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TrueTime Main Idea

Co-simulation of controller task execution, network
transmissions, and continuous plant dynamics.

Accomplished by providing models of real-time kernels and
networks as Simulink blocks

User code in the form of tasks and interrupt handlers is
modeled by MATLAB or C-code
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TrueTime Possibilities

Investigate the true, timely behaviour of time or
event-triggered control loops, subject to sampling jitter,
input-output latency and jitter, and lost samples, caused by
real-time scheduling and networking effects

Experiment with various scheduling methods, including
feedback-based scheduling

Investigate the performance of different wired or wireless
MAC protocols

Simulate scenarios involving battery-powered mobile
robots communicating using wireless ad hoc networks
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Simulink Blocks

Offers a Kernel block, two Network blocks, Network
Interface blocks and a Battery block

Simulink S-functions written in C++
Event-based implementation using the Simulink built-in
zero-crossing detection
Portable to other simulation environments
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The Kernel Block

Simulates an event-based real-time kernel

Executes user-defined tasks and interrupt
handlers

Arbitrary user-defined scheduling policy

Supports external interrupts and timers

Supports common real-time primitives
(sleepUntil, wait/notify, setPriority, etc.)

Generates a task activation graph

More features: context switches, overrun
handlers, task synchronization, data logging
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TrueTime Code

Three choices:

C++ code (fast)

MATLAB code (medium)

Simulink block diagram (slow)
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Kernel Implementation Details

TrueTime implements a complete real-time kernel with
A ready queue for tasks ready to execute
A time queue for tasks waiting to be released
Waiting queues for monitors and events

Queues are manipulated by the kernel or by calls to kernel
primitives

The simulated kernel is ideal (no interrupt latency and no
execution time associated with real-time primitives)

Possible to specify a constant context switch overhead

Event-based simulation obtained using the Simulink
zero-crossing function, which ensures that the kernel
executes each time an event occurs
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The Network Blocks

Simulates the temporal behaviour of various link-layer
MAC protocols

Medium access and packet transmission
No built-in support for network and transport layer
protocols

TCP has been implemented as an example
AODV has been implemented as an example
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The Network Interface Blocks

Correspond to the network interface card / bus controller

Make it possible to use the network blocks stand-alone,
without any TrueTime kernels

Connected to ordinary discrete-time Simulink blocks
representing, e.g., controllers
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A Very Simple Example

Proportional control of an integrator:

Initialization

Task code
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A Very Simple Example

function simple_init
ttInitKernel(1, 1, ’prioFP’)
ttCreatePeriodicTask(’task1’, 0, 0.010, 1, ’code’, [])

function [exectime,data] = code(seg,data)
switch seg,
case 1,
y = ttAnalogIn(1);
data.u = -0.5*y;
exectime = 0.005;
case 2,
ttAnalogOut(1,data.u);
exectime = -1;

end
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Tasks

Tasks are used to model the execution of user code
(mainly control algorithms)

The release of task instances (jobs) may be periodic or
aperiodic

For periodic tasks, the jobs are created by an internal
periodic timer

For aperiodic tasks, the jobs must be created by the user
(e.g., in response to interrupts)

In the case of multiple jobs of the same task, pending jobs
are queued

ttCreatePeriodicTask(name, offset, period, prio, codeFcn, data)
ttCreateTask(name, deadline, priority, codeFcn, data)
ttCreateJob(taskname)

ttKillJob(taskname)
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Terminology

Period

Response time

Relative deadline

τ

Release time Absolute deadline
t

Each job also has an execution-time budget
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Task Attributes

Dynamic attributes are updated by the kernel as the
simulation progresses

Release time, absolute deadline, execution time, . . .

Static attributes are kept constant unless explicitly changed
by the user

Period, priority, relative deadline, . . .

ttSetAbsDeadline(taskname, value)
ttSetPeriod(taskname, value)
...
ttGetAbsDeadline(taskname)
ttGetPeriod(taskname)

...
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Task Code

Task code is represented by a code function in the format

[exectime,data] = function mycode(segment,data)

The data input/output argument represents the local
memory of the task

The segment input argument represents the program
counter

The exectime output argument represents the execution
time of the current code segment
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Code Segments

A code segment models a number of statements that are
executed sequentially

. . . Delay

Statement 1;

Statement 2;

Real time Simulation time

Statement n;

0 0

tt

The execution time t must be supplied by the user
Can be constant, random, or data-dependent
A return value of −1 means that the job has finished
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Code Segments, cont’d

All statements in a segment are executed sequentially,
non-preemptively, and in zero simulation time,

Only the delay can be preempted by other tasks

No local variables are saved between segments

(All of this is needed because MATLAB functions cannot be
preempted/resumed. . . )
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Multiple Code Segments

1 2 3

t

Multiple code segments are needed to simulate

input-output delays

self-suspensions (ttSleep, ttSleepUntil)

waiting for events or monitors (ttWait, ttEnterMonitor)

loops or branches

ttSetNextSegment(nbr)
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Example of a Code Function

function [exectime, data] = Event_P_Ctrl(segment, data)
switch segment,

case 1,
ttWait(’event’);
exectime = 0;

case 2,
r = ttAnalogIn(1);
y = ttAnalogIn(2);
data.u = data.K * (r-y);
exectime = 0.002 + 0.001*rand;

case 3,
ttAnalogOut(1, data.u);
ttSetNextSegment(1);
exectime = 0.001;

end
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Calling Simulink Block Diagrams

Discrete Simulink blocks may be called from within the
code functions to compute control signals

Block states are stored in the kernel between calls

outp = ttCallBlockSystem(nbroutp, inp, blockname)
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Configuring a Simulation

Each kernel block is initialized in a script (block parameter):

nbrInputs = 3;
nbrOutputs = 3;
ttInitKernel(nbrInputs, nbrOutputs, ’prioFP’);
periods = [0.01 0.02 0.04];
code = ’myCtrl’;
for k = 1:3

data.u = 0;
taskname = [’Task ’ num2str(k)];
offset = 0; % Release task at time 0
period = periods(k);
prio = k;
ttCreatePeriodicTask(taskname,offset,period,prio,code,data);

end
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When to use the C++ API?

When simulation takes too long time using MATLAB code

When you want to define your own priority functions

When you want to define your own kernel hooks

You must use a C++ compiler supported by the MEX facility of
the MATLAB version that you are running

Microsoft C++ Compiler Ver 7 (Visual Studio .NET)

GNU compiler gcc, g++ on Linux
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Example: PID-control of a DC-servo

Consists of a single controller task implementing a
standard PID-controller

Continuous-time process dynamics

G(s) = 1000
s(s+ 1)

Can evaluate the effect of sampling period and
input-output latency on control performance

Four different ways to implement periodic tasks are shown

Both C++ function and m-file as well as block diagram
implementations will be demonstrated
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Scheduling Policy

The scheduling policy of the kernel is defined by a priority
function, which is a function of task attributes

Pre-defined priority functions exist for fixed-priority,
rate-monotonic, deadline-monotonic, and
earliest-deadline-first scheduling

Example: EDF priority function (C++ API only)

double prioEDF(UserTask* t)
return t->absDeadline;

}

void ttAttachPrioFcn(double (*prioFcn)(UserTask*))
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Scheduling Hooks

Code that is executed at different stages during the
execution of a task

Arrival hook – executed when a job is created
Release hook – executed when the job is first inserted in
the ready queue
Start hook – executed when the job executes its first
segment
Suspend hook – executed when the job is preempted,
blocked or voluntarily goes to sleep
Resume hook – executed when the job resumes execution
Finish hook – executed after the last code segment

Facilitates implementation of arbitrary scheduling policies,
such as server-based scheduling

ttAttachHook(char* taskname, int ID, void (*hook)(UserTask*))
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Data Logging

A number of variables may be logged by the kernel as the
simulation progresses

Written to MATLAB workspace when the simulation
terminates
Automatic logging provided for

Response time
Release latency
Sampling latency
Task execution time
Context switch instances

ttCreateLog(taskname, type, variable, size)
ttLogNow(logID)
ttLogStart(logID)

ttLogStop(logID)
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Example: Three Controllers on one CPU

Three controller tasks controlling three different DC-servo
processes

Sampling periods hi = [0.006 0.005 0.004] sec.

Execution time of 0.002 sec. for all three tasks for a total
utilization of U = 1.23
Possible to evaluate the effect of the scheduling policy on
the control performance

Can use the logging functionality to monitor the response
times and sampling latency under the different scheduling
schemes

D. Henriksson, A. Cervin, M. Ohlin, K.-E. Årzén The TrueTime Simulator



Tutorial Outline

A Very Simple Example

Tasks

Code
Initialization

Simple PID Example

Real-Time Scheduling
Data Logging

Three Servo Example

Semaphores, Monitors
and Events

Mailboxes

Interrupt Handlers

Overrun Handling

Wired Networks
Distributed Example

Wireless Networks

Battery Operation

Local Clocks and Drift

Network Interface Blocks
Example

Robot soccer

D. Henriksson, A. Cervin, M. Ohlin, K.-E. Årzén The TrueTime Simulator



Semaphores

Simple counting and binary semaphores

No priority inheritance mechanisms

Only for simple types of synchronization

ttCreateSemaphore(semname, initval)
ttTake(semname)

ttGive(simname)
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Monitors

Monitors are used to model mutual exclusion between
tasks that share common data

Tasks waiting for monitor access are arranged according to
their respective priorities (static or dynamic)
The implementation supports standard priority inheritance
to avoid priority inversion

Priority ceiling protocols can be implemented

The simulation generates a graph that shows when
different tasks have been holding the various monitors

ttCreateMonitor(monitorname, display)
ttEnterMonitor(monitorname)

ttExitMonitor(monitorname)
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Events

Events are used for task synchronization and may be free
or associated with a monitor (condition variables)

ttNotifyAll will move all waiting tasks to the monitor
waiting queue or the ready queue (if it is a free event)

Events may, e.g., be used to trigger event-based
controllers

ttCreateEvent(eventname, monitorname)
ttWait(eventname)

ttNotifyAll(eventname)
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Mailboxes

Communication between tasks is supported by mailboxes

Implements asynchronous message passing with indirect
naming

A finite ring buffer is used to store incoming messages

Both blocking and non-blocking versions of Fetch and Post

ttCreateMailbox(mailboxname, maxsize)
msg = ttTryFetch(mailboxname)

ttTryPost(mailboxname, msg)
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Interrupt Handlers

Code executed in response to interrupts

Scheduled on a higher priority level than
tasks
Available interrupt types

Timers (periodic or one-shot)
External (hardware) interrupts
Task overruns
Network interface

ttCreateInterruptHandler(hdlname, priority, codeFcn, data)
ttCreateTimer(timername, time, hdlname)
ttCreatePeriodicTimer(timername, start, period, hdlname)

ttCreateExternalTrigger(hdlname, latency)

D. Henriksson, A. Cervin, M. Ohlin, K.-E. Årzén The TrueTime Simulator



Overrun Handlers

Two special interrupt handlers may be associated with
each task (similar to Real-time Java)

A deadline overrun handler
An execution time overrun handler

Can be used to dynamically handle prolonged
computations and missed deadlines

Implemented by internal timers and scheduling hooks

ttAttachDLHandler(taskname, hdlname)

ttAttachWCETHandler(taskname, hdlname)
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The Network Block

Supports six common MAC layer
policies:

CSMA/CD (Ethernet)
CSMA/AMP (CAN)
Token-based
FDMA
TDMA
Switched Ethernet

Policy-dependent network parameters

Generates a transmission schedule
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Network Communication

Each node (kernel block) may be connected to several
network blocks
Dedicated interrupt handler associated with each network
receive channel

Triggered as a packet arrives
Similar to external interrupts

The actual message data can be an arbitrary MATLAB
variable (struct, cell array, etc)

Broadcast of messages by specifying receiver number 0

ttInitNetwork(network, nodenumber, hdlname)
ttSendMsg([network receiver], data, length, priority)

ttGetMsg(network)
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Example: Networked Control System

Network

Controller

Sensor

Node

Node
Actuator

Node

Disturbance
Node

DC Servo

Time-driven sensor node

Event-driven controller node

Event-driven actuator node

Disturbance node generating high-priority traffic
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Example: Networked Control System

Network

Controller

Sensor

Node

Node
Actuator

Node

Disturbance
Node

DC Servo

Will try changing the bandwidth occupied by the
disturbance node

Possible to experiment with different network protocols and
network parameters

Can also add a high-priority task to the controller node
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Wireless Networks

Wireless networks are very different from wired ones.

Wireless devices can often not send and receive at the
same time

The path loss or attenuation of radio signals must be taken
into account

Interference from other terminals (shared medium)

Hidden terminals

Multi-path propagation

Shadowing and reflection
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The Wireless Network Model

Ad-hoc wireless networks

Isotropic antenna

Interference from other terminals (shared medium)

Path-loss default model:

1
da

where:

d is distance and
a is a suitably chosen parameter to model the environment,
e.g., 2-4

User-defined path-loss function:
To model fading, multi-path propagation, etc
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Package Loss

The signal level in the receiver is calculated according to
the path loss formula, 1

da (or user-defined)

The signal can be detected if the signal level exceeds a
certain configurable threshold

The SIR is calculated and a probabilistic measure is used
to determine the number of bit errors in the message

A configurable error coding threshold is used to determine
if the package can be reconstructed or is lost
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The Wireless Network Block

Used in the same way as the wired
network block

Supports two common MAC layer
policies:

802.11b/g (WLAN)
802.15.4 (ZigBee)

Variable network parameters

x and y inputs for node locations

Generates a transmission schedule
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Contention in 802.11b/g (WLAN)

A packet is marked as collided if another ongoing
transmission has a larger signal level at the receiver

From the sender perspective, package loss and collisions
are the same (no ACK received)

Random back-off time within a contention window

A configurable number of re-transmission are made before
the sender gives up

More advanced schemes are specified in the standard
(using RTS and CTS frames to solve the hidden node
problem) but not part of the TrueTime implementation
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The Wireless Network Parameters

Data rate (bits/s)
Transmit power (dBm)

configurable on a per node basis

Receiver sensitivity (dBm)

Path-loss exponent

ACK timeout (s)

Maximum number of retransmissions

Error coding threshold
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The Battery Block

Simulation of battery-powered devices
Simple integrator model

discharged or charged (energy
scaffolding)

Energy sinks:
computations, radio transmissions, usage
of sensors and actuators, . . .

Dynamic Voltage Scaling
change kernel CPU speed to consume
less power
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Local Clocks with Offset and Drift

To simulate distributed systems with local time
Sensor networks are based on cheap hardware:

low manufacturing accuracy � large clock drift

Simulate clock synchronization protocols
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Network Interface Blocks

Time-triggered networked control loop without kernel
blocks
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Network Interface Blocks

Event-triggered networked control loop without kernel
blocks
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Robot Soccer Example
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TrueTime Possibilities

Co-simulation of

computations inside computer nodes
tasks, interrupt handlers

wired and wireless communication between nodes

the dynamics of the physical plant under control

sensor and actuator dynamics

the dynamics of mobile robots/nodes

the dynamics of the environment

energy consumption in the nodes
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A Real-World Application

Multiple processors and networks

Based on VxWorks and IBM
Rational Rose RT

Using TrueTime to describe
timing behavior

Has ported TrueTime to a
mechatronics simulation
environment

”We found TrueTime to be a great tool for describing
the timing behavior in a straightforward way.”

D. Henriksson, A. Cervin, M. Ohlin, K.-E. Årzén The TrueTime Simulator



More Real-World Applications

Bosch AG

Extended the network block with support for TTCAN and
Flexray

Used in a simulation environment for investigating the
impacts of time-triggered communication on a distributed
vehicle dynamics control system

Haldex AB

Simulation of CAN-based distributed control systems
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TrueTime Limitations

Developed as a research tool rather than as a tool for
system developers
Cannot express tasks and interrupt handler directly using
production code

code is modeled using TrueTime MATLAB code or
TrueTime C code
no automatic translation

Execution times or distributions assumed to be known
How to support automatic code generation from TrueTime
models?

Generate POSIX-thread compatible code?
Generate monolithic code (TVM = TrueTime Virtual
Machine)

Based on MATLAB/Simulink
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More Material

The toolbox (TrueTime 1.5) together with a complete
reference manual can be downloaded at:

http://www.control.lth.se/user/truetime/
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