
Control of Computer Systems

Karl-Erik Årzen & Anton Cervin

1

Outline

1. Overview

2. Nice Control of Linux

3. Feedback Scheduling of Control Tasks

• Infinite horizon

• Finite horizon

• MPC

4. Control of Web servers

2

Control of Computer Systems

Apply control as a techniques to manage uncertainty and
achieve performance and robustness in computer and com-
munication systems.

One of the strongest increasing areas in real-time computing
(adaptive/flexible scheduling) and networking.

Applications in

• Internet protocols, e.g., TCP and extensions

• Internet servers (HTTP, Email)

• Cellular phone systems (power control, ...)

• CPU scheduling

Control used to manage finite resources (Resource allocation
as a control problem = feedback scheduling) 3

Control of Computer Systems

New area

• however, feedback has been applied in ad hoc ways for
long without always understanding that it is control

Textbook has recently been published

• “Feedback Control of Computer Systems”, Hellerstein,
Diao, Parekh, Tilbury

4

Control of Computer Systems

Control of computing systems can benefit from a lot of the
classical control results

• However, several new challenges

• First principle modeling not so natural

• Complex dynamics no longer the problem

5

Example: Internet Protocol

The congestion control in TCP is one of the major reasons why
Internet has been able to expand at the current high rate and
still work properly.

• Congestion window (cw) decides how many un-ack’ed
packets a host can have

• When cw below threshold it grows exponentially

• When cw above threshold it grows linearly

• Whenever there is a timeout the threshold is set to half the
cw and cw is set to 1.

• Nonlinear behavior

6

Example: Internet Protocols

Controller
RED Network

Router

Reference
buffer fill level

probability
Drop

Measured
buffer fill level

Random Early Detection (RED) of Router Overloads

• Prevent router buffers from overflowing

• Random drops of packets before the buffer is full

A lot of ongoing work on improvements of IP based on models
and theory rather than on ad hoc fixes

7

Example: Lotus Notes E-Mail Server

Client-server application

Interaction using Remote Procedure Calls (RPC)

Server log of RPC statistics

8

Example: Lotus Notes E-Mail Server

Control the number of RPCs in the server (RIS) by dynamically
adjusting the maximum allowed users (MaxUsers)

First order model derived from data:

y(k + 1) = 0.43y(k) + 0.47u(k) where y(k) = RIS(k) − RIS0 and
u(k) = MaxUsers(k) − MaxUsers0

First order LP-filter added to remove outliers

Resulting, second order system, controlled by PI-controller designed
using pole-placement

9

Example: Apache HTTP Server

• HTTP requests from
clients to server

• Pool of workers be-
ing either Idle, Busy
or Waiting (Persis-
tent Connections)

• MaxClients limits the
size of the worker
pool

• KeepAlive deter-
mines how long a
worker is waiting
before it becomes
idle 10

Example: Apache HTTP Server

Control of CPU utilization and memory utilization

Too large MaxClients → large consumption of CPU and memory

Too large KeepAlive → underutilization

Too small KeepAlive increases CPU consumption since connections
must be re-established for requests from the same user

11

Example: Apache HTTP Server

Two first-order transfer functions derived from input-output data

CPU(z) = GM C(z)M C(z) + GK A K A(z)
around a certain operating point

PI-controller using KeepAlive control signal

Design using pole placement

In principle, the same type of design that you have been doing
in the projects

12

Example: Queuing Systems

Work requests (customers) arrive and are buffered

Service level objectives (response time for request belonging to
class X should be less than Y time units)

Reduce the delay caused by other requests, i.e., adjust the
buffer size and redirect or block other requests

Admission control

13

Example: Queuing Systems

14

Example: Queue Length Control

Assume an M/M/1 - queuing system:

• Random arrivals (requests), average λ per second

• Random service times, average 1/μ and exponentially
distributed

• queue containing x requests

Intuition: x →∞ if λ > μ

15

Queue Length Control: Simulation

λ = 0.5, μ = 1

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

Time

Q
ue

ue
 le

ng
th

λ = 2.0, μ = 1

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

Time

Q
ue

ue
 le

ng
th

16

Queue Length Control: Model

Approximate the system with a nonlinear flow model (Tipper’s
model from queuing theory)

The expectation of the queue length x is

ẋ = λ − μ
x

x + 1

17

Queue Length Control: Model

λ = 0.5, μ = 1

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

Time

Q
ue

ue
 le

ng
th

λ = 2.0, μ = 1

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

Time

Q
ue

ue
 le

ng
th

18

Queue Length Control: Model

Control the queue length by only admitting a fraction u (be-
tween 0 and 1) of the requests

ẋ = λu− μ
x

x + 1
Admission control

19

Queue Length Control: Linearization

Linearize around x = x○

Let y = x − x○

ẏ= λ y− μ
1

(x○ + 1)2 y= λu− μay

20

Queue Length Control: P-Control

u = K (r − y)

ẏ = λ K (r − y) − μay

(s+ λ K + μa)Y(s) = λ K R(s)

Gcl(s) = λ K
s+ λ K + μa

With K the closed loop poles can be placed arbitrarily

21

Queue Length Control: P-Control

Simulations for λ = 2, μ = 1, x○ = 20 and different values of K

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Time

Q
ue

ue
 le

ng
th

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

A
dm

is
si

on
 c

on
tr

ol

Time

 K = 0.05

 K = 0.1

 K = 0.5

 K = 0.5
 K = 0.1

 K = 0.05

Stationary error

Nonlinear (control signal limitations)

22

Queue Length Control: PI-Control

GP(s) = λ
s+ μa

GR(s) = K (1+ 1
sTi
)

Gcl(s) = GPGR

1+ GPGR
=

λ K (s+ 1
Ti
)

s(s+ μa) + λ K (s+ 1
Ti
)

With K and Ti the closed loop poles can be placed arbitrarily

23

Queue Length Control: PI-Control

Simulations for λ = 2, μ = 1, x○ = 20, K = 0.1 and different
values of Ti

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Time

Q
ue

ue
 le

ng
th

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Time

A
dm

is
si

on
 c

on
tr

ol

 T
i
 = 10

 T
i
 = 1

 T
i
 = 50

 T
i
 = 50

 T
i
 = 10

 T
i
 = 1

Stationary error removed
24

Queue Length Control: PI-Control on Process

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Time

Q
ue

ue
 le

ng
th

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Time

A
dm

is
si

on
 c

on
tr

ol

25

Example: Task Scheduling

Control CPU utilization by adjusting

• task periods

• task execution demands

• priorities

Setpoint = schedulability bound

Feedforward to handle mode changes
26

Feedback Control Real-Time Scheduling

Stankovic et al (Univ of Virginia)

27

Example: Numerical Integration

The automatic step-size adjustment in numerical integration
routines for ODEs (ordinary differential equations) can be cast
as a control problem

Ordinary PI/PID control works well

PhD thesis by Kjell Gustafsson, Dept of Automatic Control,
Lund 1992

28

General Observations

The plant under control rarely have any real dynamics or only
very simple dynamics

• static nonlinearities + time delays (possibly time-varying)

• first or (maybe) second-order dynamics

Dynamics introduced through the sensors

• Time averages

Event-based control seems a more natural approach than time-
based (though very few try to apply it)

29

General Observations

Seldom any measurement noise

• high gain feedback a possibility

Decentralized control in communication with local and global
contstraints

• control the resource allocation of tasks or jobs

• local minimum constraints

• global maximum contstraints

– schedulability conditions
– total available amount of resource limited (e.g. power)

30

General Observations

Much to learn from control engineering

• Control principles

• Model-based design

• Optimization-based design

Simple controllers often enough

• P, I, PI + feedforward, PD

• anti-windup to achieve good performance

Lack of first principles knowledge that can be used to derive models

• queuing systems an exception

– however, the models here are averages over long time
horizons

– how use these for control?

• models often derived from input-output data (be cautious)

31

General Observations

So far, primarily applications of classical linear and non-linear
time-driven control

It could be expected that there is room for special control
theory developed to better fit these types of application

The interest for this area is currently higher in the computer
community than in the control community (unfortunately)

32

Outline

• Overview

• Nice Control of Linux

• Feedback Scheduling of Control Tasks

– Infinite Horizon
– Finite Horizon
– MPC

• Control of Web servers

33

Nice Control of Linux

Idea:

• Reservation-based control of the CPU resources in Linux

Measurements:

• The CPU bandwidth of a Linux non-realtime task

Control signal:

• The nice value of the task (related to the task priority)

Controller:

• PI-controller

Applications:

• Web server control

34

CPU Bandwidth – Definition

A task’s CPU bandwidth is defined as

CPU bandwith = a task’s execution time during a time interval

the length of the same time interval

35

CPU Bandwidth – Sensors and Actuators

What is already available?

• A task’s total execution time is available in kernel space,
i.e., inside the operating system.

• The CPU bandwidth is affected by the UNIX nice value.

36

nice Value – What is it?

The nice value can be set by the user on a per task level. It
affects:

• The task’s priority.

• The size of the time slice given to the task.

Normally used to run things in the background.

37

Simple Model

In simple words:

• Every task gets a time slice whose size depends on the
nice value given to that task.

• When a task has executed for its whole timeslice, every
other task gets to execute for their whole timeslices before
the first task is executed again.

38

Size of the Time Slize

−20−15−10−505101520
0

100

200

300

400

500

600

700

800

nice value

tim
e_

sl
ic

e
(m

s)

39

Example

If, for example, tasks 1, 2 and 3 have nice value 0 and task 4
has nice value −1. Then task 4 will get:

f raction(i) = time_slice(i)∑
∀ j time_slice(j) =

420
3 ∗ 100+ 420 � 58%

Under the assumption that all tasks are willing to run.

40

Evaluation of the Model

Setup:

• Four tasks running in endless while loops.

• For one of the tasks, the nice value is changed from 19 to
−7 and the CPU bandwidth time is measured.

+ is according to the model.
o is measured values.

41

Evaluation

−20−15−10−505101520
0

10

20

30

40

50

60

70

80

%

nice value
42

Controller

• A kernel module has been implemented that periodically
samples task data and measures the execution time of a
task between two samples.

• A PI-Controller has been implemented in the same kernel
module. K = 0.01 and Ti = 52.

• The sampling time is 20 ms.

43

Experiments

• All experiments have been performed on the author’s
desktop computer.

• Bandwidth measurements have been filtered using a
moving average window of 4 s.

• No special steps were taken before the measurements,
i.e., the computer is at the same time running normal
programs such as Firefox, Thunderbird . . .

44

Experiment: Step Response

• Four tasks running in endless while-loops.

• Two of them are controlled.

• The other two have a static nice value of 5.

• Reference 1 is changed as a square-wave while reference
2 is kept at 25%.

45

Step Response

150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

%

150 200 250 300 350 400 450
−5

0

5

Measurement
Reference

CPU Bandwidth of Task 1

Control Signal of Task 1

time (s)

time (s)

ni
ce

va
lu

e

46

Step Response Cont’d

150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

%

150 200 250 300 350 400 450
−5

0

5

Measurement
Reference

CPU Bandwidth of Task 2

Control Signal of Task 2

time (s)

time (s)

ni
ce

va
lu

e

47

Taking the State Into Account

It is also possible to control the CPU bandwidth of tasks
that are not always willing to run. This makes the presented
concept much more useful.

48

Experiment 4 – Taking the State Into Account

• One controlled task that refuses to use more than 40% of
the CPU bandwidth.

• Two tasks running in endless while-loops with nice value 5.

49

Taking the State Into Account

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

%

Measurement
Reference

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

CPU Bandwidth

Control Signal

time (s)

time (s)

ni
ce

va
lu

e

50

Apache Web Server Control

Two web servers hosted on the same CPU (Pentium 4)

Traffic generated by 12 client computers

Port

80

Server

Uncontrolled

Client

#12

Client

#1
· · ·

Port

81

Controlled

Server

Arrival intensity

Time

Arrival intensity

Time

100 Mbit switched network

TCP/IP layer

Host computer

51

Apache Web Server Control: Results

140 150 160 170 180 190 200 210 220 230 240 250
100

150

200

250

300

350

Time (s)
A

rr
iv

al
 in

te
ns

ity
 (

re
q/

s)

Arrival intensity

140 150 160 170 180 190 200 210 220 230 240 250
0

10

20

30

40

50

60

Time (s)

S
er

vi
ce

 ti
m

e
(m

s)

Service time for controlled server

140 150 160 170 180 190 200 210 220 230 240 250
0

10

20

30

40

50

60

Time (s)

S
er

vi
ce

 ti
m

e
(m

s)

Service time for uncontrolled server

Controlled server
Uncontrolled server

Inactive controller
Active controller

Inactive controller
Active controller

Top: Average arrival rates.

Middle: Response time for the controlled server with and without feedback control.

Bottom: Response time for the uncontrolled server.

52

Outline

• Overview

• Nice Control of Linux

• Feedback Scheduling of Control Tasks

– Infinite Horizon
– Finite Horizon
– MPC

• Control of Web servers

53

Resource Allocation as a Control problem

In applications with multiple tasks or jobs the dynamic alloca-
tion of resources to the tasks can be viewed as a control prob-
lem in itself

Use feedback as a technique for mastering uncertainty and
guaranteeing performance

54

Feedback Scheduling

Dynamic on-line allocation of computing resources

Feedback from actual resource utilization

In principle, any computing resource

Here,

• Scheduling of the execution of real-time tasks

• In particular, real-time controller tasks

55

Feedback scheduling

The Problem: Ordinary priority-based scheduling may fail:

• Design based on worst-case execution times:

– Slow sampling, all deadlines are met
– Low utilization, low control performance

• Design based on average-case execution times:

– Faster sampling, many deadlines are missed
– Higher utilization, low control performance

Solution: dynamic scheduling based on feedback

56

Optimal Feedback Control

Mostly ad-hoc approaches

Adjust sampling periods and/or execution time demands so
that the task set is schedulable

In control it is important to take the application performance
into account

• E.g. adjust scheduling parameters in such a way that the
global performance is optimized

Requires performance metrics that are properly parameterized

• JitterBug

57

Outline

• Overview

• General Observations

• Nice Control of Linux

• Feedback Scheduling of Control Tasks

– Infinite Horizon
– Finite Horizon
– MPC

• Control of Web servers

58

Linear Rescaling

A linear proportion rescaling of the nominal sampling periods
to meet the utilization set-point is optimal w.r.t. global control
performance for:

• quadratic cost functions Ji(hi) = α i + β ih2
i

• linear cost functions Ji(hi) = α i + γ ih2
i

where the objective is to minimize the sum or the weighted
sum of the control cost functions

hnew = hnomU
Usp

59

Linear Rescaling

Great!

• Simple and fast

• Preserves rate-monotonic ordering

• Good approximations of true cost functions

60

Linear Rescaling

Additional constraints can be added:

• Use nominal sampling periods as minimum sampling
periods and use these whenever the utilization is less that
the utilization set-point

Linear rescaling property does not always hold:

• Mixed task set

• Tasks with maximum sampling periods � iterative LP
computation

61

Case Study: Set of Hybrid Controllers

The double-tank process:

Use pump, u(t), to control
level of lower tank, y(t)

Pump

Hybrid control strategy:

• PID control in steady state

• Optimal control for setpoint changes

62

PID Controller

P(t) = K (ysp(t) − y(t))
I(t) = I(t−h) + ai(ysp(t) − y(t))

D(t) = ad D(t−h) + bd(y(t−h) − y(t))
u(t) = P(t) + I(t) + D(t)

Average execution time: C = 2.0 ms

63

Optimal Controller

x2(x1) = 1
a((ax1 − bu)(1+ ln(axR

1 − bu
ax1 − bu)) + bu)

Vclose =
[

xR
1 − x1

xR
2 − x2

]T

P(θ ,γ)
[

xR
1 − x1

xR
2 − x2

]
+ more . . .

Average execution time: C = 10.0 ms

64

Nominal Behavior, h = 21 ms

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.15

O
ut

pu
t

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

In
pu

t

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

Time

U
til

iz
at

io
n

65

Scheduling Experiments

• Three hybrid controllers execute on one CPU

• Nominal sampling periods: (h1, h2, h3) = (21, 18, 15) ms

• Potential problem: All controllers in Optimal mode �
U =∑ C

h = 170%

Compare strategies:

1. Open-loop scheduling

2. Feedback scheduling

3. Feedback + feedforward scheduling

• Co-simulation of scheduler, controllers, and double tanks

• Focus on the lowest-priority controller 66

Open-Loop Scheduling

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.15

O
ut

pu
t

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

In
pu

t

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

Time

T
ot

al
U

til
iz

at
io

n

67

Open-Loop Scheduling

0.4 0.5 0.6 0.7 0.8 0.9

T
as

k
1

Time

0.4 0.5 0.6 0.7 0.8 0.9

T
as

k
2

0.4 0.5 0.6 0.7 0.8 0.9

T
as

k
3

68

Feedback Scheduler

• A high-priority task, TFBS = 100 ms, CFBS = 2 ms

• Setpoint: Usp = 80%

• Estimate execution times using first-order filters

• Control U by adjusting the sampling periods

– Simple linear rescaling
– No regard for control performance
– Range of acceptable sampling intervals

hnom hmax

69

Feedback Scheduling

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.15

O
ut

pu
t

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

In
pu

t

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

Time

T
ot

al

U
til

iz
at

io
n

70

Feedback Scheduling

0.4 0.5 0.6 0.7 0.8 0.9

T
as

k
1

Time

0.4 0.5 0.6 0.7 0.8 0.9

T
as

k
2

0.4 0.5 0.6 0.7 0.8 0.9

T
as

k
3

0.4 0.5 0.6 0.7 0.8 0.9

F
B

S

71

Feedforward

• Controller notifies feedback scheduler when switching from
PID to Optimal mode

• Scheduler is released immediately

• Separate execution-time estimators in different modes

72

Feedback + Feedforward Scheduling

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.15

O
ut

pu
t

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

In
pu

t

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

Time

T
ot

al
U

til
iz

at
io

n

73

Feedback + Feedforward Scheduling

0.4 0.5 0.6 0.7 0.8 0.9

T
as

k
1

Time

0.4 0.5 0.6 0.7 0.8 0.9

T
as

k
2

0.4 0.5 0.6 0.7 0.8 0.9

T
as

k
3

0.4 0.5 0.6 0.7 0.8 0.9

F
B

S

74

Control Performance Evaluation

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

Time [s]

Accumulated loss due to scheduling V1

Open−loop

Feedback

Feedback + feedforward

75

Disclaimer

But:

• Cost functions over infinite horizons

• Does not take the plant state into account

76

Outline

• Overview

• General Observations

• Nice Control of Linux

• Feedback Scheduling of Control Tasks

– Infinite Horizon
– Finite Horizon
– MPC

• Control of Web servers

77

Feedback Scheduling Version 2

• Finite time horizons

• Takes the state of the controlled plant into account

78

Optimal Period Assignment

Assume that the performance of each controller i can be
described by a cost function Ji(xi, hi, TFBS)

• xi – the current state of plant i
• hi – the sampling period of controller i
• TFBS – the optimization horizon of the feedback scheduler

The objective is to minimize the combined performance with
respect to the utilization bound:

min
h1... hn

n∑
i=1

Ji(xi, hi, TFBS)

subj. to
n∑

i=1

Ci
hi
≤ Usp

79

Optimal Period Assignment, cont’d

• Convex problem if functions Ji(xi, 1/ fi, TFBS) convex in fi.

• Explicit solution if all cost functions have the same shape,

Ji = α i + β ihν
i

– ν = 1:

hi =
(Ci

β i

)1/2
∑n

j=1(Cjβ j)1/2
Usp

– ν = 2:

hi =
(Ci

β i

)1/3
∑n

j=1 C2/3
j β 1/3

j

Usp

• Linear cost functions (ν=1) are often good approximations
80

Linear-Quadratic Controllers

The cost function for an LQ controller is given by

J(x, h, Tfbs) = xTS(h)x + Tfbs

h

(
tr S(h)R1(h) + Jv(h)

)

• S(h) – solution to the LQ Riccati equation

• R1(h) – sampled process noise variance

• Jv(h) – inter-sample cost term

81

Example: Integrator Process

• Process: dx = u dt+ dvc

– vc – Wiener process with unit incremental variance

• Design cost function: J = ∫ Tfbs
0 x2(t) dt

• Resulting cost:

J(x, h, Tfbs) =
(

x2
√

3
6 + Tfbs

√
3+ 3
6

)
h

– Linear in h
– Explicit solution for multiple controllers:

hi ∝
√

Ci

x2
i + Tfbs(1+

√
3) 82

Simulation Example

• Two integrator processes with different initial conditions

– x1(0) = 10, x2(0) = 0, C1 = C2 = 0.5, Usp = 1, Tfbs = 5

0 1 2 3 4 5 6 7 8 9 10
−10

0

10

0 1 2 3 4 5 6 7 8 9 10
−10

0

10

0 1 2 3 4 5 6 7 8 9 10
Time

Task 1

Task 2

FBS

x1

x2

83

Simulation Example

• Three first-order plants with a = −1, a = 0, and a = 1
• Load disturbance affecting plant 3 at time t = 5
• x1(0) = 0, x2(0) = 10, x3(0) = 0, C = 0.1, Usp = 1, Tfbs = 2

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

0 1 2 3 4 5 6 7 8 9 10
Time

FBS

Task 3

Task 2

Task 1

x1

x2

x3

84

Feedback Scheduling Structures

Cascaded/Layered Structure:

• Global utilization controller that outputs the desired utiliza-
tion share for each task

• Local controllers that adjust the task parameters accord-
ingly

• Combine with reservation-based scheduling to provide
temporal protection, cp. the Control Server Model

85

Outline

• Overview

• General Observations

• Nice Control of Linux

• Feedback Scheduling of Control Tasks

– Infinite Horizon
– Finite Horizon
– MPC

• Control of Web servers

86

Feedback Scheduling Actuators

Two main actuators:

• Changing the task periods

• Changing the allowed execution times

Task periods:

• Easy for simple controllers, e.g. PID & state feedback

• More difficult for complex controllers

• Update the internal state of the controller appropriately

Execution times:

• Not applicable to most controllers 87

Anytime Controllers

Controllers where the quality of the control signal is gradually refined
the more time that is available

Model-based Predictive Control (MPC)

• On-line convex optimization problem solved each sample

• Highly varying execution times

• For fast processes the latency may effect the control perfor-
mance considerably

• The control algorithm is based on a quality-of-service type cost
measure, cp instantaneous cost

• As long as a feasible control signal has been found the iterative
search can be aborted before it has reached completion

• Maps well to the imprecise task model

– Mandatory part
– Optional part

88

Model Predictive Control

z(k)

u(k)

r(k)
ẑ(k)

û(k)

tk k+ Hu k+ Hp

In each sample, find Δû(k) . . . Δû(k+ Hu − 1) minimizing the cost

V (k) =
Hp∑
i=1

ẑ(k+ i) − r(k+ i)
2

Q +
Hu−1∑
i=0

Δû(k+ i)
2
R

given constraints on control signals and controlled variables.
89

Model Predictive Control

z(k)

u(k)

r(k)
ẑ(k)

û(k)

tk k+ Hu k+ Hp

The formulation leads to a quadratic programming problem with linear
inequality constraints

minimize ΔUT(k)H ΔU(k) − ΔUT(k)G(k) +C
subject to Ω ΔU(k) ≤ ω (k)

being solved for ΔU(k) = [Δû(k) . . . Δû(k+ Hu − 1)]. 90

Properties

• Convex optimization problem solved each sample

• Highly varying execution times → worst-case pessimistic

• Execution time depends on external factors such as
reference signals and disturbances

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Ite
ra

tio
ns

Time (s)

91

Premature Termination

• Optimization may be aborted any time after a feasible
solution has been obtained

• Based on recent stability results [Scocaert et. al. 1999]

• A solution is feasible if it fulfills the constraints and obtains
a lower cost than in the previous sample

92

Trade-off Cost vs Delay

• Assuming a constant process delay, τ < h, over the
prediction horizon

• Leads to an augmented process model

• The matrices in the cost function are computed as func-
tions of the delay, τ

Jd(ΔU i,τ) = ΔUT
i H (τ)ΔU i − ΔUT

i G(τ) +C (τ)

• The optimization algorithm is terminated based on this
delay-dependent cost

93

Trade-off Cost vs Delay

0 5 10 15 20 25
0.7

0.75

0.8

0.85

0.9

0.95
co

st

iterations

94

Full Optimization

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

P
os

iti
on

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

V
el

oc
ity

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

C
on

tr
ol

Time (s)

95

Exploiting Trade-off

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

P
os

iti
on

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

V
el

oc
ity

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

C
on

tr
ol

Time (s)

96

Iteration Comparison

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25
Ite

ra
tio

ns

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Time (s)

Ite
ra

tio
ns

97

Dynamic Scheduling of MPCs
�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�

T1

T2

M

M

M

M

O

O

I

I

hk hk+1

QP-iteration

• Mandatory part consists of finding a feasible solution

• Remaining QP-iterations scheduled using the cost func-
tions as dynamic priorities

• Reflects the relative importance of the tasks

98

Fixed-priority Scheduling

0 2 4 6 8 10 12

0

0.2

0.4

P
os

iti
on

0 2 4 6 8 10 12
−0.2

−0.1

0

0.1

0.2

V
el

oc
ity

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

C
on

tr
ol

Time (s)

99

Feedback Scheduling

0 2 4 6 8 10 12

0

0.2

0.4

P
os

iti
on

0 2 4 6 8 10 12
−0.2

−0.1

0

0.1

0.2

V
el

oc
ity

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

C
on

tr
ol

Time (s)
100

Outline

• Overview

• General Observations

• Nice Control of Linux

• Feedback Scheduling of Control Tasks

– Infinite Horizon
– Finite Horizon
– MPC

• Control of Web servers

101

Control at Different Levels

102

Controlling Computer Systems

• Feedback control is embedded in the TCP protocol in the
form of a sliding window mechanism.

• Introduced in the 70’s to solve the congestive failure
problems that had brought down the network.

• We have not experienced system-wide congestive failures
again even though the network has grown orders of
magnitude.

• This is a testament of the effectiveness of feedback control
in a highly dynamic, decentralized, and fast changing
environment.

• Can feedback control be applied to accurately control the
performance of web server systems?

103

What to Control?

• Temporal

– local (at server)
– global (End-to-

End/TCP)

• Spatial (routing)

We will focus on temporal control issues at the server.
104

Web Service Performance Control

Request
DequeuingCPU Ready Queue

Scheduler

Server
threads

Resource

Access
I/O Queue

Network I/O
Output to Clients

Client Request
Queue

Web Server

105

Difficulties

• Web server systems are stochastic with highly non-linear
behavior.

– Response times increase exponentially with utilization
at heavy load.

– Input and output saturations.

• The parameters of the stochastic process, e.g. arrival rate,
can change abruptly without warning.

• How should the server system be modeled?

• What is the control objective?

• How can we influence the system, i.e., which actuators are
available?

106

Web Server Modeling

• Queuing theory models:

– Discrete-event models
– Markov chains

• Control theory models:

– Non-linear flow models (continuous time)
– Discrete-time models

• Differential (or difference) equation models traditionally
used in control theory have their limitations.

• Works well in the case of heavy workload when the web
server can be modeled using fluid approximations.

107

Control Objective

• The main objective is to control the service delay of
individual requests.

• Can be controlled directly or indirectly by manipulating the
server queue lengths.

• The stochastic nature of the system requires averaging
(inherent in the non-linear flow model).

• Want to be able to control both long-term averages and
transient responses.

108

Actuator Mechanisms

• The difference between the service rate, μ, and the arrival
rate, λ , determines the delay experienced by the requests.

• Changing the arrival rate, admission control:

• Changing the service rate:

– Number of server threads
– Quality adaptation
– Dynamic voltage scaling

109

Absolute Delay Control

Queuing Model Based Absolute Delay Control

• L. Sha, X. Liu, UIUC and Y. Lu, T. Abdelzaher, UVa

110

Control Objective

• Want to keep the average timing delay experienced by
users close to a desired value, Dr.

• The delay specification, Dr, relates to the QoS agreement
with the end user.

• Delays consistently longer than the specification are
unacceptable to the users,

• and delays consistently shorter than the specification
indicate over-provisioning of resources.

111

Absolute Delay Control

Controller Actuator

Server

Measured delay, D

RequestsQueuing
Model

Δμ

Arrival rate, λ

μ f f

ΔD

Delay ref, Dr

μ

112

Key Ideas

• Use queuing theory to model the non-linear behavior of
the web server.

• Use the steady-state solution of the queuing model as
feed-forward control to bring the system to an equilibrium
point near the desired delay set-point.

• Example: M/M/1 queuing model where D̂ = 1
μ−λ . Use feed-

forward control, μ f f = 1
Dr
+ λ .

• Use linear feedback control to suppress approximation
errors and transient errors around the operating point.

113

Problems

• Queuing theory predicts delay as a function of arrival and
service rates.

• The prediction applies only to long-term averages.

• Insensitive to sudden load changes and does not handle
transient responses very well.

• Internet load is very bursty and may change abruptly in a
frequent manner.

• Inaccurate assumptions in the queuing model, e.g.,
Poisson distributed arrival and service processes.

114

Improved Feed-forward Prediction

Improved Feed-forward Prediction

• Y. Lu, T. Abdelzaher, UVa and D. Henriksson, LTH

115

Improved Feed-forward Predictor

Controller Actuator

Server

Measured delay, D

RequestsImproved
Predictor

Δμ

Arrival rate, λ

μ f f

ΔD

Delay ref, Dr

μ

• Based on instantaneous measurements instead of long-
term averages.

116

Notation

Ĉ = average number of processor cycles required by a request

μ = server speed

N = number of waiting requests

D̂ = average delay experience by the N requests

N D̂ = total delay experienced by the N requests

Âi = 1
N

∑i+N−1
k=i Ak = the average arrival time

Qi = tnow − Âi = average queuing time for the requests being
dequeued in the i’th sample

117

The Predictor

��
��
��
��
��
��
��
�������
�����
�����
������������
�������
�������
������������������
�����������
�����������
�������������������������

��������������
��������������
������������������������������

����������������
����������������

����������������
����������������
����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

��������������������
��������������������
��������������������

��������������������
��������������������
��������������������

������
������
������

������
������
������

A B

CD

E

F

tnow
processing time

queuing time

t

cu
m

ul
at

iv
e

ar
riv

al
s

an
d

de
pa

rt
ur

es

B ECF = ABCD + B EC − AB FD

N D̂ = N ⋅ tnow+ N ⋅ (NĈ/μ)
2 −

i+N−1∑
k=i

Ak
118

The Predictor

��
��
��
��
��
��
��
�������
�����
�����
������������
�������
�������
������������������
�����������
�����������
�������������������������

��������������
��������������
������������������������������

����������������
����������������

����������������
����������������
����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

��������������������
��������������������
��������������������

��������������������
��������������������
��������������������

������
������
������

������
������
������

A B

CD

E

F

tnow
processing time

queuing time

t

cu
m

ul
at

iv
e

ar
riv

al
s

an
d

de
pa

rt
ur

es

D̂ = tnow− Â+ NĈ
2μ

= Q̂ + NĈ
2μ

μ f f = NĈ
2(Dr − Q̂)

119

The Feedback Controller

• Event-triggered PI-controller with sliding window action.

• Need a long observation window, Nobs, to accurately es-
timate the average values of arrival rates and processing
times of requests.

• Long observation window does not imply slow control
action. Control updated every N < Nobs event (request
departure).

• Quick update steps reduce the variance and control efforts
in each sample.

• The PI-controller is implemented using gain-scheduling

– tuned for different operating points (arrival rate and
delay set-point, Dr).

• Anti-windup crucial.
120

Simulations

0 10 20 30 40 50 60
0.4

0.6

0.8

1

Time (sec.)

A
ve

ra
g

e
d

el
ay

 (
se

c.
)

0 10 20 30 40 50 60
0.4

0.6

0.8

1

Time (sec.)
A

ve
ra

g
e

d
el

ay
 (

se
c.

)

0 10 20 30 40 50 60
0.4

0.6

0.8

1

Time (sec.)

A
ve

ra
g

e
d

el
ay

 (
se

c.
)

0 10 20 30 40 50 60
0.4

0.6

0.8

1

Time (sec.)

A
ve

ra
g

e
d

el
ay

 (
se

c.
)

a) b)

c) d)

• Performed with TrueTime

• a: M/M/1, b: M/M/1 + PI, c: Predictor d: Predictor + PI

121

Experiments

• Performed at an Apache web server test-bed at the
University of Virginia.

– Sensor: average response time of incoming requests
– Actuator: number of server processes

• Load generation: Scalable URL Reference Generator
(SURGE). http://www.cs.bu.edu/faculty/crovella/links.html

• Platform: Linux-based PC cluster on 100 Mbit Ethernet.

• 4 machines of which one ran the server with HTTP 1.1,
and the rest ran clients to stress the server.

122

Apache Web Server Session Flow

Wait

Wait

Busy

Busy

Idle

Idle

KeepAlive

MaxClients

Accept
Queue

Connection ConnectionRequests Close

123

Results

124

