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MPSoCs – Hardware platforms

� Why MPSoCs?
� MSoC architectures
� Case studies

Luca Benini – DEIS Università di Bologna
lbenini@deis.unibo.it
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� Roadmap continues: 90→65→45 nm
� “Traditional” Bus- based SoCs fit in one tile !!

Architecture Evolution

� Communication demand is staggering, but unevenly 
distributed, because of architectural heterogeneity
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Multicores Are Here!
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MPSoC – 2005 ITRS roadmap
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Power is the Challenge!
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Near Term Solutions
� Move away from Frequency alone to 

deliver performance
� More on-die memory
� Multi-everywhere

� Multi-threading
� Chip level multi-processing

� Throughput oriented designs
� Performance by higher level of 

integration
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μArchitecture Techniques
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Multi-Core

C1 C2

C3 C4

Cache

Large Core

Cache

1

2

3

4

1

2 Small
Core 1 1

1

2

3

4

1

2

3

4

Power

Performance
Power = 1/4

Performance = 1/2

Multi-Core:
Power efficient

Better power and 
thermal management



5

Luca Benini ARTIST2 / UNU IIST 2007

Embedded vs. General Purpose

Embedded Applications
� Asymmetric Multi-Processing

� Differentiated Processors

� Specific tasks known early 
� Mapped to dedicated processors

� Configurable and extensible 
processors: performance, power 
efficiency

� Communication
� Coherent memory
� Shared local memories
� HW FIFOS, other direct connections

� Dataflow programming models
� Classical example – Smart 

mobile – RISC + DSP + Media 
processors

Server Applications
� Symmetric Multi-Processing

� Homogeneous cores

� General tasks known late
� Tasks run on any core

� High-performance, high-speed 
microprocessors

� Communication 
� large coherent memory space on 

multi-core die or bus

� SMT programming models 
(Simultaneous Multi-Threading)

� Examples: large server chips (eg
Sun Niagara 8x4 threads), 
scientific multi-processors
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MPSoC architectures
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Example system platforms

� Generic
� Automotive
� Wireless
� Multimedia
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PC-based platform

� Basic hardware components:
� CPU;
� memory;
� timers;
� DMA;
� minimal I/O devices.

� Basic software:
� BIOS.
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PC-style hardware architecture
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Strong ARM

� StrongARM system includes:
� CPU chip (3.686 MHz clock)
� system control module (32.768 kHz 

clock).
� Real-time clock;
� operating system timer
� general-purpose I/O;
� interrupt controller;
� power manager controller;
� reset controller.
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Pros and cons

� Plentiful hardware options.
� Simple programming semantics.
� Good software development 

environments.
� Performance-limited.
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TI Open Wireless Multimedia 
Applications Platform

� Dual-processor shared memory 
system:

GPP
OS

DSP
manager

General-purpose
processor

DSP

DSP
OS

DSP
task
& I/O
ctrl

bridge

Mem
ctrl

external memory

http://www.ti.com/sc/docs/apps/wireless/omap/overview.htm
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TI OMAP™ Hardware platform

I-MMU D-MMU

I-Cache

RISC Core

MMU

I-Cache Internal 
RAM/ROM

DSP Core
+ 

Appl Coprocessors     

DMA

Memory & Traffic Controller

Program
Memory SDRAM

Peripherals
LCD Controller, Interrupt Handlers, Timers, GPIO, UARTs, ...

� ARM9 core
� 16KB I- cache
� 8KB D- cache
� 2- way set 

associative
� 150 MHz

� C55x DSP core
� 16KB I- cache
� 8KB RAM set
� 2- way set 

associative
� 200 MHz

D-Cache
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OMAPI Standard (ST/TI)

z Goal: standardize the interfaces between 
application processor and peripheral devices in 
a mobile product

z Provide standard services (APIs) in the OS that 
can be used by application developers 
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STMicro Nomadik platform
Main Core

Memory System HW Accelerators I/Os
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Nomadik SW platform

� Compliant with OMAPI standard
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Scalable VLIW 
Media Processor:
• 100 to 300+ MHz
• 32-bit or 64-bit

Nexperia™

System Buses
• 32-128 bit

General-purpose 
Scalable RISC 
Processor
• 50 to 300+ MHz
• 32-bit or 64-bit

Library of Device
IP Blocks
• Image 
coprocessors
• DSPs
• UART
• 1394
• USB
…and more
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Middleware
JavaTV, TVPAK, OpenTV, 
MHP/Java, proprietary ...

Applications

NexperiaNexperia HardwareHardware

Streaming andStreaming and
Platform SoftwarePlatform Software K
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Nexperia-DVP Software
�Nexperia™ -DVP Software 
Architecture

� Supports multiple OSs and 
middleware software

� Abstracts platform functionality 
via consistent APIs

�Nexperia™-DVP Streaming 
Software

� Encapsulates implementation of 
streaming media components 
(hardware and software)

�Nexperia™ Platform Software
� OS independent device drivers for 

on-chip and off-chip devices
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Infineon Automotive Platform

TC1166

Applications
� High Performance drives / servo drives,
� Industrial control Robotics
Features
� 32-bit super-scalar TriCoreTM V1.3 

CPU, 4 stage pipeline
�Fully integrated DSP capabilities
�Single precision floating point unit (FPU)
�80 MHz at full industrial temperature range

� 32-bit peripheral control processor with
single cycle instruction (PCP2)

� Memories
�1.5 MByte embedded progr. flash with ECC
�32 KByte data flash - EEPROM emulation
�56 KBSRAM, 8 KB I$, 16 KB Imem

� 8-channel DMA controller
� Interrupt system with 2 x 255 hardware 

priority arbitration levels serviced by
CPU and PCP2 Coprocessor

� Triple bus structure: 64-bit local 
memory buses to internal flash and data 
memory, 32-bit system peripheral bus, 
32-bit remote peripheral bus
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HW layerHW layer

SW Platform layer
(> 60% of total SW)
SW Platform layer
(> 60% of total SW)

Application Platform layer
(≅ 10% of total SW)

Application Platform layer
(≅ 10% of total SW)

μControllers Library

OSEK
RTOS

OSEK
COM

I/O drivers & handlers
(> 20 configurable modules)

Application Programming Interface

Boot Loader

Sys. Config.

Transport

KWP 2000

CCP

Application
Specific
Software
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Application
Libraries
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SW 
Platform 
Reuse
> 70%

of total SW

SW 
Platform 
Reuse
> 70%

of total SW

Customer
Libraries

MOSAIC SW Architecture & Components for
Automotive Dashboard and Body Control
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Special Purpose processor

Stream processor
Graphic processor
Network processor

Dynamically Reconfigurable 
Processors

FPGA、Reconfigurable systems

Dedicated hardware

Programmable
Hardware

DSP

General purpose
CPU

Configurable
Processor

Tile Processor

Homogeneous
Chip-multiprocessor

Special
instructions

Multiple
Cores

Heterogeneous
Multiprocessor

Multiple Cores

High performance for
wide application field

High performance for
narrow application fieldArchitecture trends
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Task Specific (configurable) 
Processors

HDL GENERATOR

Silicon

RTL synthesis

Silicon

µcode

Processor model
D

D

Applications

SysC specs

ISA
DP

Courtesy:
Target 

Compilers T

RWTH AACHEN ⇒ Lisatek(CoWare);
IMEC  ⇒Target Compiler T, ARM OptimoDE
PHILIPS ⇒ Siliconhive; TENSILICA, PicoChip…

INSTRUCTION SET
SIMULATOR

HDL
Model Break

Step

RETARGETABLE

COMPILER

Machine
code

MACD
APAC
SACH Y,1
NEG
LAR AR3,#X
…



14

Luca Benini ARTIST2 / UNU IIST 2007

Multi-issue instruction

L operations packed in one long instruction

M copies of storage and function

SIMD operation

Parallelism at Three Levels 
in Extensible Instructions

Parallelism: L x M x N
Example:  3 x 4 x 3 = 36 ops/cycle

op

op

N dependent 
operations 

implemented 
as single 

fused 
operation 

const

register and constant inputs

reg

Fused operation

reg reg reg

op

Three forms of instruction-set parallelism:
• Very Long Instruction Word (VLIW)
• Single Instruction Multiple Data (SIMD) aka “vectors”
• Fused operations aka “complex operations”
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addi addi

l8ui

sub

abs

add

l8ui

Example:
SAD (sum of absolute differences)

short total=0;
char *p1, *p2;
for i=1,m

for j=1,n 
total += abs(*p1++ - *p2++)

Original C Code

SLOT 2SLOT 2

SLOT 1SLOT 1

SLOT 0SLOT 0

Sample Software Pipelined Schedule
Vector + Fusion + FLIX Configuration

loop j=1,n/8 by 2:
liu9x8[j];      liu9x8[j];      fusion[j-2]
liu9x8[j+1];  liu9x8[j+1];  fusion[j-1]

NO YES

Vectorize?Vectorize?
2

abs9x8

cvt9_16

add16x8

sub9x8

liu9x8liu9x8

4
8

fusion

fusion
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Dynamically Reconfigurable Processors
� Reconfigurable systems → Previous lesson

� Flexible but It takes 10’s milliseconds for dynamic reconfiguration.
� Dynamically Reconfigurable Processors

� Improves area efficiency by changing hardware structure.
� IPs used in various SoCs.
� History

� Reconfigurable Co-processor Garp(1997), CHIMAERA(2000)
� Multicontext reconfigurable devices WASMII(1992),Time-multiplexing 

FPGA(1997), PipeRench(1998), DRL(1998)
� Functional-level synthesis

� Various commercial products are available since 2000
� IPFlex DAPDNA-2, NEC electronics DRP-1, PACT Xpp, Elixent DFabrix

� SONY’s VME(Virtual Mobile Engine) is embedded in Network Workman 
and PSP

� Recently, many Japanese vendors start to develop commercial products
� Fujitsu
� Hitachi
� Lucent
� Sanyo
� Toshiba （Mep+D-Fabrix)
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Processing Element
� Specialized for media/stream processing
Coarse grain ⇔ Fine grain: LUT of FPGAs
� Components

� ALU
� Shifter＋Mask unit
� Multiplexers
� Registers

� Operations and interconnection between 
components are changeable

� No instruction fetch mechanism : A part of 
large datapath
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１ 3 8 16 Many
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Putting it all together

� Constant SoC Die Size
� Slow evolution of peripherals (area decrease)
� GP CPU sub- system complexity 2x each node (constant area),
� Embedded Memory capacity 2x at each node (constant area)
� Loosely coupled DSP sub- system complexity increase by 30% 

at each node (30% area decrease)

Hardwired                ReconfigurableHardware Accelerator

Single                                   MultipleGeneral Purpose CPU
12
22

2012

8
32

2010

642Loosely coupled Sub-Systems
456590Technology Node (nm)

200820062004
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Main trends
� Host CPU evolving toward multi-core 

architecture to meet the performance increase 
requirements

� HW acceleration mapped on reconfigurable 
arrays
� Performances close to dedicated HW in many areas
� Good fit with regular design constraints imposed by 

45nm process and beyond
� Excellent structure for best optimized power 

management
� And … FLEXIBILITY …

Luca Benini ARTIST2 / UNU IIST 2007

Reconfigurable HW (DSP fabric)

� Target signal processing and arithmetic intensive 
applications

� Reconfigurable array of simple DSP core (CNode)

� Low power architecture
� Hierarchical clock gating
� Distributed leakage control (fine grain power gating)

� Programmable DMA engine

� Reconfigurable at run time, multi task
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Mapping Flow

• Alus execute a cyclic micro-sequence

• Data exchanges through hierarchical 
clustered interconnect

• Configuration step is sequence loading 
and interconnect programming

Data in Data out

ILP + software pipelining

Procedure(In,Out,inout)

Constant A,b,c,…;

Begin

X=a-in[0];

……..

End;

Behavioral code

Data in Data out

Data in Data out

Data in

Data out

Partitioning/
static scheduling

DFG

Coarse grained 
configuration

M
U
X Clusters

Level0

Mux level 2

N0_i

N0_o

N2_o
N2_i

N1_i N1_o

Level 1
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Mapping Flow 
� 3D optimization problem 

(place/route/schedule)

� Traditional scheduling techniques for VLIW 
or clustered VLIW don’t apply
� The solution don’t take into account the spatial 

dimension of the problem

� Traditional P&R used in FPGA don't apply 
neither because they don't consider the 
time dimension
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Interconnect

4MB Multi-port 
Embedded

Memory Host
Core 2

L1
L2

Peripherals
& analog

What can fit in 45mm² in 45nm

L1

DSP

HW

DMA

L1

DSP

HW

DMA

L1

DSP

HW

DMA

L1

DSP

HW

DMA

L1

DSP

HW

DMA

L1

DSP

HW

DMA

Programmable Multimedia Accelerator

Imaging
H/W192 CNode

(40 GOPS)

Host
Core 1

L1

Video
H/W
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Case Study: GPUs
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Mobile graphics platforms

300-400 million mobile phones with graphics 
hardware (OpenGL ES) by 2009

Luca Benini ARTIST2 / UNU IIST 2007

The 3D Graphics Pipeline

Application

Scene Management

Geometry

Rasterization

Pixel Processing

Display

Frame
Buffer

Memory

Host

GPU

1. The programmer 
”sends” primitives to be 
rendered through the 
pipeline (using API 
calls)

2. The geometry stage 
does per-vertex 
operations 

3. The rasterizer stage 
does per-pixel 
operations

• Move objects (MMUL)

• Move the camera (MMUL)

• Compute lighting at vertices of 
triangle

• Project onto screen (3D to 2D)

• Clipping

• Map to window

• Given a triangle, identify every 
pixel that belongs to that triangle
−A pixel belongs to a triangle if and 

only if the center of the pixel is 
located in the interior of the triangle

−Evaluate 3 edge equations of the 
form E=Ax+By+C, where E=0 is 
exactly on the line, and positive E is 
towards the interior of the triangle.

• Interpolate colors over the 
triangle (Gouraud interpolation)

• Put images on triangles 
(texturing)

• Ensure that only what is visible 
from the camera is displayed (z-
buffering)

• Front buffer is displayed,  back 
buffer is rendered to (double 
buffering)
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Why is it hard with 3D graphics 
on mobile devices?
� Small amount of memory
� Limited instruction set
� Low clock frequency

� 100-200 MHz ARM9–400-600 MHz ARM11
� Small area on the chip for CG
� Must be cheap and physically small
� Powered by batteries!

� A memory access is one of the most expensive 
operations

� Battery growth: 9% per year
� Performance growth: 40% per year

� Small display, but very close to the eye
� Avg. Eye-to-pixel angle 1-4x larger than for desktop

Limited resources, but high quality rendering!
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PowerVR MBX low-power GPU 
Architecture
� Tile accelerator
� Image synthesis processor
� Texture and shading processor

TA ISP TSP

Features
� Tile-based rendering 
� ITC™: PowerVR internal true color: color ops on-chip at 32-bpp 
� FSAA4Free™: full screen anti-aliasing for realism at mobile display resolutions
� PVR-TC™: texture compression for small memory footprints.
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Tiled (sort middle) architecture 
� Apply geometry transf. (incl. projection) to vertices

� Create a triangle list for each tile
� Holds pointers to all triangles overlapping a tile

Luca Benini ARTIST2 / UNU IIST 2007

Tiled processing 
� Process one tile at a time, and rasterize triangles in list
� Work on local (on-chip) tile buffers 

� Color, depth, stencil
� Copy color tile buffer to off-chip display buffer

� may need to copy depth buffer as well
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P, TSP

� CPU sends triangle data to MBX
� Tile Accelerator (TA): sorts triangles, and creates a list of triangle 

pointers for each tile
� Needs an entire scene before ISP and TSP blocks can start
� So TA works on the next image, while ISP and TSP work on the current 

image  (i.e., they work in a pipelined fashion) 
� Image synthesis processor (ISP): implements Z-buffer, color buffer, 

stencil buffer for tile
� Depth testing: test 32 pixels at a time against Z-buffer

� Records which pixels are visible
� Groups pixels with same texture and sends to TSP
� These are guaranteed to be visible, so we only texture each pixel once (deferred 

texturing)
� Texture and Shading Processor (TSP): Handles texturing and shading 

interpolation
� Uses texture compression
� Performs over-sampling

TA ISP TSP
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API Confusion
3DR, Reality Lab, BRender, RenderWare

Mobile 3D API
� The Mobile 3D industry is embryonic - and moving fast!
� We are where PC graphics were in 1996 - but evolving 2-3 

times faster!
� Just nine months since OpenGL ES 1.0 released
� Compliant graphics acceleration already on the market

� OpenGL ES has become the industry standard for embedded 
graphics
� We avoided two years of API indecision that occurred on the PC

1992
OpenGL 1.0

Created

1994
OpenGL on 

Windows

1995
First OpenGL

HW on Windows

1996
OpenGL HW 
Commonplace

Mid-2003
OpenGL ES 1.0

Created

2004
First OpenGL ES 

hardware

Mid-2005
OpenGL ES HW 

Commonplace

< Two Years

Four Years
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The case for a higher abstraction
� A game is much more than just 3D rendering

� Objects, properties, relations (scene graph)
� Key frame and other animations
� Etc. (game logic, sounds, …)

� If everything else but rendering is in Java
� A very large percentage of the processing is in slow Java
� Even if rendering was 100% in HW, total acceleration remains limited

� A higher level API could help
� More of the functionality could be implemented in native (=faster) code
� Only the game logic must remain in Java

� M3G (JSR-184), a new API
� Nodes and scene graph
� Extensive animation support
� Binary file format and loader
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Freescale iMX31

� CPU: ARM11up to 665MHz
� VFP – Vector Floating Point 

Co-processor
� Image Processing Unit (IPU)
� MPEG-4 HW Encoder
� HW Power Management

� DVFSC, Power & Clock Gating

� GPU: MBX R-S 3D
� PowerVR MBX architecture

� System-On-Chip for mobile multimedia clients
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Programmable GPU Model
Application

Vertex Program

Rasterization

Fragment Program

Memory Display
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xform

xform

xform

Light

Vtx Coords

Normals

Colors

TexCoords

Primitive 
assembly

Cull
Clip

Viewport

R
asterize

Z-test
Stencil
Scissor Blend

VERTICES TRIANGLES FRAGMENTSAPPLICATION

State VectorState cmds

Input

Indices

Attribute 0

…

…

Attribute n-1

tex0

tex1

fog

�What Changes From ES 1.1 to ES 2.0?
� General-purpose attributes replace fixed input arrays
� Vertex shader programs replace transform and lighting
� General-purpose uniforms replace fixed lighting & texture state
� General-purpose varyings replace fixed fragment attributes
� Fragment shader programs replace texture / fog / alpha test

The OpenGL ES 2.0 Pipeline

Vertex Processor Fragment Processor
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PowerVR SGX
�Advanced shader-based GPU (OpenGL ES 2.0 compliant)

� USSE: scalable programmable, multi-threaded engine for graphics, video, 
imaging and other mathematically-intensive tasks. 
� Tasks are automatically broken down into processing packets which are then 

scheduled across a number of multi-threaded execution units 
� Coprocessors (texture, pixel and tiling accelerators) assist the MT EUs

� Latency tolerant architecture 
� geometry and rasterisation are decoupled using tile-based rendering, enabling on-chip 

processing hidden-surface removal and deferred pixel shading
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Cell
3.2 GHz

RSX®XDRAM
256 MB

I/O 
Bridge

HD/HD
SD

AV out

20GB/s

15GB/s

25.6GB/s

2.5GB/s

2.5GB/s

BD/DVD/CD 
ROM Drive

54GB USB 2.0 x 6

Gbit Ether/WiFi Removable Storage
MemoryStick,SD,CF

BT Controller

GDDR3
256 MB

22.4GB/s

A high-end system: PS3

A look into the future…
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Cell: Single-Chip 
Embedded Multiprocessor

© 2005 IBM Corporation53

Toshiba

Luca Benini ARTIST2 / UNU IIST 2007

SPE0
LS

(256KB)

DMA

SPE1
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DMA
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Memory
Interface
Controller

XIO

SPE2
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(256KB)
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(256KB)

DMA
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I/O
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Cell Architecture
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NVidia GeForce 7800 Architecture

L2 Tex

Cull / Clip / Setup

Shader Instruction Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

DRAM(s) DRAM(s) DRAM(s) DRAM(s)

Host / FW / VTF Vertex processing

Texture & fragment
processing

Z-compare & blend

Primitive written by CPU

Vertices fetched by vertex fetch unit

1-N vertex shaders execute “vertex programs”

Texture cache is
accessible by
VSs

Primitives are “rasterized” in fragments
(determining pixels/samples covered by primitve)

Vertex groups (primitives) are culled, clippedZ-cull quickly discards 
fragments with depth testFragments passing tests are dispatched to

one of the fragment processors (pixel shaders)

1-M fragment processors execute “fragment programs”
One unit operates on many 4-fragments (quads) in SIMD

Texture cache is heavily accessed here
Processed sampled are distributed to

Z-compare and blend units

Z-test and stencil test are performed by 1-K units
Parallel access to 1-4 DRAM buffer partitions is performed
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GF8800 replaces the pipeline model

� The future of GPUs is programmable processing
� So – build the architecture around the processor
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Geom Thread Issue Pixel Thread Issue

Data Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB
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Case study: Polycores & NoCs

Luca Benini ARTIST2 / UNU IIST 2007

Ambric AM2045 (Oct’06)
� 117MTxn (0.13CMOS) 
� 360 PE & 4.06Mb of SRAM 
� 1.08 TOPS @ 333MHz (peak)
� 14 Watts Æ 77GOPS/Watt

Microarchitecture

Embedded SoC Architecture Trends

Communication channels

“Distributed” stream processors

Asynchronous channel

Computation kernel 

Composite kernel 
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Wireless Networks Mesh nodes, Picocells

Picochip PC205 (Apr’06)
� 260MHz, 31GMAC/s, 160GIP/s 
� 64KB I,D$, 128KB SRAM 
� Less than 5 W, less than 1$/GMAC

249 16b PEs

IOs

GP core

Multi-hop interconnect

Embedded SoC Architecture Trends
Heterogeneous clusters
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Vision: What Do We Need?

� Scalable
� Don’t want to change the way I design architecture even if 

requirements scale up exponentially
� Predictable

� I want to know what to expect (latency, bandwidth), and I 
want to be able to negotiate it

� Robust
� Keeps going and going… Even if something is broken inside

� Efficient
� Silicon is expensive, power is precious

� Easy
� To create, update, analyze, verify
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Addressing Interconnect Issues

� High-end industrial solutions:
� Evolutionary path from shared busses

AMBA AXI

Protocol evolutions
AMBA AHB

AMBA AHB ML

Topology evolutions

� Challenges
� Complexity (e.g. 4-SHB + 2XBar, 75 actors): how to analyze 

and verify “spaghetti interconnects”?
� Scalability: bus is bandwidth-limited, Xbar is size-limited
� Predictability: how to tie interconnects with floorplanning

AHB

AHB

AHB

Luca Benini ARTIST2 / UNU IIST 2007

The Network-on-Chip Paradigm

DSPNI

NIDRA
M

switch

DMANI

CPU NI

NIAccel
NI MPEG

switch

switch

switch

NoC

switch

switch

The “power of NoCs”:
� Clean separation at session layer

� Cores issue end-to-end 
transactions

� Network deals with transport, 
network, link, physical

� Modularity at HW level: only
2 building blocks
� Network interface
� Switch (router)

� Physical design aware (floorplan
global routing)

Scalability is supported from the ground up!



32

Luca Benini ARTIST2 / UNU IIST 2007

Building blocks: NI

� Session-layer interface with nodes
� Back-end manages interface with switches

Front end

Backend

Standardized node interface @ session layer. 
Initiator vs. target distinction is blurred

1. Supported transactions (e.g. QoSread…)
2. Degree of parallelism
3. Session prot. control flow & negotiation

NoC specific backend (layers 1-4)
1. Physical channel interface
2. Link-level protocol
3. Network-layer (packetization)
4. Transport layer (routing)

Node Switches
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Building blocks: Switch

� Router: receives and forwards packets
� NOTE: Packet-based does not mean datagram!

� Level 3 or Level 4 routing
� No consensus, but generally L4 support is limited (e.g. simple routing)

Crossbar

Allocator
Arbiter

Output buffers
& control flow

Input buffers
& control flow

QoS &
Routing

Data ports
with control flow
wires
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Æthereal: context

� Consumer electronics
� reliability & predictability are essential
� low cost is crucial
� time to market must be reduced

� NoC offer differentiated services
� to manage (and hence reduce) resources
� to ease integration (and hence decrease TTM)
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NoC services

� Request communication services using 
connections
� opening & closing affect resource reservations

� With properties
� data integrity (uncorrupted data transfer)
� transaction ordering

� un/ordered per slave/connection
� transaction completion
� flow control

� data loss or not
� delivery bounds

� throughput, latency, jitter

correctness

completion

bounds

commitment

slave IPmaster IP
LD, ST

data
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Æthereal: features

� Conceptually, two disjoint networks
� a network with throughput+latency guarantees (GT)
� a network without those guarantees (best- effort, BE)

� Several types of commitment in the network
� combine guaranteed worst- case behaviour

with good average resource usage

priority/arbitration

best-effort
router

guaranteed
router

programming
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Router architecture

� Best-effort router
� Worm- hole routing
� Input queueing
� Source routing

� Guaranteed throughput router
� Contention- free routing

� synchronous, using slot tables
� time-division multiplexed circuits

� Store- and- forward routing
� Headerless packets

� information is present in slot table
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Contention-free routing

� Latency guarantees are easy in circuit 
switching

� Emulate circuits with packet switching
� Schedule packet injection in network

such that they never contend for same 
link at same time
� in space: disjoint paths
� in time: time-division multiplexing
� or a combination
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CFR setup

� Use best-effort packets to set up connections
� set- up & tear- down packets like in ATM (asynchronous transfer mode)

� Distributed, concurrent, pipelined
� Safe: always consistent
� Compute slot assignment compile time, run time,

or combination
� Connection opening is guaranteed to complete

(but without a latency guarantee)
with commitment or rejection
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Router implementation

� Memories (for packet storage)
� Register- based FIFOs are expensive
� RAM- based FIFOs are as expensive

� 80% of router is memory

� Special hardware FIFOs are very useful
� 20% of router is memory

� Speed of memories
� registers are fast enough
� RAMs may be too slow
� Hardware FIFOs are fast enough

iqu iqu

iquiqu

switch

iqu

iqu

msu

stu

routers based on
register-file and hardware fifos

drawn to approximately
same scale (1mm2, 0.26mm2)
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Layout

…
X

BQ

GQ

…

slot table arbiter

reconfiguration logic

programming
packets

BQ

GQ flow
control

data
packets

BQ

GQ
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Results

� 5 input and 5 output ports (arity 5)
� 0.25 mm2 CMOS12
� 500 MHz data path, 166 MHz control path
� flit size of 3 words of 32 bits
� 500x32 = 16 Gb/s throughput per link, in each direction
� 256 slots & 5x1 flit fifos for guaranteed- throughput traffic
� 6x8 flit fifos for best- effort traffic
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xpipes: context

� Typical applications targeted by SoCs
� Complex
� Highly heterogeneous (component specialization)
� Communication intensive

� xpipes is a synthesizable, heterogeneous NoC infrastructure
� Three year lifetime, mature research project

� University of Bologna (architecture)
� Stanford University (design technology)
� University of Cagliari (design and backend) 

Task1 Task2 Task4

Task3

SB

Task5

P1(T1) P4(T4)

P3(T3) P5(T5)

NI

NINI

NI

L1

Application mapping
(custom, domain-specific)
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Heterogeneous topology

SoC component specialization leads to the integration of 
heterogeneous cores

Ex. MPEG4 Decoder

� Non-uniform block sizes
� SDRAM: communication  

bottleneck
� Many neighboring cores

do not communicate

� Risk of under-utilizing many tiles and links
� Risk of localized congestion

On a homogeneous fabric:
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Example: MPEG4 decoder 

� Core graph representation with annotated
average communication requirements
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NoC Floorplans

General purpose: mesh
Application Specific 
NoC1 (centralized)

Application Specific 
NoC2 (distributed)
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Performance, area and power

� Relative link utilization
(customNoC/meshNoC):
1.5, 1.55

� Relative area
(meshNoC/customNoC):
1.52, 1.85

� Relative power
(meshNoC/customNoC):
1.03, 1.22

Less latency and better
Scalability of custom NoCs
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Xpipes: features

� Source based routing
� Very high performance switch design

� Wormhole switching
� Minimize buffering area while reducing latency

� Pipelined links 
�Link data introduction interval is not bound by wire delay
�Link-latency (# of repeater stages) insensitive operation

� Parameterizable network building blocks
�Plug-and-play composable for arbitrary network topology
�Design time tunable buffer size, link width, virtual channels, 
 # of switch I/Os

� Standard OCP interface
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Link delay bottleneck

� Wire delay is serious concern for NoC Links
� If NoC “beat” is determined by worst case link 

delay, performance can be severely limited

Ö Pipeline links
� Delay is transformed in Latency
� Data introduction speed is not bound by link delay 

any longer!
L
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xpipes Architecture:
the Network Interface

packeting

BU
FF

NoC
topology

unpacketing

packeting

BU
FF

BU
FF

OCP OCP

OCP clk xpipes clk OCP clk

� OCP 2.0 protocol to connect to IP cores
� Performs packeting/unpacketing
� Handles routing via path lookup tables

� OCP 2.0 protocol to connect to IP cores
� Performs packeting/unpacketing
� Handles routing via path lookup tables

packets packets

unpacketing

BU
FF

request channel

response channel

� Dual clock operation

initiator NI target NI
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xpipes Architecture: the Switch

ARB

M
U

XES

LATCH BUFF

BUFF

BUFF

BUFF

FLOW
CONTROL

MGR

PATH SHFTIN 0
IN 1
IN 2
IN 3

OUT 0
OUT 1
OUT 2
OUT 3

LATCH

LATCH

LATCH

ARB

ARB

ARB

PATH SHFT

PATH SHFT

PATH SHFT

1 CK cycle

� Output buffering
� Wormhole switching
� Static, source routing

� Output buffering
� Wormhole switching
� Static, source routing
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The xpipes NoC

� Packeting/unpacketing
� OCP 2.0 protocol to 

connect to IP cores
� Source routing
� Dual Clock 
� 2 Stage Pipeline

OCP OCP

OCP clk
xpipes clk

OCP clk

packeting unpacketing

packetingunpacketing

initiator NI target NI

LUT

LUTpackets

request

response

Crossbar

Allocator
Arbiter

Routing & 
Flow Control

� Wormhole switching
� Round-robin & fixed priority allocator
� Supports ACK/NACK & STALL/GO flow 

control
� ACK/NACK: Output buffered, 2 stages
� STALL/GO: Input buffered, 1 stage

� Link pipelining fully supported

� A soft macro library:

switch

� xpipes switch
(5x5 switch, 32b flit, 4-FIFO, 130nm)
� 909 MHz
� 20 FO4 delay
� 12.7 kgates (NAND2)
� 0.087 mm2

� 35.2 uW/MHz (32mW@909MHz)

� xpipes NI
� 0.8 switch area
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Communication-Centric Platforms

� A holistic approach to MPSoC architectural design 
(HW & SW) is needed!

NOC
InterconnectPEs Storage

IOs

SW

RISC: ARM9
CGA: PicoA
VLIW: ST230
ASIPs: ARC
Coproc: Video,
Graphics, Crypto

SRAM
FIFOs
DMA-SRAM
MPort-SRAM
BUF-SRAM

DRAMs
Video 
Network
SerialIO

Linux
MP-APIs
DATA-RE
Java
OpenMax
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“NoC-friendly” stream processors
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External Memory Bottleneck

� “Pull” memory channel
� Control Block keeps programmable table of objects to be moved 
� Table entries can be programmed by different cores 
� Transfer Engine shuffles data among bus and Memory Controller 
� Triggers bus or SDRAM transactions  
� Memory Controller handles SDRAM accesses

Off-chip Memory Interface Unit

Controller Transfer Engine

SDRAM

R
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M

IN
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N
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READ

DATA

CTRL

DATADATA
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Summary

� Why SoCs?
� SoC Platforms
� From SoC to MPSoC
� From MPSoC to NoC


