Computer Implementation of Control Systems

Karl-Erik Arzen, Anton Cervin

R gl R _——.
Session outline

e Sampled-data control
e Discretization of continuous-time controllers
e Implementation of PID Controllers

Sampled-data control systems

| Y ()

y(t)

S

Ju(t)
- L
t
u(t) -— Process
Hold
U, L
I Yk D-A Computer

'

Sampler

A-D

J Yk
Yk

- L

e Mix of continuous-time and discrete-time signals

Networked control systems

ut (1)
F—'_._ _ u(t) (1) V\
i

D-A Sampler
and and
Hold A-D

| |

Communication network

uk yk
. u n Uy ‘ yk . o n
: Computer [<+— -
I

t t

Extra delay, possibly lost packets

Sampling

— LIA/D |- Algorithm || D/A |+ +

Process

AD-converter acts as sampler

—=A/D |[—>

-

DA-converter acts as a hold device

Normally, zero-order-hold is used = piecewise constant control

signals

Aliasing

0 EIS 10
ws = 22 = sampling frequency
oy = 3 = Nyquist frequency

Frequencies above the Nyquist frequency are folded and appear as
low-frequency signals.

The fundamental alias for a frequency f; is given by

f=I(f1+ fn) mod (f5) — fn|
Above: f1=09,f.,=1,fy=05,f =0.1

Anti-aliasing filter

Analog low-pass filter that eliminates all frequencies above the
Nyquist frequency

e Analog filter

— 2-6th order Bessel or Butterworth filter

— Difficulties with changing 2 (sampling interval)
e Analog + digital filter

- Fixed, fast sampling with fixed analog filter
— Downsampling using digital LP-filter

— Control algorithm at the lower rate

- Easy to change sampling interval

The filter may have to be included in the control design

Example — Prefiltering

@ 1 vy] 0y /
0 0
-1 | N\N\NVV\NWV\: -1 | .
0 10 20 30 0 10 20 30
(C) 1 (d) 1 ooooooooooooo
0 0
_1 |T —1 | ..T oooooooooo
0 10 20 30 0 10 20 30
Time Time

w; =0.9, oy =0.5, wy,s =0.1

6th order Bessel with wg = 0.25

Design approaches

Digital controllers can be designed in two different ways:

e Discrete-time design — sampled control theory

— Sample the continuous system
— Design a digital controller for the sampled system

x Z-transform domain
% State-space domain

e Continuous time design + discretization

— Design a continuous controller for the continuous system
— Approximate the continuous design
— Use fast sampling

Disk drive example

Control of the arm of a disk drive

k

G(s) = T2

Continuous time controller

U(s) = %KUC(S)—KS”

S + aY(S)

Discrete time controller (continuous time design + discretization)

u(tr) = K(2uc(te) — y(tr) + x(t1))
x(tp +h) = x(tr) + h ((a —b)y(tr) — ax(tz))

Disk drive example

y: = adin(in2)
u:=Kx*(b/a*uc-y+x)
dout (u)

x:=x+h* ((a-b) *xy-a*x)

Sampling period A = 0.2/w,

Clock

Algorithm

_

5 Ih e P P
8— Z
S
O
0
0 5 10
0.5 ' :
'.5 \H\‘\/
o or
=
-05¢r
0 5 10

Time (o,t)

Increased sampling period

(

(b

N

QD
=

Output
N

Output
N

Input
o
o a1
Input
o
o ol
H /
\; _
|
1
I

0 5 10 15 0 5 10 15
Time (m,t) Time (m,t)

Better performance?

Dead-beat control A = 1.4/ w,

u(tk) = touc(tk) -+ tluc(tk_l) — Soy(tk) — Sly(tk—l) — rlu(tk_l)

Velocity Position

Input

0.5

o

— —

T e — —

10

However, long sampling periods also have problems

e open loop between the samples

e disturbance and reference changes that occur between sam-
ples will remain undetected until the next sample

Sampled control theory

u(t) y(t)
—=1 A-D = Algorithmp——— D-A |—+—] Process

Basic idea: look at the sampling instances only

e System theory analogous to continuous-time systems
e Better performance can be achieved
e Potential problem with intersample behaviour

Sampling of systems

Look at the system from the point of view of the computer

Clock

{u(t)} u(t) y(t) {yt)}

—| D-A —={ System |—=| A-D

Zero-order-hold sampling of a system

e Let the inputs be piecewise constant
e Look at the sampling points only
e Solve the system equation

Sampling a continuous-time system

Process:

dx
i Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
Solve the system equation:

t
x(t) = AWy (8,) + / A=) Bu(s') ds’

lr

4
= AW (ty) +/ A=) ds’ Bu(t;) (u const.)

lr

t—1tp
= AW (t;,) + / e**ds Bu(t;) (variable change)
0

= D(¢,t)x(tr) + (2, tr)u(ts)

Periodic sampling

Assume periodic sampling, I.e. ¢, = kh. Then

x(kh + h) = ®x(kh) + T'u(kh)
y(kh) = Cx(kh) + Du(kh)

where
b = eAh

h
F=/ e ds B
0

Time-invariant linear system!

Example: Sampling of inverted pendulum

dx_f01 +O
a1 o) " |1)"

y = :1 0]x

We get

o n [coshh” sinhh]
= e =
sinhAh coshh

h (sinhs coshh — 1
I' = / ds = ,
0 cosh s sinh A

Several ways to calculate ® and I'. Matlab

Sampling a system with a time delay

Sampling the system
) — Ax(t) + Bu(t—1), t<h
we get the discrete-time system
x(kh + h) = ®x(kh) + Tou(kh) + T'iu(kh — h)

where

We get one extra state (u(kh — h)) in the sampled system

-
Stability region

e In continuous time the stablility region is the complex left half
plane, I.e., the system Is stable if all the poles are in the left

half plane.
e In discrete time the stability region is the unit circle.

D
N

A

Digital control design

Similar to analog control design, but

e Z-transform instead of Laplace transform
- 2X (2) © x(tri1)
- 271X (2) & x(tp—1)
e Poles are placed within the unit circle
e The frequency response is more difficult to compute
e The sampling interval A~ I1s a new design parameter

Choice of sampling interval

Nyquist’s sampling theorem:

“We must sample at least twice as fast as the highest
frequency we are interested Iin”

e \What frequencies are we interested in?

Typical loop transfer function L(iw) = P(iw)C(iw):

101 T A S L) R

8100""":

Forstarkni

10'E

Fas

10°

10"
Frekvens [rad/s]

e . = Cross-over frequency, ¢,, = phase margin

e We should have w, > 2w.

Sampling interval rule of thumb

A sample-and-hold (S&H) circuit can be approximated by a delay of
h/2.

Gsen (8) ~ e S/?

This will decrease the phase margin by

arg Gsep(iw.) = arg e l0ch/2 — —w.h /2

Assume we can accept a phase loss between 5° and 15°. Then

0.15 < w.h < 0.5

This corresponds to a Nyquist frequency about 6 to 20 times larger
than the crossover frequency

Example: control of inverted pendulum

h =0.1, h = 0.3, h =0.5,
, w.h = 0.28 , w.h =0.78 , w.h =1.12
1 1 1
S \/ \ A\
0 0 0
-1 -1 -1
0 5 0 5 0 5
10 10 10
0 0 0
S
-10 -10 -10
-20 =20 -20
0 5 0 5 0 5
Time Time Time

Large w .2 may seem OK, but beware!

— Digital design assuming perfect model
— Controller perfectly synchronized with initial disturbance

Pendulum with non-synchronized disturbance

h =0.1, h = 0.3, h = 0.5,
w.h = 0.28 w.h = 0.78 w.h =1.12
2 2 2
1 1 1/
>)

0 0 0
-1 -1 -1

0 5 0 5 0 5
10 10 10

0 0 0 LI_,—~
-10 -10 -10
20 -20 20

0 5 5 0 5

Time Time Time

Accounting for the anti-aliasing filter

Assume we also have a second-order Butterworth anti-aliasing
filter with a gain of 0.1 at the Nyquist frequency. The filter gives an
additional phase margin loss of ~ 1.4w. h.

Again assume we can accept a phase loss of 5° to 15°. Then

0.05 < w.h < 0.14

This corresponds to a Nyquist frequency about 23 to 70 times
larger than the crossover frequency

Session outline

e Sampled-data control
e Discretization of continuous-time controllers
e Implementation of PID Controllers

Discretization of continuous-time controllers

Basic idea: Reuse the analog design

H(z) = G(s)

e e
—I—>U(t)| A-D —>{U(kh)} Algorithm {y(kh)}» D-A : y(®

o ; | |
| |
: Clock :
L]

Want to get:

e A/D + Algorithm + D/A ~ G(s)
Methods:

e Approximate s, i.e., H(z) = G(s')
e Other discretization methods (Matlab)

Approximation methods

Forward Difference (Euler's method):

dx(t) N x(tre1) — x(t)
dt h

Backward Difference:

dt h
_ z—1
S/ —h
Tustin: (t) . (t)
+ k k+1 .’)C(tk+1) — X(tk)
2 h
2 z—1
s =5

Stability of approximations

How Is the continuous-time stability region (left half plane) mapped*

A A

N AL
(- (8-

Forward differences Backward differences Tustin

Discretization example

Controller designed Iin continuous-time:

b

S+ a

U(s) = E(s)

Discretization using Forward Euler (s = Z1):

b
(z—1)/h+a

(z— 14 ha)u(k) = bhe(k)
u(k+1) = (1 —ha)u(k) + bhe(k)
u(k) =(1—ha)u(k—1) + bhe(k — 1)

u(k) = e(k)

Controller stable if -1 < (1 —ha) < 1,i.e., 0 < A < 2/a (does not
Imply that the closed loop system is stable, though) |

Controller Synthesis

Process Model

G T = Ax + Bu
(S) y=Czx+ Du
Control Design in Continuous-Time Discretize the process
» Loop shaping » e.g. ZOH Sampling
» Pole placement z(k+1) = dx(k) + Tu(k)
* PID
. y(k) = Cx(k) + Du(k)
Discretize the Controller Control Design in Discrete-Time
» Euler * Pole placement
e Tustin e LQG

"

Difference Equation

}

Software algorithm

Session outline

e Sampled-data control
e Discretization of continuous-time controllers
e Implementation of PID Controllers

PID Algorithm

Textbook Algorithm:

¢

u(t) = K(e(t) + = [e(r)dr + Tpe?)

U(s) = K(E(s) + %E(s) + TpsE(s))

Algorithm Modifications

Modifications are needed to make the controller practically useful

e Limitations of derivative gain
e Derivative weighting
e Setpoint weighting

Limitations of derivative gain

We do not want to apply derivation to high frequency measurement
noise, therefore the following modification is used:

STD

Ty ~
TP T ST, /N

N = maximum derivative gain, often 10 — 20

Derivative weighting

The setpoint is often constant for long periods of time
Setpoint often changed in steps — D-part becomes very large.

Derivative part applied on part of the setpoint or only on the mea-
surement signal.

STD
7o 7 7 Yools) = Y (5))

Dis) = 14+s

Often, ¥ = 0 In process control, ¥ = 1 in servo control

Setpoint weighting

An advantage to also use weighting on the setpoint.

u = K(ysp — y)
replaced by

u=K(Bysp—y)
0<<1

A way of introducing feedforward from the reference signal (position
a closed loop zero)

Improved set-point responses.

A better algorithm

U(s) = (B3 =3+ 5 B®) = 1o Vo)

Modifications:
e Setpoint weighting (8) in the proportional term improves set-
point response

e Limitation of the derivative gain (low-pass filter) to avoid deriva-
tion of measurement noise

e Derivative action only on y to avoid bumps for step changes in
the reference signal

Control Signal Limitations

All actuators saturate.
Problems for controllers with integration.

When the control signal saturates the integral part will continue to grow -
Integrator (reset) windup.

When the control signal saturates the integral part will integrate up to a
very large value. This may cause large overshoots.

5. Outputy and yref
L5 /\
1

0.5 1

0 T T
0 10 20
Control variable u

0.2 {
0
0.2

T T
0 10 20

Anti-Reset Windup

Several solutions exist:

e controllers on velocity form (not discussed here))
e limit the setpoint variations (saturation never reached)

e conditional integration (integration is switched off when the
control is far from the steady-state)

e tracking (back-calculation)

Tracking

e When the control signal saturates, the integral is recomputed sc
that its new value gives a control signal at the saturation limit

e t0 avoid resetting the integral due to, e.g., measurement noise,
the re-computation is done dynamically, i.e., through a LP-filter
with a time constant 7,.

Tracking

Actuator

Alx
Y
7
v

Tt
-y
A —. KTds
Actuator
model Actuator
e=r-y

—
=

Y
7

Tracking

0 10 20 30
0.15 *

0.05 - \&/

—-0.05 | | T

0 10 20 30

Discretization

P-part:

up(k) = K(Bysp(k) — y(k))

Discretization

I-part:
A

K dl K
I(t) = E/e(f)dl‘, E = Ee

0

e Forward difference

I(tp1) —I(8) _ K
A = Ee(tk)

I(k+1) := I(k) + (Kxh/Ti)*e(k)

The |-part can be precalculated in UpdateStates
e Backward difference

The |-part cannot be precalculated, i(k) = f(e(k))
e Others

Discretization

D-part (assume y = 0):

STD
D=K Y
11 sTp/N T YE)
TD dD dy
DI A D=_KTp=2
N dt Pa

e Forward difference (unstable for small T'p)

Discretization, cont.

D-part:
e Backward difference

Th D(tk) — D(tk_l)
N h

y(tr) — y(tr—1)
h

e (56 = (ts-0)

+ D(tp)

= —KTp

Discretization

Tracking:

v :=P + 1+ D;
sat (v,umax,umin) ;
I + (Kx¥h/Ti)*e + (b/Tr)*(u - v);

— e
o

PID code

PID-controller with anti-reset windup

y = yIn.get(); // A-D conversion

e = yref - y;

D=ad *D - bd * (y - yold);

v = Kx(betaxyref - y) + I + D;

u = sat(v,umax,umin) }

uOut.put(u); // D-A conversion

I =1+ (K¥h/Ti)*e + (b/Tr)*(u - v);
yold =y

ad and bd are precalculated parameters given by the backward
difference approximation of the D-term.

Execution time for CalculateOutput can be minimized even further.

Alternative PID Implementation

The PID controller described so far has constant gain, K(1 + N), a
high frequencies, i.e., no roll-off at high frequencies.

An alternative is to instead of having a low pass filter only on the
derivative part use a second-order low-pass filter on the measured
sighal before it enters a PID controller with a pure derivative part.

1
Y — Y
r(s) T]?s2 +1.4T¢s + 1 ()

Yier(s) — Yy(s)) — TpsYy(s))

U (s) = K (BYrer(s) = Y1(6) + 7

Class SimplePID

public class SimplePID {
private double u,e,v,y;
private double K,Ti,Td,Beta,Tr,N,h;
private double ad,bd;
private double D,I,y01ld;

public SimplePID(double nK, double nTi, double NTd,
double nBeta, double nTr, double nN, double nh) {
updateParameters (nK,nTi,nTd,nBeta,nTr,nN,nh) ;

}

public void updateParameters(double nK, double nTi, double NTd,
double nBeta, double nTr, double nN, double nh) {

K = nK; Ti = nTi; Td = nTd; Beta = nBeta;
Tr = nTr

N = nN;

h = nh;

ad = Td / (Td + Nxh);

bd = Kx*xad*N;

public double calculateOutput(double yref, double newY) {

y = newy,;

e = yref - y;

D = ad*D - bd*x(y - y01d);

v = K*(Beta*yref - y) + I + D;
return v;

public void updateState(double u) {

I =1+ (K¥h/Ti)*e + (h/Tr)*(u - v);
y0ld = y;
}

Extract from Regul

public class Regul extends Thread {
private SimplePID pid;

public Regul() {
pid = new SimplePID(1,10,0,1,10,5,0.1);
}

public void run() {
// Other stuff

while (true) A
y = getY();
yref = getYref():
u = pid.calculateOutput(yref,y);
u = limit(u);
setU(u) ;
pid.updateState(u);
// Timing Code

Task Models

Further reading

e B. Wittenmark, K. J. Astrom, K.-E. Arzén: “Computer Control:
An Overview.” IFAC Professional Brief, 2002.
(Available at http://www.control.lth.se)

e K. J. Astrom, B. Wittenmark: Computer-Controlled Systems,
Third Ed. Prentice Hall, 1997.

e K. J. Astrom, Tore Hagglund: Advanced PID Control. The
Instrumentation, Systems, and Automation Society, 2005.

