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Part III — MPSoC SW Platforms

= Software challenges-

= System software — middleware

= Industrial standardization intiatives
= Case studies

Luca Benini ARTIST2 / UNU TIST 2007

Architecture Evolution

oy

= Roadmap continues: 90—65—45 nm
= "Traditional” Bus Iased SoCs fit in one tile !!

= Communication demand is staggerin%, but unevenly
distributed, because of architectural heterogeneity
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Multicores Are Here!
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Multicores Are Here!
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Common Machine Languages

Uniprocessors:

Multicores:

Common Properties

Common Properties

Single flow of control

Multiple flows of control

Single memory image

Multiple local memories

Differences:

Differences:

Register File ) Register Allocg

ati

IoNumber and capabilities of cores

1SA JInstruction Selection

Communication Model

C

Functional Units ) Instruction S

h

| &ahchiniization Model

von-Neumann languages represent the
common properties and abstract away
the differences
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Need common machine language(s)
for multicores
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Embedded vs.

Embedded Applications
Asymmetric Multi-Processing

= Differentiated Processors
Specific tasks known early

= Mapped to dedicated processors
Configurable and extensible
processors: performance, power
efficiency
Communication

= Coherent memory

= Shared local memories

= HW FIFOS, other direct connections
Dataflow programming models
Classical example — Smart
mobile — RISC + DSP + Media
processors
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General Purpose

Server Applications
Symmetric Multi-Processing
= Homogeneous cores
General tasks known late
= Tasks run on any core
High-performance, high-speed
MiCroprocessors
Communication
= large coherent memory space on
multi-core die or bus
SMT programming models
(Simultaneous Multi-Threading)

Examples: large server chips (eg
Sun Niagara 8x4 threads),
scientific multi-processors
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Parallelism & Programming Models

MP is difficult: Concurrency, and “Fear of
Concurrency”

No robust and general models to automatically
extract concurrency in 20-30+ years of research

Many programming models/libraries - SMT, SMP
= OpenMP, MPI (message passing interface)

= Users manually modify code
= Concurrent tasks or threads
=« Communications
= Synchronisation

Today:

= Coarse-grained (whole application/data-wise)
concurrency — unmodified source + MP scheduler

= API for communications and synchronisation
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Sequential execution model

= The most common

= Supported by traditional (imperative) languages (C, C++,
Fortran, etc.)

= Huge bulk of legacy code
= The most well understood

= We are trained to solve problems algorithmically (sequence
of steps)

= Microprocessors have been originally designed to run
sequential code

= The easiest to debug
= Tracing the state of the CPU
= Step-by-step execution

But... it HIDES parallelism!!
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Types of Parallelism

Instruction Level Parallelism (ILP)
= Compilers & HW are mature

ata Parallel
Task Parallelism
» Parallelism explicit in algorithm

= Between filters without
producer/consumer relationship

Pipeline

Data Parallelism

= Between iterations of a stateless filter

= Place within scatter/gather pair (fission)
Gather = Can't parallelize filters with state

Pipeline Parallelism

Data . = Between producers and consumers
Clj = Statefulfilters can be parallelized

v Task
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Parallelizing Loops: a Key Problem

= 90% of execution time is in loops
= Partial success in automatic extraction

= Mostly “well-behaved loops”

= Challenges: dependency analysis & interaction with data placement
= Cooperative approaches are common

= The programmers drives automatic parallelization (openMP)

= FORALL I = FORACROSS
I = No “loop carried = Some “loop carried
dependences” I dependences”
IIII = Fully parallel I

I < |
Parallelized loops rely on Barrier Synchronization
Luca Benini ARTIST2 / UNU IIST 2007




Barrier with Pthreads

Master core ~BARRIER
only
initializes
synchronization
structures

MASTER THREAD

- suif_initenv [
- /* create worker threads %
_suif_worker (MASTERID) |

pthread_create() \. MASTER THREAD

suif_worker (MASTERID)
| 7% Call _suif_start()

SERIAL REGION 1 PARALLEL REGION
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Pthreads on Heterogeneous CPUs?

ISSUES

®= There is an OS running on
each core.

= No means for the master
core to fork new threads
on slave nodes.

= Use of pthreads is not a
suitable solution.

Heterogeneous MPSoC

SOLUTION
= Standalone
implementation.
Private || Private || Private || Private Shared - Master/SIave cores instead
Mem of threads.

= Synchronization through
shared memory.
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SPMD Barrier

MASTER CPU MASTER CPU

(© -~ sequeniat code Slaves notify

their presence
on the barrier to
the master

SLAVE CPU

O - suif_initenv \%‘k\’§§§ _
b
7~ Master releases [\

Smesssson N
start parallel
region

/dditional serial
( code is only

executed by
master core
while slaves
N wait on barrier

O

“ARALLEL REGION !
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OptComp — Backend SDK bridge

MPARM
original Master|| Slave | | Slave | | Slave
C code CPU || CPU || CPU || CPU
[ INTERCONNECT |
SUIF optimization it
pass PrivatePrivatePrivate|Privat hare
(with modifications for W || (S || e || M= I
MPARM)

gcc
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Runtime Library

The Runtime Library is responsible for

= Initializing needed synchronization features,
creating new worker threads (in the original
implementation) and coordinating their
parallel execution over multiple cores

= Providing implementation of synchronization
facilities (locks, barriers)
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Code Execution

Each CPU execute the same [tJ)rogram. Basing upon the CPU id we
separate portions of code to be executed by master and slaves.

Master CPU executes serial code, initializes synchronization
structures in shared memory, etc..

Slave CPUs only execute the parallel regions of code, behaving
like the typical slave threads

int mainQ) {
Master|| Slave | | Slave | | Slave B
CPU CPU CPU CPU if (MASTERID) {
serial code
synchronization

NoC INTERCONNECT | |’

if (SLAVEID) {

I parallel code I
Private|Private|Private||Private| [Shared T
Mem | Mem | Mem || Mem Mem Synchronization

} structures

(barriers, locks)
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Synchronization

= Parallel programming through shared memory requires
global and point-to-point synchronization

= Original implementation uses pthreads library
synchronization facilities, MPARM library uses hw
semaphores

void lock(pthread_mutex_t *lock) void lock(int *lock)

{ pthread_mutex_lock(lock); while(*lock);

} }

void unlock(pthread_mutex_t *lock) void unlock(pthread_mutex_t *lock)
; pthread_mutex_unlock(lock); } *lock = 0;
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Typical Barrier implementation

LOCK (bar->lock); struct barrier {

bar->entry_count++; lock_type lock;

if (bar->entry_count < nproc) { int entry_count;
UNLOCK (bar->lock); int exit_count;
while(bar->entry_count != nproc); } *bar;

LOCK (bar->lock);

bar->exit_count++;

if (bar->exit_count == nproc)
bar->entry_count = 0x0;

UNLOCK (bar->lock);

}else {

bar->exit_count = 0x1;

if (bar->exit_count == nproc)
bar->entry_count = 0x0; Shared counters

UNLOCK (bar->lock); protected by locks

while(bar->exit_count != nproc);
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Barrier Implementation Issues

ISSUES
= This approach is not very scalable

= Every processor notifies its arrival to the barrier
increasing the value of a common shared variable

= As the number of cores increases contention for the
shared resource may increase significantly

POSSIBLE SOLUTION

= A vector of flags, one per each core, instead of a
single shared counter
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New Barrier Implementation

typedef struct Barrier {
int entered[NSLAVES];
int usegRunt;

} Barrier;

ocs ) {

Only the slaves
spin wait on a
shared counter
that is updated by
the master

No busy-wal
due to conte
of a shared
counter. Each
slave updates its
own flag

Only the master
spin waits on
each slave’s flag
to detect their
presence on the
barrier

void Master_Release(Barrier b) {
b—->usecount++;
}
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Compiler aware of
synchronization cost?

= A lightweight implementation of the synchronization structures
allows a parallelized code with a big number of barrier
instruction to still perform better than the serial version

= It would be useful to let the compiler know about the cost of
synchronization. This would allow it not only to select the
parallelizable loops, but also to estabilish if the parallelization is
worthwhile

= For well distributed workloads across the cores the proposed
barrier performs well, but for a high degree of load imbalance
an interrupt-based implementation may be best suited. The
compiler may choose which barrier instruction to insert
depending on the amount of busy waiting

Luca Benini ARTIST2 / UNU TIST 2007

Performance analysis

= Hegi peadathéiitidinlirtimye/ass

Upper triangular 32332 metrix filing eplintiatexd-finbkstragitumssnie core
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(*) Overall number of cycles normalized by the number of cycles spent for an ideal bus transaction (1 read + 1 write)
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Performance analysis 2
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Performance analysis 3

Enabling caching of shared (read only) data

for (i=0; i<ITER; i++) 1024 int vector - 1000 sus
for (j=SIZE*ID/nprocs;
j<SIZE*(ID+1)/nprocs; j++) 1400000
tmp += A[j];
1200000
. cococo B Teex,_oh
= Allowing shared data to be aToxs id
cached improves performance o :T*’L‘:
S
but . fo00 mTnt_ch
200000 _I'l Tt id |
= Cache coherency has to be
granted by means of software ety l
flushes after a barrier instruction 0 : : s
Serial 1 2 4 8
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Dataflow/Streams

Different model of computation
= Regular and repeating computation

Independent processes (filters) [ . at - J
with explicit communication L';Fl LP°F| L';Fl
= Segregated address spaces and : 2 2

multiple program counters
Natural expression of Parallelism:

= Producer / Consumer dependencies

= Enables powerful, whole pogram

transformations
Expressing control flow is difficult
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Kahn Process Network (KPN)

= Formal model for DF [Kahn 1974][Parks&Lee 95]
= Processes run autonomously
= Communicate via unbounded FIFOs
= Synchronize via blocking read Fa Fifo
= Process is either
= executing (execute)
= communicating

-—

Fb

(send/get) get » get
. » execute
= Characteristics send gigcute
= Deterministic send send

= Distributed Control

= No Global Scheduler
is needed

» get
= Distributed Memory execute
= No memory contention send C

NATURAL MATCH for NoC Architecture
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Example: MP-Queue library

= MP Qeueis a library intended for message passing
among different cores in a MPSoc environment.

= Highly optimized C implementation:
= Low level exploitation of data structures and semaphores:
= low overhead;
« data transfer optimized for performance:
analyses of disassembled code;
= synch operations optimized for minimal interconnect utilization

= Producer onsumer paradigm, different topologies:
= 1-N
= N-1
= N-N
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Communication library API

1. Autonit_system()
1. Every core has to call it at the very beginning.
2. Allocates data structures and prepares the semaphore arrays.

2. Autoinit_producer()
1. To be called by a producer core only.
2. Requires a queue id.
3. Creates the queue buffers and signals its position to n consumers.

3. Autoinit_consumer()
1. To be called by a consumer core only.
2. Requires a queue id.
3. Waits for n producers to be bounded to the consumer structures.

4. Read()
1. Gets a message from the circular buffer (consumer only).

5. Write()
1. Puts a message into the circular buffer (producer only).
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= Notification mechanisms

available:
= Round robin.
= Notify all.
unprcégetzgsed = Target core specifying.

read
position

write
_—position -

circular
buffer

= The i-th producer:

Gets the write position index.
Puts data onto the buffer.

Signals either one consumer
(round-robin / fixed) or all
consumers (notify all).

= The i-th consumer:

Gets the read position index.
Gets data from the buffer.
Signals either one producer
(round-robin / fixed) or all
producers (notify all).
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Architectural Flexibility

Synchronization Dynamic
mechanism allocation
I .
Polling +\Interrupt Realiocasle [ Configuration space: |
" / multidimensional view )

o

Local Polli 10 {pseudo dynamic &

/ N Notification I
FIFO buffer / 3 mechanism m
location - N O/
4| Broadcast
alind Robin — |
1. Multi core
‘ architectures with
N-N s
Cacheability ~_0 distributed memory.
of shared  split, " Topology
cacheable Synchronous
and not ! 2. Purely shared
Asynchronous A
/ —  1-1 Simulation memory based
/ architectures.
/ _ 1-Nwith
' cacheable shared
Synchronization Target memory i i
semantic after consumer's N-N with 3. Hybrid platforms
reading | interrupts




Transaction Chart

= Shares bus accesses
are minimized as
much as possible:

= Local polling on
scratchpad
memories.

= Insertion and
extraction indexes
are stored into
shared memory and
protected by mutex.

= Data transfer section
involves shared bus
= Critical for
performance.

Producer Core [ : | ] C Care

I
Producer | | Consumer I
scratchpad scratchpad

gu:_m_km[_wr!m elvtoken_read

— — —done

Local
Polling

—-gdone——""

" Remotenotifying |
- doneT———

-available - |
__get and inc Index read

~—done -

" data_transfer

= -done——7F—

Remote notifying

Shared bus
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Sequence diagrams

300

= 1 producer and 1

Overall
e consumer (parallel
N e activity).
260
O Il 40 H
e | = Synch time vs pure data
40% 220 transfer.
200 = Local polling onto scratch
. semaphore
160
= Signaling to remote core
140 scratch

100

80

= “Pure” data transfer to and
from FIFO buffer in shared

60

memory

Bus cycles (1 read + 1 write)

40

20

T

0

Message size §4WDRBBS

Producer

Consumer

NU IIST 2007




Communication efficiency

1638

==)100.00%
90.00% / 4
80.00% I« —
70.00% / /:/r
& 60.00% .
c /
:8 50.00% // /
0 40.00%
t ° / + Queue 1-2 Interrupt
30.00% - ® Queue 1-1%
20.00% /://’ A Queue 1-2
B o 7
r////; M |deal Throughput
10.00% +—
0.00% : . . . . : . : ; . . |
D4 8 16 32 64 128 256 512 1024 2048 4096 8192
5
Words per token

= Comparison against
ideal point-to-point
communication.

= 1-N queues
leverages bus

pipelining:

= bigger
asymptotic
efficiency.

= Interrupt based
notification allows
more than one task
per core.
= significant
overhead (up tdg
15%).
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Low-level optimizations are critical!

’ 32 words per token ‘

’ 16 words per token ‘

- 1
0000000 <main=: 0: elalclod mov ip, sp
o: eladcood ov ip, =p 4:  e92ddg30 stmdb  sp!, {r4, r5, fp, ip, 1r, pc}
4:  e92ddsso Etmdb  sp!, {r4, r5, fp, ip, | B: e24chio4 sub fp, ip, #4 ; Oxd
8:  e3a0547F ov 5, #2130706432 ; 0x7f000q ° ezagz“ ;‘; mov '"151‘ ﬁ”wgﬁ‘fz i 0x7f000000
H esal mov r4, I H X
c:  e3a04001 ov rd, #1 ;0 14:  e24dd40l  sub sp, sp, #256 3 0x100
10:  e24cb004 Fub fp, 1p, #4 ; Oxd4 18:  e24bif4s  sub rl, fp, #276  ; Ox114
14:  ez4ddoso Eub sp, sp, #128 Y lc:  e3a02080  mov r2, #128  ; O0xB0
13: e24beda4 sub 1r, fp, #148 ; Ox94 20:  e5c54000 strb r4, [r5]
1c: a5 54000 Etrh r4, [r5] 24: e24b0g94 sub ro, fp, #148 ; Ox34
20:  e5854070 Etr r4, [r5, #112] 28: 5854070  stror4, [r3, #112]
B : eBbe000T dmias=#lel, i fro; el s r2 e 3y
BB: eZdbc054 sub ip, fp, #84 ; 0x54
Bc: e8ac000f stma-—ap!, {rd, ri, r2, r3}
BO: e8be00D0f ldmiza-—1rl, fr0, rl, 'r2, r3}
B : edac00of stma-—ip!, {ro, ri, r2, r3} NOt prOduced any
B8: esbe00of  ldmia 1r!, {r0, rl, r2, r3} more by Comp”er!!!
Bz edac00of stmia-——1p!, fro, ri, r2, r3}
a0 e89e000T ldmia——>1r, #c0, rl, r2. r3k
f14: e83c000f stmia TR e T e
48:  e5854074 stror4, [r3, #116] e epfffffe b1 0 amains
4c:e5c54004  girb rd, [r5, #4] 30:  e§854074  strord4, [r5. #116]
:? e*;‘;‘:::;: *131 00“"“?;”’ saa] 34: e{csd004  strb o ré, [, #]
H e r ro, [fp, - . | .
58:  e91basd30 Tdmdb  fp. {r4, r5. fp. sp. pc} 38:  effffffe bl 0 {me_nn:-
3c: ef1b0094 ldr r0, [fp, -#143]
40— ed1baB30  ldmdb  fp, {r4, r3, fp, sp, pc
Luca Benini ARTISTY p. {rd, rs, fp. sp pcl




Growth of assembly length for copy sections

400

375

350

325 +—
300+—
275+——

» unrolled + length
optimized

250

225
200

175

Assembly lines

150

125
100

75

o N

50— —— N

25

8 16 32 64 128 256
Words per token

= Gcec compiler avoids to
insert the multiple load
/multiple store loop from
32 words on.

= Code size would be
exponentially rising.

= Where high throughput is
required, a less compact
but more optimized
representation is desired.
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Compiler-aware optimization benefits

100.00% I I I I I x x x T I : 3 T i
= Compiler may be
90.00% e forced to unroll data
:I ’ transfer loops.
80.00% , \ g
70.00% - et E T e About 15%
NS 1 improvement with 32

60.00% " word sized
> £ messages.
§ Lodetay h \ . }o 1-1 unrolled
S 40.00% B 4 s = A Typical JPEG 8x8
= \ - la 1-2 urolled . .
W a5 009 o \ / — block is encoded in a

sk S e 32 word struct.
o |z Ideal Throughput .
20.00% - ! = 8x8x16 bit data.
.
10.00% T
0.00% " v . | | ! ! ! ' v \
4 8 16 64 128 256 512 1024 2048 4096 8192 1638
Words per token 2
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Shared cacheable memory management with flush

¢+ Queue 1-1 m Queue 1-1 4 ldeal Throughput
Cacheable shared - Flushing is
100.00% L4 & aa /:/;,/;44 <5L1 needed to avoid
“thrashing”.
90.00% // thrashing
80.00% = With small
/ messages, flush
70.00% /- e compromises
. 60.00% A performance.
5 ¥
o 50.00% = 64 words is the
K o break-even size
E 40.00% /-7 for cacheable-
shared based
30.00% communication.
20.00%
a / / = Efficiency is
10.00% = asymptotically
0.00% rising to 98% !
’ 4 8 16 32 G 23 128 256 512 1024 2048 4096 8192 163
Words per token ’
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Data bandwidth bottleneck

= Frame memory size = width x height x bits/pixel [Philips07]
= WVGA aRGB overlay: 848 x 480 x 4 ~= 1,62 MB/frame
= SDTV YUV4:2:0 8bit: 720 x576 x 1.5 ~= 0.62 MB/frame
= HDTV YUV4:2:0 8bit: 1920 x 1080 x 1.5 ~= 3.1 MB/frame
= Trends
= Resolution 1920x1080p standard for TV

*
= Longer term 2500*1600 and quad HD MPEG2 Decode (HD)

= Refresh rate 120Hz

. MPEGZ HD Baztream
= Color resolution YUV4:4:4 pm
= Increasing bit depth 10,12,16 ,_,ar.ﬁb,;,eﬂgm '
= Huge frame size > Ext DRAM | L == l s amEs
= DRAM port becomes the Fyn lzngth 2MEss || Moton /| Referznoe
architectural bottleneck!! . E}_E
Zigzag sean | qug‘:ﬁiﬁateim "'II.IIZ'.J‘EZI"IS"E Mot Eatu h
141 M8= 141 MB/s | 106 MB/s 24 MBls 84 MB/s
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Distributed objects

[Paulin TVLSIO06]

] IDL-based I/F

Distributed Object Modeling: e.g. CORBA, DCOM
Obijects represent application functionality

= Granularity of simple function to complete sub-system

Inter dgject communication via standard interface

= Use of lightweight IDL (Interface Description Language)

» Strong communication-computation decoupling: more flexibile than DF!

No assumptions on subsequent assignment of processing
engines (H/W or S/W), interconnect, O/S

Luca Benini ARTIST2 / UNU iIST 2007

What are distributed objects?

= Natural extension of OOP to distributed system
= Call methods on remote objects as well as local
= Remote call mediated by message passing
= Marshal method id, object id, parameters into request
= Update parameters with response
= Message passing layer generated automatically from
interface specification
= Maps between messages and method calls
= Generalized object reference
= includes location as well as address
= Can be copied between nodes
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Remote Method Call

methodg!
create(...!
send(node, msg)
—_—
_—
_method().
return
create(RETURNED)
?
send(node, msg)
%
return
Node 1 Node 2

Luca Benini ARTIST2 / UNU TIST 2007

Example: Redplain’s redFOX

= Flexibility & convenience of distributed objects
= Suitable for Board/Chip level Distributed System
= Compatible with
= Low Latency Messaging
= Slow processors with limited memory
= Real Time
= Maintain thread priority, Bounded Processing
Times
= Heterogeneous

= Programs, Processors (32/64 bit, mixed endian),
OSes, message transports

[Multicore Expo06]
Luca Benini ARTIST2 / UNU IIST 2007




What is a dref?

= Distributed Reference

Conceptually like C++ reference
dref<T> ~T&
dref<const T> ~ const T&
dptr<T> ~ T*
dptr<const T> ~ const T*

Knows object location and methods
= direct call if local

= Mmessage passing if needed
= Fixed size node number and object address

= Small, fixed size, fast to use, copy and transmit, valid on any node
= Control application by passing around drefs

Luca Benini ARTIST2 / UNU TIST 2007

Using drefs

Automatically generated template class specialization
classA{... };
#pragma redplain dref<A> interface implementation

Supports method calls locally and remotely
dref<A> myA(...);
myA.f();

Constructors support remote object creation

= Control nodes by creating, using and destroying remote objects on them.
= No name service needed

Can copy and pass as method parameters
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Tool Chain

redFOX injects middleware into C++ source
= No intermediate files to manage

Luca Benini ARTIST2 / UNU TIST 2007

Distributed Method Calls

Application Object
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MoCs and Productivity

= Distributed computing MoCs match NoC
architecture very well
= Difficult to convince programmers to use them
= Learning curve
= What's the productivity at steady state?
= Productivity enhancement approaches
= Automatic transformations (academia)
= New languages (academia)
= Standardized Component Iased design (industry)
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Automatic Transformations

DIFFICULT to specify

Parallel
Application Specification

EASY to specify

Sequential
Application Specification

forj=1:1:N,

[x()] = Sourcel();
end
fori=11K,

[y(i)] = Source2();
end
forj=1:1:N,

fori=1:1K,

1y, x1 = F(y), x());

end

end

fori:l:l:lé "
Oout(i)] = Si f
L MEmERE| EASY to map
DIFFICULT to map 1 s\
Tz
52 &
o
S
[Stefanov DATEQ4] ]
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New Languages

= Streamlt: a language for streaming applications

= Provides high level stream abstraction
= Exposes Pipeline Parallelism

= Improves programmer productivity

= Breaks the von Neumann language barrier
» Each filter has its own controt flow
= Each filter has its own address space
= No global time
= Explicit data movement between filters
= Compiler is free to reorganize the computation

[Amarasinghe MIT]
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Example Streamlt Filter
XX 2] s[4 567 8]0 r0ft1]ooo «— input

A\ . g
~v—
v
Lo feee  output
Stateless Stateful
float—float filter FIR (int N, float[N] weights) { float—float filter FIR (int N) {
work push 1 pop 1 peek N { work push 1 pop 1 peek N {
float result = 0; float result = 0;
for (inti=0;i<N;i++){ for (inti=0;i<N;i++){
result += weights]i] * peek(i); result += weights|i] * peek(i);
} }
pop(); pop();
push(result); ) push(result);
}
} }
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StreamIt Language Overview

filter >}
ineli
= Modular and plpeine ) may be
composable L anysweamt
language construct
= Simple structures o
Composed to creates Sp|lt]0|n .-+*"*-, parallel computation
complex graphs (" / : )
= Malleable
= Change program " Lsplitier H -+ joiner _J-+
behavior with small \\
modifications \. J
- Compller Support feedback |00p
e A
——'l joiner I——>| H splitter |—+
]
\ J J
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Industrial Approaches

TIPC, Chronos OpenMak, ...
Strongly emphasize standardization
» Platform independent

= Architecture amostic

= Very generic

Domain specific

= Large market segments (e.g. multimedia,
automotive, communication

A lot of market hype: adoption is the ultimate
measure of success
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TIPC: Transparent
Interprocess Communication

= Socket-based messaging for cluster environments
= Footprint: smaller than IP
= Performance: greater than IP
= Scalability: From a single-node to a large cluster
= Portability: OS and hardware-independent, standard socket API
= Reliability: Link failover, reliable delivery, system monitoring
= Flexibility: Dynamic discovery, location-transparent addressing

= Adapted to NoC characteristics:
= Most messages are delivered in one hop (intracluster)
= Transfer time is short for most messages
= Packet loss is low; retransmission is infrequent
= Available bandwidth and memory are high
= Packet integrity is checked by underlying hardware
= Security is not a major issue for intracluster messages
= Network topology is relatively stable [Windriver 06]
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TIPC Networking

Hierarchy of nodes within clusters within zones
within a network

:}1.\1=\

£1.1.5%

- 11.4

€1.1.2>—<1.1.3
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TIPC Messaging

All communication involves an exchange of data
between ports using sockets (AF_TIPC)

A message is a byte array from 1 to 66KB long
Connectionless and connection-oriented messaging
Services are identified by port name

K

0s¢
w
STT

Provides a consistent message passing method that is OS-agnostic
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TIPC architecture

NoC

= Location transparency for services

= Allows redundant services to gracefully (even seamlessly) handle failures
= Easy migration from a multiprocessor to a multicore system
= TIPC is open-source
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Kronos Media APIs

= An APl is a contract between hardware and software worlds
= SW developers see reduced variability across multiple platforms

= More software can reach market faster at a better level of functionality and quality
= Hardware vendors can accelerate many applications

= Adding value to their platform [Freescale 05]

Hardware Provider w; Software Developer
Hardware Provider CZ)E Software Developer
Hardware Provider O Software Developer
Hardware Provider : Software Developer
Hardware Provider x Software Developer

Khronos develops “Foundation-Level” APls
As close-to-the-HW as possible while providing portable access to hardware
acceleration. High performance.
Good foundation for higher-level engines and middleware
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100%

Market adoption in media-
accelerated handsets

Khronos’ Business Model

Open Membership Open Standards
Any company can become member Publicly available on web-site
Funded by membership dues - $5K / year Royalty-free

KHRCONOS

Open Standard Platform for Embedded RitH'Medi4 Acceleration

Cross Platform Promoting Ecosystem
Enabling diverse handheld and Conformance tests, tools,
embedded markets developer materials and outreach

Widespread,
cross-platform
availability

Rapid adoption
when silicon
ships

Silicon Designs
in progress

Mid-2004 Mid-2005 Beginning-2006 End-2006 Time

OpenGLES 1.1 Opepia! BeRREMET ST/ (108 S 9867




OpenMAX-based Media

Stack

“Application Layer”
Defines high-level
playback and recording
interface API

- — Application
Media applications can be
written portably, independent of L
the underlying media platform Qpenmx AL
Platform Media
Framework

Media components can be integrated
into flexible media graphs for

“Integration Layer”
advanced streaming media QpenMA]( IL Defines medi% componer):t interfaces
processing T
Audio Video Image
Components Components Components
Media components can be written e.g. MP3 e.g. H.264 e.g. JPEG
using primitives for portability across

diverse parallel and serial silicon -
architectures Opeﬂm DL

“Development Layer”
Defines media primitives
and concurrency
constructs

Media Engines - CPUs, DSP, Hardware
Accelerators etc.

OpenMAX layers can be implemented together or
independently from the other layers
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System Architectu

re

= OMX components behave deterministically
= Whether they are loosely or tightly accelerated

= Interop profile components are guaranteed to interoperate

= Via a specified interoperability protocol

IL Client

‘ Multimedia Framework

Framework Framework Framework Framework
Component Component Component Component
OMX
Tunneled E2E
Communication
Source Host Sink
Accelerator
Component Component Component
Component

Non - Tunneled

IPC

IPC

Communication

Hardware
Accelerated
Codec

Tunneled

Communication
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OpenMAX AL - Application Level

= Enabling application developers to easily leverage
OpenMax acceleration
= A simple high-level interface for common multimedia playback
and capture use cases
= Typical applications are found in:
= Mobile Phones
= Mobile Music/Video Players
= PDAs
= Digital still cameras
= Digital Media Adapters
= STBs, PCs, etc...
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OpenMAX IL - Integration Level

= Defines component interfaces to construct portable media graphs
= OpenMAX IL graphs are consistent across systems
= Abstracts hardware architecture
= Processor specific code is encapsulated within components
= Intelligently built components maximize system utilization
= Reusable integration with major media frameworks
= Provides a uniform interface for integration across many architectures
= Designed to sit below major frameworks - e.g. Symbian MDF, GStreamer,
= Defines a low level initialization and communication protocol
= Extensible
= Extensions to expose non standard features with only minor tweaks
= Enables Performance Comparisons and Optimization
= Common API allows benchmarking of different architectures,
implementations and frameworks
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OpenMAX IL Example Graph

= Standardized component interfaces enable
flexible media graphs

= Includes multi-stream synchronization

*mp4 /*.3gp
File Reader

File —[ |

| H.264 Video

OpenMAX IL Component Interfaces
Enables components to be flexibly
connected in any graph topology

AAC Audio

Q
- Time
Data

g

MPEG4/

-/ Decompressed [DJ

Video

Audio Audio Speak
Decoder Renderer peakers

Video Video .
Scheduler | Renderer E_' Display

’ Example: MPEG-4 video synchronized with AAC audio decode ‘
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system

Component Architecture

= Component Registration is specified for low level operating systems
= May not have a defined mechanism for discovery
= Statically linked components use OpenMAX mechanisms
= Dynamically linked components may be registered and loaded with

mechanisms

= Standard configuration structures are assigned to individual ports

= Ensuring component interoperability and may be expanded with
proprietary configurations

IL Client
Orother — " %oarﬂg%nem Parameter/
component \ onf_?uratlon
Port Commands
Callbacks Port A
And Calls Input Command
Queue
Port A Buffer
Header
Pointer
Queue
IL Client Component Event Buffer Sent
Event «<—— Handler
Handler

Configuration
Structures

Port
Callbacks

Port B
Output

And Calls

—

Header
Pointer
Queue

Port B Buffer
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Component States

= Resource allocation takes place between Loaded and Idle
= With possible resource management pending in Wait For Resources

= The invalid state is entered only upon internal detection of
a problem

WAIT FOR
RESOURCES

LOADED

UNLOADED
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OpenMAX DL — Low-Level Media API

= OpenMAX DL is a library of key static primitive functions

= Designed to cover 80% of the processing required in a multimedia codec
= Abstracts the ISA from the multimedia codec

= Enables faster codec development time and faster porting of existing codecs
= Enables third party codec vendors to sell processor-agnostic codecs

= Multi-cores architectures gain greater code reuse between cores

> 18
=
g :
£
: - :
g E =
= [ =
g O a
3 o =
( ) =
F =
An increasing number of
multimedia Agl codecs for Silicon vendors supply optimized A wide range of media
video, audio, graphics and OpenMAX DL library for rapid accelgration silicrc]qn using
images porting of codecs across multiple many diverse architectures

accelerators
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Example: OpenMAX DL Video Domain

= Computationally intensive “hotspots” for video applications
= Basic video processing building blocks
= Typical devices
= Digital still cameras, PDAs, Mobile Phones, Portable Media Players, Set-
top-boxes, PCs, etc.
= Example video primitive functions in OpenMAX DL 1.0
= 8x8 Add, Sub and 16X16 Add, Sub
= 8x8 DCT+Q+Scan and 8x8 IDCT+Q+InvScan
= MPEG-4 Variable Length Decode
= Merged functions, improved performance on some architectures
= Motion Estimation, Motion Compensation, Deblocking
= Video codecs covered by OpenMAX DL 1.0
= MPEG-4 SP/H.263 BL (encode & decode)
= H.264 (encode and decode)
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Advanced SoC Applications Scenario

0 Trarwar 0 Mesh

B,

Ot

Scalable video rendering 3D Virtual reality games Wireless protocols

= Complex object-oriented high-level design (C++