots.

Anti-Reset Windup

Several solutions exist:

- controllers on velocity form (not discussed here))
- limit the setpoint variations (saturation never reached)
- conditional integration (integration is switched off when the control is far from the steady-state)
- tracking (back-calculation)

Tracking

- when the control signal saturates, the integral is recomputed so that its new value gives a control signal at the saturation limit
- to avoid resetting the integral due to, e.g., measurement noise, the re-computation is done dynamically, i.e., through a LP-filter with a time constant T_r .

Tracking

artist

Tracking

P-part:

$$u_P(k) = K(\beta y_{sp}(k) - y(k))$$

I-part:

$$I(t) = \frac{K}{T_I} \int_{0}^{t} e(\tau) d\tau, \frac{dI}{dt} = \frac{K}{T_I} e$$

• Forward difference

$$\frac{I(t_{k+1}) - I(t_k)}{h} = \frac{K}{T_I}e(t_k)$$

I(k+1) := I(k) + (K*h/Ti)*e(k)

The I-part can be precalculated in UpdateStates

• Backward difference

The I-part cannot be precalculated, i(k) = f(e(k))

• Others

D-part (assume $\gamma = 0$):

$$D = K \frac{sT_D}{1 + sT_D/N} (-Y(s))$$

$$\frac{T_D}{N}\frac{dD}{dt} + D = -KT_D\frac{dy}{dt}$$

• Forward difference (unstable for small T_D)

Discretization, cont.

D-part:

• Backward difference

$$\begin{aligned} \frac{T_D}{N} \frac{D(t_k) - D(t_{k-1})}{h} + D(t_k) \\ &= -KT_D \frac{y(t_k) - y(t_{k-1})}{h} \\ D(t_k) &= \frac{T_D}{T_D + Nh} D(t_{k-1}) \\ &- \frac{KT_D N}{T_D + Nh} (y(t_k) - y(t_{k-1})) \end{aligned}$$

Tracking:

v := P + I + D; u := sat(v,umax,umin); I := I + (K*h/Ti)*e + (h/Tr)*(u - v);

PID code

PID-controller with anti-reset windup

```
y = yIn.get(); // A-D conversion
e = yref - y;
D = ad * D - bd * (y - yold);
v = K*(beta*yref - y) + I + D;
u = sat(v,umax,umin)}
uOut.put(u); // D-A conversion
I = I + (K*h/Ti)*e + (h/Tr)*(u - v);
yold = y
```

ad and bd are precalculated parameters given by the backward difference approximation of the D-term.

Execution time for CalculateOutput can be minimized even further.

Alternative PID Implementation

The PID controller described so far has constant gain, K(1 + N), a high frequencies, i.e., no roll-off at high frequencies.

An alternative is to instead of having a low pass filter only on the derivative part use a second-order low-pass filter on the measured signal before it enters a PID controller with a pure derivative part.

$$Y_f(s) = \frac{1}{T_f^2 s^2 + 1.4T_f s + 1} Y(s)$$
$$U(s) = K(\beta Y_{ref}(s) - Y_f(s) + \frac{1}{T_I s} (Y_{ref}(s) - Y_f(s)) - T_D s Y_f(s))$$

ļ

Class SimplePID

```
public class SimplePID {
   private double u,e,v,y;
   private double K,Ti,Td,Beta,Tr,N,h;
   private double ad,bd;
   private double D,I,yOld;
```

public double calculateOutput(double yref, double newY) {

```
y = newY;
e = yref - y;
D = ad*D - bd*(y - y0ld);
v = K*(Beta*yref - y) + I + D;
return v;
}
```

public void updateState(double u) {

```
I = I + (K*h/Ti)*e + (h/Tr)*(u - v);
y0ld = y;
}
```

}

Extract from Regul

```
public class Regul extends Thread {
  private SimplePID pid;
  public Regul() {
    pid = new SimplePID(1,10,0,1,10,5,0.1);
  }
  public void run() {
    // Other stuff
    while (true) {
      y = getY();
      yref = getYref():
      u = pid.calculateOutput(yref,y);
      u = limit(u);
      setU(u);
      pid.updateState(u);
      // Timing Code
    }
  }
}
```


Further reading

- B. Wittenmark, K. J. Åström, K.-E. Årzén: "Computer Control: An Overview." IFAC Professional Brief, 2002. (Available at http://www.control.lth.se)
- K. J. Åström, B. Wittenmark: *Computer-Controlled Systems,* Third Ed. Prentice Hall, 1997.
- K. J. Åström, Tore Hägglund: *Advanced PID Control.* The Instrumentation, Systems, and Automation Society, 2005.