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Assumptions

In this session we will focus on periodically sampled control loops.
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Ideal Controller Timing
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• Output y(t) sampled periodically at time instants tk = kh
• Control u(t) generated after short and constant time delay τ



Real Controller Timing
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• Control task τ released periodically at time instances rk = kh
• Output y(t) sampled after time-varying sampling latency Ls
• Control u(t) generated after time-varying input-output latency Lio



Jitter

Sampling jitter:
Js = max

k
Lks −mink L

k
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Input-output jitter:
Jio = max
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Timing Relationships

Scheduling method,
(T, D, Priorities, 
Network parameters
Scheduling and

Protocol,...)

Control
Performance

(variance, rise time
overshoot, ...)

Loop Timing
Parameters
(latencies, jitter, ...)

Complex relationship Complex relationship

Possibilities for analysis:

• Simulation – the TrueTime tool

• “Numerical Analysis” – the Jitterbug tool

• Theoretical results – e.g., the Jitter Margin



Implementing Periodic Controller Tasks

Three main issues:

1. How do we achieve periodic execution?

2. When is the sampling performed?

3. When is the control signal sent out?



1. How Do We Achieve Periodic Execution?

Options:

1. Using a static schedule (cyclic executive)

• High temporal determinism but inflexible

• Does not require any sophisticated RTOS support

2. In interrupt handlers associated with timers

3. As self-scheduling threads in an RTOS/kernel using time
primitives such as sleep/delay/WaitTime (relative wait) or
sleepUntil/delayUntil/WaitUntil (absolute wait)

4. Using an RTOS/kernel with built-in support for periodic tasks

• implement the tasks as simple procedures/methods that are
registered with the kernel

• not yet common in commercial RTOS



Implementing Self-Scheduling Periodic Tasks

Attempt 1:

LOOP
PeriodicActivity;
WaitTime(h);

END;

Does not work.

Period > h and time-varying.

The execution time of PeriodicActivity is not accounted for.

1



Implementing Self-Scheduling Periodic Tasks

Attempt 2:

LOOP
Start = CurrentTime();
PeriodicActivity;
Stop = CurrentTime();
C := Stop - Start;
WaitTime(h - C);

END;

Does not work. An interrupt causing suspension may occur be-
tween the assignment and WaitTime.

In general, a WaitTime (Delay) primitive is not enough to implement
periodic processes correctly. A WaitUntil (DelayUntil) primitive is
needed. 1



Implementing Self-Scheduling Periodic Tasks

Attempt 3:

t = CurrentTime();
LOOP

PeriodicActivity;
t = t + h;
WaitUntil(t);

END;

Correct in case no overruns occur.

Will try to catch up if the actual execution time of PeriodicActivity
occasionally becomes larger than the period (a too long period is
followed by a shorter one to make the average correct)

1



2. When is the Sampling Performed?

Two options:

• At the beginning of the controller task

– gives rise to sampling jitter
– still quite common

• At the nominal task release instants

– using a dedicated high-priority sampling task or in the clock
interrupt handler

– somewhat more involved scheme
– minimizes the sampling jitter (but increases the average

1



3. When Is the Control Signal Sent Out?

Three Options:

• At the end of the controller task

– creates a longer than necessary input-output latency

• As soon as it can be sent out

– minimizes the input-output latency
– controller task split up in two parts: CalculateOutput and

UpdateState

• At the next sampling instant

– minimizes the latency jitter
– gives a much longer latency than necessary
– often gives worse performance, also if the constant delay is

compensated for
– delay compensation easy 1



Minimizing the Input-Output Latency

General linear controller:

x(k+ 1) = Fx(k) + Gy(k) + Gryre f (k)
u(k) = Cx(k) + Dy(k) + Dryre f (k)

Do as little as possible between AdIn and DaOut

PROCEDURE Regulate;
BEGIN

AdIn(y);
(* CalculateOutput *)
u := u1 + D*y + Dr*yref;
DaOut(u);
(* UpdateStates *)
x := F*x + G*y + Gr*yref;
u1 := C*x;

END Regulate;
1
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Why is Input-Output Latency Bad?

A constant input-output latency decreases the phase margin.

Example: Loop gain with zero delay or one sample delay:
Bode Diagrams
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Computing the Delay Margin∗

We have

• Phase margin φm = 32.4○
• Crossover frequency ω c = 16.0 rad/s

How large delay L can be tolerated before we lose stability?

The delay is modeled by G(s) = e−sL

At crossover frequency: argG(iω c) = arg e−iω cL = −ω cL

To retain a positive phase margin, we must have

ω cL < φm

16.0 L < 32.4○ π
180○

L < 0.035
∗ Since we have a sampled system, the analysis is only approximate

1



Delay Compensation

If the delay is constant and known, it is straightforward to compen-
sate for it in the design.

Delay compensation:
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Delay compensation using Smith predictor

Idea: control against simulated model without delay:
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• Requires accurate and stable model
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The Smith Predictor

Controller Process

Model

Model without
delay
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With a perfect model the controller does not see any delay

The control performance the same as without any delay (with

the exception that the output will be delayed)
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The Smith Predictor

Assume that the process is given by P(s) = P0(s)e
−sL and that

we have a perfect model P̂(s) = P(s).

This gives the transfer function

Y(s) =
P0C

1+ P0C
e−sLR(s)

The same as if without any delay + a pure delay

Ideally the controller can be designed for without delay

In practice due to model errors and disturbances the delay

must be taken into account in the control design (a more

conservative design)
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PI versus Smith
Mätsignal

Styrsignal

Börvärde

However, a delay compensating controller can never undo the

delay
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Delays in Discrete Time

Include the delay in the discrete time model:

dx(t)
dt = Ax(t) + Bu(t− τ ), τ < h

x(kh+ h) − Φx(kh)

=
∫ kh+h

kh
eA(kh+h−s)Bu(s− τ )ds

=
∫ kh+τ

kh
eA(kh+h−s)B ds u(kh− h) +

∫ kh+h

kh+τ
eA(kh+h−s)B ds u(kh

= Γ1u(kh− h) + Γ0u(kh)

LTI system! 2



A state-space model (with extra state z(kh) = u(kh− h)⎧⎪⎪⎩ x(kh+ h)z(kh+ h)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ Φ Γ1
0 0

⎫⎪⎪⎭
⎧⎪⎪⎩ x(kh)z(kh)

⎫⎪⎪⎭+
⎧⎪⎪⎩ Γ0
I

⎫⎪⎪⎭u(kh)
Can easily be extended to τ > h
Design:

• apply arbitrary discrete time design using the augmented model

• e.g., LQG-design

2



LQG with Deadtime Compensation

Designs a discrete-time LQG controller with direct term for a
continuous-time system assuming a constant sampling interval h
and a constant time delay τ .

Controller:

u(k) = −Lx̂e(k�k)
x̂e(k�k) = x̂e(k�k− 1) + K f (y(k) − Cex̂e(k�k− 1))

x̂e(k+ 1�k) = Φ ex̂e(k�k− 1) + Γeu(k) + K (y(k) − Cex̂e(k�k− 1))

Used in most of our examples.

Jitterbug command: lqgdesign 2



Why is Jitter Bad?

• The controllers were designed assuming a constant h
• The jitter can be interpreted as a process disturbance

• Very hard to analyze in the general case

– counter-intuitive anomalies can be found

• The Jitterbug toolbox can be used to evaluate the effect of jitter
for a given case

• Many jitter compensation schemes have been developed

2



Example: DC Servo with IO Latency and Jitter

• Process: P(s) = 1
s(s+ 1)

• LQG controller with or without delay compensation

• Process noise R1c = 1, measurement noise R2 = 0.01
• Cost function: J = E{

y2(t) + 0.001u2(t)}
• Periodic sampling with h = 0.1
• Constant or random (uniform distribution) IO latency

2



Constant Input-Output Latency
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Input-Output Jitter
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Note: having uniform jitter J is only slighly worse than having a
constant latency of L = J/2.
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Compensation for Sampling Jitter

Rule of thumb: Jitter that is less than 10% of the nominal sampling
period need not to be compensated for

Two approaches:

• Gain scheduling

• Robust design methods

2



Gain Scheduling

Assume that the sampling period can be measured

Store several sets of pre-calculated controller parameters in a table
with the sampling period as input parameter.

Switch controller parameters when the sampling period changes

Assumes that the sampling period varies slowly, i.e., not so realistic
for jitter

May cause switching transients

2



Gain Scheduling

What if the sampling period varies fast?

Parameterize the controller parameters in terms of the sampling
period

For example:

dx(t)
dt � x(tk+1) − x(tk)hk

Works often well for low order controllers, e.g., PID.

Ad hoc method with no formal guarantees

2



Robust Design Methods

Design the controller to be robust against timing variations

Several robust design methods are available

• H∞
• Quantitative Feedback Theory (QFT)

• μ-design

• ...

3



Session Outline

• Control Loop Timing

• Temporal Non-Determinism

• Switching

• The Jitter Margin

• Subtask Scheduling

3



Switching Controller Task Parameters

Jitter in sampling and latency

• stochastic changes in controller task parameters (period and
executon time)

• caused by the implementation platform

Sometimes it can be useful to change the controller task parame-
ters intentionally

• deterministic changes in order to adapt to changing work loads

• generated by a controller when it changes modes (e.g.
changes its execution time demands)

• generated by a scheduler when the resources change

May cause both scheduling and control problems 3



Mode Changes and Scheduling

A task set that is schedulable under fixed priority scheduling before
the mode changes occurs and after the mode change has occurred,
may not necessarily be schedulable during the mode change (in
transition phase)

Special mode change protocols are needed

Easier under EDF (Earliest Deadline First) scheduling than under
fixed priority scheduling

3



Switching-Induced Instabilities

Deterministic changes of task parameters may lead to instability

Example:

Process:

ẋ = Ax + Bu
y= Cx

where

A =
[

0 1
−10000 −0.1

]
B =

[
0
1

]
C = [1 0]

The system is stable with poles in p1,2 = −0.05± 100i.
3



Sampled with h1 = 0.002s and h2 = 0.094s

xk+1 = Φixk + Γiuk
yk = Cixk
i ∈ {1, 2}

where Φ i = eAhi, Γi =
∫ hi
0 eAsBds

Both discrete-time systems are stable

3



State feedback controllers: u = −Kix
LQ-design:

J =
∫ ∞

0
(x(t)TQcx(t) + u(t)TRu(t))dt

with

Qc =
[
20000 0
0 20000

]
R = 50

3



Both closed-loop systems, Φi − ΓiKi, are stable

• eigenvalues inside unit circle

However, the switching sequence h1,h2,h2,h1,h2,h2, . . . gives an
unstable system

• eigenvalues of (Φ2 − Γ2K2)2(Φ1 − Γ1K1) outside the unit circle

3



If we instead switch between the two controller stochastically using
the relative frequency 67% for h2 and 33% for h1 the resulting
system is stable (in the mean-square sense).

3



The phenomenon can in principle occur also in other cases:

• change of sampling interval for the same controller

• change of input output latency

However, it is rare and so far we have not seen any “realistic”
examples where it has occurred.

3



Switching & Controller State

Switching sampling intervals may also cause problems for con-
trollers on input-output form

u(k) = a1y(k) + a2y(k− 1) + a3y(k− 2) + b1u(k− 1) + b2u(k− 2)

Remedy:

• only allow switches in stationarity

• use an observer (Kalman filter) to estimate the signal values at
the new points in time

4
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Inverted Pendulum Example

Control of three inverted pendulums using one CPU:

y1
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+
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Design

• Discrete-time LQG controllers

• Sampling intervals: (T1, T2, T3) = (10, 14.5, 17.5) ms

• Assumed execution time: Ci = 3.5 ms

• Controllers designed assuming delay of 3.5 ms

– Jitterbug command: lqgdesign

• Schedulable under both RM and EDF (with Di = Ti)

4



Simulation 1 – No Scheduling Interference
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Simulation 2 – Rate-Monotonic Scheduling
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Simulation 3 – Earliest-Deadline-First Scheduling
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Questions

• How much jitter is there under various scheduling policies?

– Simulation
– Jitter analysis

• How much jitter do the control loops tolerate?

– Simulation
– The jitter margin

Jitter analysis + the jitter margin give hard stability results

4



Jitter Analysis – Rate-Monotonic Scheduling

• Ri – worst-case response time of task i

Ri = Ci +
∑
j∈hp(i)

⌈
Ri
Tj

⌉
Cj

• Rbi – best-case response time of task i

Rbi = Ci +
∑
j∈hp(i)

⌈
Rbi
Tj
− 1

⌉
Cj

• Ji – worst-case input-output jitter of task i:

Ji = Ri − Rbi

(Analysis for earliest-deadline-first scheduling also exists)
4



The Pendulum Example – RM Scheduling

Task T C R Rb J
1 10 3.5 3.5 3.5 0

2 14.5 3.5 7.0 3.5 3.5

3 17.5 3.5 14.0 3.5 10.5

4



The Delay Margin

• Lm – delay margin, the longest delay a loop can tolerate
without becoming unstable

• Simple to compute

– Continuous-time system: Lm = ϕm/ω c
∗ ϕm – phase margin [rad]

∗ ω c – cross-over frequency [rad/s]

– Sampled-data system: need to compute a root locus with
respect to the delay

5



Delay Margins in the Pendulum Example

The maximum delay is equal to the response time R

Compute the delay margin Lm for each controller:

Task T C R Lm
1 10 3.5 3.5 9.8

2 14.5 3.5 7.0 12.5

3 17.5 3.5 14.0 14.6

∀i : Ri < Lmi. Still, system 3 was seen to be unstable!

The delay margin is only valid for constant delays!

5



The Jitter Margin

Assumptions:

• Periodic sampling (high-prio/interrupt-driven)

• Arbitrarily time-varying input-output delay Δ ∈ [L, L + J]
– L – constant part
– J – jitter

Input Output
0

t
T

JL

Jitter margin Jm(L) – the largest J for which stability can be
guaranteed given a value of L
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Checking Stability

P(s)

K (z) ShZOH

Δ

Σ−

• Continuous-time plant P(s)
• Discrete-time controller K (z)
• Arbitrarily time-varying delay Δ ∈ [L, L + J]
• Closed-loop system assumed stable for Δ = L

5



Checking Stability

Include the constant delay L in the plant:

P(s)

K (z) ShZOH

Δ̃

Σ− e−sL

• New time-varying delay Δ̃ ∈ [0, J]
• New plant P̃(s) = P(s)e−sL

5



Checking stability

Rewrite the control output as one direct path and one error path:

P̃(s)

K (z) Sh

ZOH

Σ−

ΛJ

z−1
z

• Difference operator z−1z
• Time-varying gate function ΛJ (open at most J seconds every

sample)
5



Checking Stability

Apply the small gain theorem:

P̃(s)

K (z) Sh

ZOH

Σ−−

ΛJ

z−1
z

• L2-gain of gate function: �ΛJ� =
√
J

• L2-gain of the rest:

�H� = max
ω

{∣∣∣∣ Palias(ω )K (eiω )
1+ PZOH(eiω )K (eiω )

∣∣∣∣ ∣∣eiω − 1∣∣}
5



Checking Stability

The closed-loop system is stable if �ΛJ��H� < 1 	
∣∣∣∣ Palias(ω )K (eiω )
1+ PZOH(eiω )K (eiω )

∣∣∣∣ < 1√
J
∣∣eiω − 1∣∣ , ∀ω ∈ [0, π ]

Here,

• Palias(ω ) =
√∑∞

k=−∞
∣∣P̃ (
i(ω + 2π k) 1h

)∣∣2
• PZOH(z) is the ZOH-discretization of P̃(s)

(For small h, Palias(ω ) � PZOH(eiω ))

5



Checking Stability

Graphical test:
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Jitter Margin – Example

Jm(L) for pendulum controller 3:
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• Lm = 14.6
• Jm(3.5) = 8.1 5



Deadline Assignment

Stability of the closed-loop systems can be guaranteed by assigning
relative deadlines

Di = Jm(Li) + Li
and verifying that the resulting task set is schedulable.

(In our example, assigning such deadlines gives an unschedulable
system under fixed-priority scheduling)

6



The Pendulum Example – RM

• Compute the jitter margin Jm(L) for each task

• J < Jm(L) 
 Stable

Task R L = Rb J Jm(L) Stable

1 3.5 3.5 0 4.4 Yes

2 7.0 3.5 3.5 6.4 Yes

3 14.0 3.5 10.5 8.1 No?

6



The Pendulum Example – EDF

Task R L = Rb J Jm(L) Stable

1 3.5 3.5 0 4.4 Yes

2 7.5 3.5 4.0 6.4 Yes

3 10.5 3.5 7.0 8.1 Yes

(In general, EDF distributes the jitter more evenly than RM.)

6
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Subtask scheduling

A control algorithm normally consists of two parts:

while (1) {
read_input();
calculate_output();
write_output();
update_state();
...

}

Idea: schedule the two parts as separate tasks

• reduce delay

• reduce jitter

6



Task models

Each control task τ is divided into two subtasks:

• τCO – Calculate output

• τUS – Update state

• Input and output operations are ignored in the analysis

Two possible scheduling algorithms:

• deadline-monotonic scheduling

• EDF scheduling

6



Deadline assignment (DM scheduling)

0

0 DUS=T

DCO T
τCO

τUS

t

t

• DCO < DUS = T
• We want to minimize DCO for each task. Algorithm:

1. Start by assigning DCO := T − CUS for all tasks
2. Assign deadline-monotonic priorities to all subtasks
3. Calculate the response time R of each subtask
4. Assign DCO := RCO for all tasks
5. Repeat from 2 until no further improvement. 6



Example

Control of three inverted pendulums using one CPU:

CPU

RTOS
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u2

u3

u3
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Example

• Discrete-time LQG controllers

• Execution time: Ci = 3.5 ms

• Sampling intervals: (h1, h2, h3) = (10, 14.5, 17.5) ms

• Control delay of 3.5 ms assumed in the design

6



Simulation under RM scheduling
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Simulation under RM scheduling

Schedule (high=running, medium=ready, low=sleeping)
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• Large delay and jitter for controller 3
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Subtask scheduling analysis

Each pendulum controller is divided into two subtasks:

• Calculate output: CCO = 1.5 ms

• Update state: CUS = 2.0 ms

First iteration of algorithm:

T D C R
τCO1 10.0 8.0 1.5 1.5

τUS1 10.0 10.0 2.0 3.5

τCO2 14.5 12.5 1.5 5.0

τUS2 14.5 14.5 2.0 7.0

τCO3 17.5 15.5 1.5 8.5

τUS3 17.5 17.5 2.0 14.0
7



Subtask scheduling analysis

Third iteration (converged):

T D C R
τCO1 10.0 1.5 1.5 1.5

τUS1 10.0 10.0 2.0 6.5

τCO2 14.5 3.0 1.5 3.0

τUS2 14.5 14.5 2.0 8.5

τCO3 17.5 4.5 1.5 4.5

τUS3 17.5 17.5 2.0 14.0

New worst-case input-output latencies: 1.5, 3.0, 4.5 ms.
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Simulation under subtask scheduling
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Simulation under subtask scheduling

Schedule (high=running, medium=ready, low=sleeping)
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• More context switches
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