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Software challenges-
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Industrial standardization intiatives
Case studies
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Roadmap continues: 90→65→45 nm
“Traditional” Bus- based SoCs fit in one tile !!

Architecture Evolution

Communication demand is staggering, but unevenly 
distributed, because of architectural heterogeneity
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Multicores Are Here!

For uniprocessors,
C was:
•Portable
•High Performance
•Composable
•Malleable
•Maintainable 

Uniprocessors:
C is the common
machine language
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What is the common
machine language
for multicores?
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Common Machine Languages

Single memory image

Single flow of control

Common Properties
Uniprocessors:

ISA

Functional Units

Register File

Differences:
Register Allocation

Instruction Selection
Instruction Scheduling

Multiple local memories

Multiple flows of control

Common Properties
Multicores:

Communication Model

Synchronization Model

Number and capabilities of cores

Differences:

von-Neumann languages represent the 
common properties and abstract away 
the differences

Need common machine language(s) 
for multicores
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Embedded vs. General Purpose

Embedded Applications
Asymmetric Multi-Processing

Differentiated Processors

Specific tasks known early 
Mapped to dedicated processors

Configurable and extensible 
processors: performance, power 
efficiency
Communication

Coherent memory
Shared local memories
HW FIFOS, other direct connections

Dataflow programming models
Classical example – Smart 
mobile – RISC + DSP + Media 
processors

Server Applications
Symmetric Multi-Processing

Homogeneous cores

General tasks known late
Tasks run on any core

High-performance, high-speed 
microprocessors
Communication 

large coherent memory space on 
multi-core die or bus

SMT programming models 
(Simultaneous Multi-Threading)
Examples: large server chips (eg
Sun Niagara 8x4 threads), 
scientific multi-processors
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Parallelism & Programming Models
MP is difficult: Concurrency, and “Fear of 
Concurrency”
No robust and general models to automatically 
extract concurrency in 20-30+ years of research 
Many programming models/libraries - SMT, SMP

OpenMP, MPI (message passing interface)
Users manually modify code

Concurrent tasks or threads
Communications
Synchronisation

Today:
Coarse-grained (whole application/data-wise) 
concurrency – unmodified source + MP scheduler
API for communications and synchronisation
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Sequential execution model

The most common
Supported by traditional (imperative) languages (C, C++, 
Fortran, etc.)
Huge bulk of legacy code

The most well understood
We are trained to solve problems algorithmically (sequence 
of steps)
Microprocessors have been originally designed to run
sequential code

The easiest to debug
Tracing the state of the CPU
Step-by-step execution

But… it HIDES parallelism!!
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Types of Parallelism

Instruction Level Parallelism (ILP)
Compilers & HW are mature

Task Parallelism
Parallelism explicit in algorithm
Between filters without
producer/consumer relationship

Data Parallelism
Between iterations of a stateless filter 
Place within scatter/gather pair (fission)
Can’t parallelize filters with state

Pipeline Parallelism
Between producers and consumers
Stateful filters can be parallelized
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Parallelizing Loops: a Key Problem

FORALL 
No “loop carried 
dependences”
Fully parallel

FORACROSS
Some “loop carried 
dependences”

90% of execution time is in loops
Partial success in automatic extraction

Mostly “well-behaved loops”
Challenges: dependency analysis & interaction with data placement

Cooperative approaches are common
The programmers drives automatic parallelization (openMP)

Parallelized loops rely on Barrier Synchronization
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Barrier with Pthreads

Master core 
only

initializes
synchronization

structures

pthread_mutex_init()

SERIAL REGION PARALLEL REGION

BARRIER

pthread_create()
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Pthreads on Heterogeneous CPUs?

ISSUES
There is an OS running on 
each core.
No means for the master 
core to fork new threads
on slave nodes.
Use of pthreads is not a 
suitable solution.

SOLUTION
Standalone
implementation.
Master/Slave cores instead
of threads.
Synchronization through 
shared memory.

Heterogeneous MPSoC

Master
CPU

Slave
CPU

Slave
CPU

Private
Mem

Private
Mem

Private
Mem

Private
Mem

Shared
Mem

INTERCONNECT

Slave
CPU
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SPMD Barrier

SERIAL REGION PARALLEL REGION

All cores
initialize

synchronization
structures and 

common data in 
shared memory

Additional serial 
code is only
executed by
master core 
while slaves

wait on barrier

Slaves notify
their presence

on the barrier to
the master

Master releases
slaves as soon
as he’s ready to

start parallel
region
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OptComp – Backend SDK bridge

original
C code

parallel
code

MPARM 
ported
runtime
library

MPARM
Master

CPU
Slave
CPU

Slave
CPU

Private
Mem

Private
Mem

Private
Mem

Private
Mem

Shared
Mem

INTERCONNECT

Slave
CPU

SUIF optimization
pass 

(with modifications for
MPARM)

binary
code
binary
code
binary
code
binary
codegcc
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Runtime Library

The Runtime Library is responsible for

Initializing needed synchronization features, 
creating new worker threads (in the original
implementation) and coordinating their
parallel execution over multiple cores

Providing implementation of synchronization
facilities (locks, barriers)

Luca Benini ARTIST2 / UNU IIST 2007

Code Execution
Each CPU execute the same program. Basing upon the CPU id we 
separate portions of code to be executed by master and slaves.
Master CPU executes serial code, initializes synchronization 
structures in shared memory, etc..
Slave CPUs only execute the parallel regions of code, behaving 
like the typical slave threads 

Master
CPU

Slave
CPU

Slave
CPU

Private
Mem

Private
Mem

Private
Mem

Private
Mem

Shared
Mem

NoC INTERCONNECT

Slave
CPU

int main() {

…

if (MASTERID) {

serial code

synchronization

}

…

if (SLAVEID) {

parallel code

}

…

}

int main() {

…

if (MASTERID) {

serial code

synchronization

}

…

if (SLAVEID) {

parallel code

}

…

}

int main() {

…

if (MASTERID) {

serial code

synchronization

}

…

if (SLAVEID) {

parallel code

}

…

}

int main() {

…

if (MASTERID) {

serial code

synchronization

}

…

if (SLAVEID) {

parallel code

}

…

}

Synchronization
structures

(barriers, locks)
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Synchronization
Parallel programming through shared memory requires
global and point-to-point synchronization
Original implementation uses pthreads library 
synchronization facilities, MPARM library uses hw
semaphores

void lock(pthread_mutex_t *lock)
{

pthread_mutex_lock(lock);
}

void unlock(pthread_mutex_t *lock)
{

pthread_mutex_unlock(lock);
}    

void lock(int *lock)
{

while(*lock);
}

void unlock(pthread_mutex_t *lock)
{

*lock = 0;
}    
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Typical Barrier implementation

LOCK(bar->lock);
bar->entry_count++; 
if (bar->entry_count < nproc) { 

UNLOCK(bar->lock);
while(bar->entry_count != nproc);
LOCK(bar->lock);
bar->exit_count++;
if (bar->exit_count == nproc) 

bar->entry_count = 0x0;
UNLOCK(bar->lock);

} else {
bar->exit_count = 0x1;
if (bar->exit_count == nproc) 

bar->entry_count = 0x0;
UNLOCK(bar->lock);

}
while(bar->exit_count != nproc);

struct barrier {
lock_type lock;
int entry_count; 
int exit_count;

} *bar;

Shared counters
protected by locks
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Barrier Implementation Issues

ISSUES
This approach is not very scalable
Every processor notifies its arrival to the barrier
increasing the value of a common shared variable
As the number of cores increases contention for the 
shared resource may increase significantly

POSSIBLE SOLUTION
A vector of flags, one per each core, instead of a 
single shared counter
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New Barrier Implementation

typedef struct Barrier {
int entered[NSLAVES];
int usecount;

} Barrier;

void Slave_Enter (Barrier b, int id) {
int ent = b−>usecount;
b−>entered[id] = 1;
while (ent == b−>usecount);

}

void Master_Wait (Barrier b, int num_procs ) {
int i;
for (i = 1; i < num_procs ; i++)
while (!b−>entered[i]);
//Reset flags to 0

}

void Master_Release(Barrier b) {
b−>usecount++;

}

No busy-waiting
due to contention

of a shared
counter. Each

slave updates its
own flag

Only the master 
spin waits on 

each slave’s flag
to detect their

presence on the 
barrier

Only the slaves
spin wait on a 

shared counter
that is updated by

the master
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Compiler aware of 
synchronization cost?

A lightweight implementation of the synchronization structures
allows a parallelized code with a big number of barrier
instruction to still perform better than the serial version

It would be useful to let the compiler know about the cost of 
synchronization. This would allow it not only to select the 
parallelizable loops, but also to estabilish if the parallelization is
worthwhile

For well distributed workloads across the cores the proposed
barrier performs well, but for a high degree of load imbalance
an interrupt-based implementation may be best suited. The 
compiler may choose which barrier instruction to insert
depending on the amount of busy waiting
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Performance analysis

Time needed for initializing
synchronization structures in 
shared memory was measured
on a single core simulation. 

It is expected to be invariant with
increasing numbers of cores.

Simultaneous accesses to the 
shared memory generate a traffic
on the bus  that produces a 
significant overhead.

Ideal synchronization time was
estimated for the various
configurations making the master 
core wait on the barrier after all
slaves entered.

In the real case synchronization
requires additional waiting time.

Those additional cycles also 
include the contribution due to 
polling on the synchronization
structures in shared memory.

Ideal parallel execution time was
calculated simulating on one core 
the computational load of the 
various configurations.

As expected, it almost halves
with the doubling of the number
of working cores.

Overall execution time is
lenghtened by the waiting cycles
due to the concurrent accesses
to shared memory.

(*) Overall number of cycles normalized by the number of cycles spent for an ideal bus transaction (1 read + 1 write)
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Upper triangular 1024x1024 matrix filling
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Performance analysis 2

For small computational load (i.e. 
few matrix elements) initialization
and synchronization have a big 
impact on overall performance. 
No speedup. 

Possible optimizations on 
barriers in order to reduce 
accesses to shared memory.

Possible optimizations on 
initialization, serializing / 
interleaving accesses to bus.

For bigger computational load
initialization and synchronization
contribution go completely
unnoticed. Big speedup margin.

Speedup is heavily limited by
frequent accesses to shared
memory. Would pure 
computation follow the profile of 
the blue bars?

Would cacheable shared
memory regions help?
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Performance analysis 3

Allowing shared data to be
cached improves performance 
but…

Cache coherency has to be 
granted by means of software 
flushes after a barrier instruction

for (i=0; i<ITER; i++)
for (j=SIZE*ID/nprocs;

j<SIZE*(ID+1)/nprocs; j++)
tmp += A[j];

Enabling caching of shared (read- only) data
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Different model of computation
Regular and repeating computation

Independent processes (filters) 
with explicit communication

Segregated address spaces and 
multiple program counters

Natural expression of Parallelism:
Producer / Consumer dependencies
Enables powerful, whole- program 
transformations

Expressing control flow is difficult
Adder

Speaker

AtoD

FMDemod

LPF1

Scatter

Gather

LPF2 LPF3

HPF1 HPF2 HPF3

Dataflow/Streams
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Kahn Process Network (KPN)

Formal model for DF [Kahn 1974][Parks&Lee 95]
Processes run autonomously
Communicate via unbounded FIFOs
Synchronize via blocking read

Process is either
executing (execute)
communicating
(send/get)

Characteristics
Deterministic
Distributed Control

No Global Scheduler 
is needed

Distributed Memory
No memory contention

Fc

A

Fa Fb

get
execute
send C

get
execute

send
send

get
get
execute
send

Fifo

C

B

NATURAL MATCH for NoC Architecture
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Example: MP-Queue library

MP- Queue is a library intended for message- passing
among different cores in a MPSoc environment.

Highly optimized C implementation:
Low level exploitation of data structures and semaphores:

low overhead;
data transfer optimized for performance:

analyses of disassembled code;
synch operations optimized for minimal interconnect utilization

Producer- consumer paradigm, different topologies:
1-N  
N-1
N-N
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Communication library API
1. Autonit_system()

1. Every core has to call it at the very beginning.
2. Allocates data structures and prepares the semaphore arrays.

2. Autoinit_producer()
1. To be called by a producer core only.
2. Requires a queue id.
3. Creates the queue buffers and signals its position to n consumers.

3. Autoinit_consumer()
1. To be called by a consumer core only.
2. Requires a queue id.
3. Waits for n producers to be bounded to the consumer structures.

4. Read()
1. Gets a message from the circular buffer (consumer only).

5. Write()
1. Puts a message into the circular buffer (producer only).
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Communication semantics
Notification mechanisms 
available:

Round robin.
Notify all.
Target core specifying.

The i-th producer:
– Gets the write position index.
– Puts data onto the buffer.
– Signals either one consumer 

(round-robin / fixed) or all 
consumers (notify all).

The i-th consumer:
– Gets the read position index.
– Gets data from the buffer.
– Signals either one producer 

(round-robin / fixed) or all 
producers (notify all).

P2

P1C1

C2
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Architectural Flexibility

1. Multi core 
architectures with
distributed memory.

2. Purely shared
memory based
architectures.

3. Hybrid platforms
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Transaction Chart
Shares bus accesses 
are minimized as 
much as possible:

Local polling on 
scratchpad 
memories.

Insertion and 
extraction indexes 
are stored into 
shared memory and 
protected by mutex.

Data transfer section 
involves shared bus

Critical for 
performance.
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Sequence diagrams
1 producer and 1 
consumer (parallel 
activity).

Synch time vs pure data 
transfer.

Local polling onto scratch 
semaphore

Signaling to remote core 
scratch

“Pure” data transfer to and 
from FIFO buffer in shared 
memory

Message size 8 WORDS Message size 64 WORDS 
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Communication efficiency

Comparison against
ideal point-to-point
communication.

1-N queues
leverages bus 
pipelining:

bigger
asymptotic
efficiency.

Interrupt based 
notification allows
more than one task 
per core.

significant
overhead (up to
15%).
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Low-level optimizations are critical!
16 words per token 32 words per token

Not produced any
more by compiler!!!
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Growth of assembly length for copy sections

Gcc compiler avoids to
insert the multiple load
/multiple store loop from
32 words on.

Code size would be 
exponentially rising.

Where high throughput is 
required, a less compact 
but more optimized 
representation is desired.
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Compiler-aware optimization benefits

Compiler may be 
forced to unroll data 
transfer loops.

About 15% 
improvement with 32 
word sized 
messages.

A Typical JPEG 8x8 
block is encoded in a 
32 word struct.

8x8x16 bit data.
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Shared cacheable memory management with flush

Flushing is
needed to avoid
“thrashing”.

With small 
messages, flush 
compromises 
performance.

64 words is the 
break-even size 
for cacheable-
shared based
communication.

Efficiency is
asymptotically
rising to 98% !
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Data bandwidth bottleneck
Frame memory size = width x height x bits/pixel

WVGA aRGB overlay: 848 x 480 x 4 ~= 1.62 MB/frame 
SDTV YUV4:2:0 8bit: 720 x 576 x 1.5 ~= 0.62 MB/frame 
HDTV YUV4:2:0 8bit: 1920 x 1080 x 1.5 ~= 3.1 MB/frame 

Trends
Resolution 1920x1080p standard for TV 
Longer term 2500*1600 and quad HD 
Refresh rate 120Hz 
Color resolution YUV4:4:4 
Increasing bit depth 10,12,16

Huge frame size Ext DRAM
DRAM port becomes the
architectural bottleneck!!

[Philips07]

MPEG2 Decode (HD)
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Distributed objects

Object1
Object2

Object4Object3 IDL-based I/F

Distributed Object Modeling: e.g. CORBA, DCOM
Objects represent application functionality

Granularity of simple function to complete sub-system

Inter- object communication via standard interface
Use of lightweight IDL (Interface Description Language)
Strong communication-computation decoupling: more flexibile than DF!

No assumptions on subsequent assignment of processing 
engines (H/W or S/W), interconnect, O/S

[Paulin TVLSI06]
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What are distributed objects?

Natural extension of OOP to distributed system
Call methods on remote objects as well as local
Remote call mediated by message passing
Marshal method id, object id, parameters into request
Update parameters with response

Message passing layer generated automatically from 
interface specification

Maps between messages and method calls

Generalized object reference
includes location as well as address
Can be copied between nodes



Luca Benini ARTIST2 / UNU IIST 2007

Remote Method Call

Node 2Node 1

reference :Message

method()
create(...)

:Transport

send(node, msg)

:Transport :Dispatcher call_method object

method()

return

:Message

create(RETURNED)
send(node, msg)

return
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Example: Redplain’s redFOX

Flexibility & convenience of distributed objects
Suitable for Board/Chip level Distributed System
Compatible with

Low Latency Messaging
Slow processors with limited memory

Real Time
Maintain thread priority, Bounded Processing 
Times

Heterogeneous
Programs, Processors (32/64 bit, mixed endian), 
OSes, message transports

[Multicore Expo06]
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What is a dref ?

Distributed Reference
Conceptually like C++ reference
dref<T> ~ T&
dref<const T> ~ const T&
dptr<T> ~ T*
dptr<const T> ~ const T*

Knows object location and methods
direct call if local
message passing if needed

Fixed size node number and object address
Small, fixed size, fast to use, copy and transmit, valid on any node
Control application by passing around drefs
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Using drefs

Automatically generated template class specialization
class A { ... };
#pragma redplain dref<A> interface implementation

Supports method calls locally and remotely
dref<A> myA(…);
myA.f();

Constructors support remote object creation
Control nodes by creating, using and destroying remote objects on them.
No name service needed

Can copy and pass as method parameters
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Tool Chain

redFOX injects middleware into C++ source
No intermediate files to manage

counter.cpp rpp counter.cpp +
dref<counter> cc .o

ln

redfox.a

a.out

Node

Node

Node

rcc
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Distributed Method Calls

Processor 2Processor 1

Operating System

O1
r2

Application Object

dref

O2

r3

Distributed Object Kernel

Message
Transport

Distributed Object Kernel

O3

Operating System
Message
Transport

Processor 3

Distributed Object Kernel

O4

Operating System
Message
Transport

r4

r1

Invocation
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MoCs and Productivity

Distributed computing MoCs match NoC 
architecture very well
Difficult to convince programmers to use them

Learning curve
What’s the productivity at steady state?

Productivity enhancement approaches
Automatic transformations (academia)
New languages (academia)
Standardized Component- based design (industry)
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Automatic Transformations

Application

Programmable Interconnect 
(NoC)
Programmable Interconnect 
(NoC)

IP
core

IP
core

R
P

U
R

P
U

M
em

ory
M

em
ory

C
P

U
C

P
U

M
icro 

P
rocessor

M
icro 

P
rocessor

MemoryMemory

...

Programming

P1 P2

S1Source

P3 P4

Sink

Parallel
Application Specification

EASY to map

DIFFICULT to specify

for j = 1:1:N,
[x(j)] = Source1( ); 

end
for i = 1:1:K,

[y(i)] = Source2( ); 
end
for j = 1:1:N,

for i = 1:1:K,
[y(i), x(j)] = F( y(i), x(j) );

end
end
for i = 1:1:K,

[Out(i)] = Sink( y( I ) ); 
end

Sequential
Application Specification

EASY to specify

DIFFICULT to map

Translator

Map
per

COMPAAN

LA
URA

[Stefanov DATE04]
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New Languages

StreamIt: a language for streaming applications
Provides high- level stream abstraction

Exposes Pipeline Parallelism

Improves programmer productivity

Breaks the von Neumann language barrier
Each filter has its own control- flow
Each filter has its own address space
No global time
Explicit data movement between filters
Compiler is free to reorganize the computation 

[Amarasinghe MIT]
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Example StreamIt Filter
0 1 2 3 4 5 6 7 8 9 10 11 input

output

FIR
0 1

float→float filter FIR (int N, float[N] weights) { 

work push 1 pop 1 peek N {
float result = 0;

for (int i = 0; i < N; i++) {
result += weights[i] ∗ peek(i);

}
pop();
push(result);

}
}

Stateless
float→float filter FIR (int N) { 

work push 1 pop 1 peek N {
float result = 0;

for (int i = 0; i < N; i++) {
result += weights[i] ∗ peek(i);

}
pop();
push(result);

}
}

Stateful
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parallel computation

StreamIt Language Overview

Modular and 
composable

Simple structures 
composed to creates 
complex graphs

Malleable
Change program 
behavior with small 
modifications

Compiler support

may be 
any StreamIt 
language construct

joinersplitter

pipeline

feedback loop

joiner splitter

splitjoin

filter
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Industrial Approaches 

TIPC, Chronos OpenMax, …
Strongly emphasize standardization 

Platform- independent
Architecture- agnostic
Very generic

Domain specific
Large market segments (e.g. multimedia, 
automotive, communication)

A lot of market hype: adoption is the ultimate 
measure of success
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TIPC: Transparent
Interprocess Communication

Socket-based messaging for cluster environments
Footprint: smaller than IP
Performance: greater than IP
Scalability: From a single-node to a large cluster
Portability: OS and hardware-independent, standard socket API
Reliability: Link failover, reliable delivery, system monitoring
Flexibility: Dynamic discovery, location-transparent addressing

Adapted to NoC characteristics:
Most messages are delivered in one hop (intracluster)
Transfer time is short for most messages
Packet loss is low; retransmission is infrequent
Available bandwidth and memory are high
Packet integrity is checked by underlying hardware
Security is not a major issue for intracluster messages
Network topology is relatively stable [Windriver 06]
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TIPC Networking

Hierarchy of nodes within clusters within zones
within a network
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TIPC Messaging
All communication involves an exchange of data 
between ports using sockets (AF_TIPC)
A message is a byte array from 1 to 66KB long
Connectionless and connection-oriented messaging
Services are identified by port name

250

115

Provides a consistent message passing method that is OS-agnostic
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TIPC architecture

Location transparency for services
Allows redundant services to gracefully (even seamlessly) handle failures

Easy migration from a multiprocessor to a multicore system
TIPC is open-source

NoC
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Kronos Media APIs 
An API is a contract between hardware and software worlds
SW developers see reduced variability across multiple platforms

More software can reach market faster at a better level of functionality and quality
Hardware vendors can accelerate many applications

Adding value to their platform

Software DeveloperHardware Provider

Hardware Provider

Hardware Provider

Hardware Provider

Hardware Provider

Software Developer

Software Developer

Software Developer

Software Developer

Khronos develops “Foundation-Level” APIs
As close-to-the-HW as possible while providing portable access to hardware 

acceleration. High performance.  
Good foundation for higher-level engines and middleware

[Freescale 05]
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Khronos’ Business Model
Open Membership

Any company can become member
Funded by membership dues - $5K / year

Open Standards
Publicly available on web-site

Royalty-free

Cross Platform 
Enabling diverse handheld and 

embedded markets

Promoting Ecosystem
Conformance tests, tools,

developer materials and outreach

Open Standard Platform for Embedded Rich Media Acceleration 

Ma
rk
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 m
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s

Mid-2005
OpenVG 1.0 Time

Silicon Designs 
in progress 

Rapid adoption 
when silicon 

ships 

Widespread, 
cross-platform 

availability 

Mid-2004
OpenGL ES 1.1 

Beginning-2006
OpenMax IL 1.0 

End-2006
OpenSL ES 1.0

100%
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OpenMAX-based Media Stack

Media Engines - CPUs, DSP, Hardware 
Accelerators etc.

“Development Layer”
Defines media primitives 

and concurrency 
constructs

Audio 
Components  

e.g. MP3

Media components can be integrated 
into flexible media graphs for 
advanced streaming media 

processing

Media components can be written 
using primitives for portability  across 

diverse parallel and serial silicon 
architectures 

Application

Platform Media 
Framework

“Application Layer”
Defines high-level 

playback and recording 
interface API

Media applications can be 
written portably, independent of 
the underlying media platform

IL

DL

AL

“Integration Layer”
Defines media component interfaces

Video 
Components  

e.g. H.264
Image 

Components  
e.g. JPEG

OpenMAX layers can be implemented together or 
independently from the other layers
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System Architecture

OMX components behave deterministically
Whether they are loosely or tightly accelerated

Interop profile components are guaranteed to interoperate 
Via a specified interoperability protocol

IL Client

Host
Component

Accelerator
Component

Hardware
Accelerated

Codec

Source
Component

Sink
Component

OMX
Core

IPCIPC

Framework
Component

Framework
Component

Framework
Component

Framework
Component

Multimedia Framework

Tunneled
Communication

Tunneled
Communication

Non - Tunneled
Communication
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OpenMAX AL - Application Level  
Enabling application developers to easily leverage 
OpenMax acceleration

A simple high-level interface for common multimedia playback 
and capture use cases

Typical applications are found in:
Mobile Phones
Mobile Music/Video Players
PDAs
Digital still cameras
Digital Media Adapters
STBs, PCs, etc…
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OpenMAX IL - Integration Level

Defines component interfaces to construct portable media graphs
OpenMAX IL graphs are consistent across systems

Abstracts hardware architecture
Processor specific code is encapsulated within components
Intelligently built components maximize system utilization

Reusable integration with major media frameworks
Provides a uniform interface for integration across many architectures
Designed to sit below major frameworks - e.g. Symbian MDF, GStreamer,
Defines a low level initialization and communication protocol

Extensible 
Extensions to expose non standard features with only minor tweaks

Enables Performance Comparisons and Optimization
Common API allows benchmarking of different architectures, 
implementations and frameworks
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OpenMAX IL Example Graph

Standardized component interfaces enable 
flexible media graphs
Includes multi-stream synchronization

*.mp4 / *.3gp
File Reader

*.mp4 / *.3gp
File Reader

Clock 
for AV Sync

Clock 
for AV Sync

Audio
Decoder
Audio

Decoder Audio
Renderer
Audio

Renderer

Video
Scheduler

Video
Scheduler Video

Renderer
Video

Renderer

Speakers

Display

File

AAC Audio

MPEG4/
H.264 Video

Time
Data

Video
Decoder
Video

Decoder Decompressed
Video

OpenMAX IL Component Interfaces
Enables components to be flexibly 
connected in any graph topology

Example: MPEG-4 video synchronized with AAC audio decode
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Component Architecture
Component Registration is specified for low level operating systems

May not have a defined mechanism for discovery
Statically linked components use OpenMAX mechanisms
Dynamically linked components may be registered and loaded with 
system mechanisms

Standard configuration structures are assigned to individual ports
Ensuring component interoperability and may be expanded with 
proprietary configurations

Parameter/
Configuration

SET/GET

Commands

Buffer Sent

Port A
Input

Port B
Output

IL Client
Event
Handler

Component
Handle

Command
Queue

Port A Buffer
Header
Pointer
Queue

Port B Buffer
Header
Pointer
Queue

Port
Callbacks
And Calls

IL Client
Or other
component

Component Event 
Handler

Configuration
Structures

Port
Callbacks
And Calls
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Component States

Resource allocation takes place between Loaded and Idle
With possible resource management pending in Wait For Resources

The invalid state is entered only upon internal detection of 
a problem

LOADED

IDLE

EXECUTING

PAUSED

INVALID

UNLOADED

WAIT FOR
RESOURCES
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OpenMAX DL – Low-Level Media API
OpenMAX DL is a library of key static primitive functions 

Designed to cover 80% of the processing required in a multimedia codec
Abstracts the ISA from the multimedia codec

Enables faster codec development time and faster porting of existing codecs
Enables third party codec vendors to sell processor-agnostic codecs

Multi-cores architectures gain greater code reuse between cores

A wide range of media 
acceleration silicon using 

many diverse architectures
Silicon vendors supply optimized 

OpenMAX DL library for rapid 
porting of codecs across multiple 

accelerators

An increasing number of 
multimedia API codecs for 
video, audio, graphics and 

images
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Example: OpenMAX DL Video Domain
Computationally intensive “hotspots” for video applications

Basic video processing building blocks

Typical devices
Digital still cameras, PDAs, Mobile Phones, Portable Media Players, Set-
top-boxes, PCs, etc.

Example video primitive functions in OpenMAX DL 1.0
8x8 Add, Sub and 16X16 Add, Sub 
8x8 DCT+Q+Scan and 8x8 IDCT+Q+InvScan
MPEG-4 Variable Length Decode

Merged functions, improved performance on some architectures 
Motion Estimation, Motion Compensation, Deblocking

Video codecs covered by OpenMAX DL 1.0
MPEG-4 SP/H.263 BL (encode & decode)
H.264 (encode and decode)
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Advanced SoC Applications Scenario

Scalable video rendering 3D Virtual reality games Wireless protocols

Complex object-oriented high-level design (C++, Java)
Very dynamic (variable use of resources for each input)
High demand for processing (energy cost?)
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Dynamic Resource Management: Why?
The need for dynamic resource management in MPSoCs

Strongly impacts performance, energy consumption and reliability
Required by flexible (programmable/configurable) platforms
Strongly impacted by algorithm/application architecture

DRM objectives
Performance
Energy
Reliability
Variability

DRM should accomplish these task without impacting 
programmability

However, cooperative design-time/offline  run-time/online 
approaches are needed
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System Model

Distributed MPSoC
architecture

Software architecture

tile Mtile 0

processor
private

memory

cache

shared
memory

semaphores
peripheral

interrupts
peripheral

processor

private
memory

cache

addresses re-mapper addresses re-mapper

PROCESSORN

COMM. AND SYNCHRONIZ. LAYER

TASK MIGR . SUPPORTLAYER

TASK 1 TASK MTASK 2

PROCESSOR 1

OP. SYST. NOP. SYST. 1

TASK MIGR . MANAGER

HW

OS/MW

USER

DISTRIB .
FREQ.

MANAGER

resource 
management
layer

NoC
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Task migration support

Process migration to: 
facilitate thermal chip management by moving tasks away from 
hot processing elements, 
balance the workload of parallel processing
reduce power consumption by coupling with dynamic voltage 
and frequency scaling

Well developed for cache-coherent SMPs
New challenge in NoC- based MPSoCs, where each core 
runs its own local copy of the operating system in private 
memory. 

A migration paradigm similar to computer clusters
With the addition of a shared memory support for inter-
processor communication
Extremely low overhead

[Acquaviva DATE06]
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Kernel Daemons Infrastructure

The migration process is managed using two 
kinds of kernel daemons:

a master daemon on a single (master) processor, 
slave daemons on each (worker) processor. 

The master daemon is directly interfaced to the 
decision engine providing the selected policy for 
run time task allocation.
Master and slaves interact using interrupts and 
shared memory data structures to perform: 

synchronized allocation/deallocation of tasks data structures 
inside the private Oses
task data copy from the source processor to the destination 
processor

Mechanism: task replication / recreation
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Task replication

CORE
#0

CORE
#1

CORE
#2

P0 P0
S_daemon S_daemonM_daemon

private

private private

P0

task replication

P0 running P0 sleeping P0 sleepingExecution
view:

Memory
view:

shared
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Task re-creation

CORE
#0

CORE
#1

CORE
#2

S_daemon S_daemonM_daemon
private

private private

P0

task deallocation

P0 running exitedExecution
view:

Memory
view:

shared
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Task re-creation

CORE
#0

CORE
#1

CORE
#2

P0
S_daemon S_daemonM_daemon

private

private private

task re-creation

P0 P0 runningExecution
view:

Memory
view:

shared

exited
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Migration mechanism

CORE
#0

CORE
#1

process0() {
…
migration_point

if (migration_taken)
exit;

…
}

set migration request

M_daemon() {
…
load_balancing();
set_migration_request;
…
}

CORE
#2

check migration request

M? D?
P0 N    -
P1 N    -
P2 Y    1

M? D?
P0 Y    2
P1 N    -
P2 Y    1

P0

P1

P0

process0() {
…
migration_point

if (migration_taken)
exit;

…
}

S_daemon S_daemonM_daemon

task resume msg

P0 state
(data, 
user stack, 
kernel stack)

private

private private

shared
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Replication vs. Re-creation

Replication vs re-creation overhead

TASK RE-CREATION

TASK REPLICATION

Cost of replication: increased memory usage
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Frequency, Voltage Setting Support

COMM. AND SYNCHRONIZ. LAYER

PROCESSOR N

OP. SYST. N+2OP. SYST. N

HW

OS/MW

USER

FREQ.
CONTR.

N

FREQ.
CONTR.

N+1

PROCESSOR N+1 PROCESSOR N+2

STAGE
N+1

STAGE
N

STAGE
N

OP. SYST. N+1

D
A
T
A

O
U
T

D
A
T
A

I
NQ

U
E
U
E OCC.

F
R
E
Q.

Migration+dynamic f,Vdd setting critical for energy management 
DVFS for multi-stage producer-consumer streaming exploits info on 
occupancy of the synchronization queues 
@equilibrium, average output rate should match input rate in each 
queue occupancy level monitored to adjust PE speed and Vdd

Local PE frequency, voltage controller

[Carta TECS07]
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PI controller setup 1:
Low reactivity
Small steady-state oscillations

PI controller setup 2: 
High reactivity
High steady-state oscillations

Non Linear controller: 
High reactivity
Low steady-state oscillations

Controller Comparison

3- stage
pipelined streaming application

DES
dec FIR DES

enc

f/v selection f/v selection
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Pipeline/Parallel Streaming

P

W3

QP QW2

C

QW1

QW3

W1

W2

Generalization by considering stages composed by multiple 
independent processing elements working in parallel.
3-stage architecture including a producer processor P, three 
workers  W1, W2, W3 working in parallel, and a consumer 
processor C
Split-join structure:

[Alimonda ISIES06]



Luca Benini ARTIST2 / UNU IIST 2007

MISO Controller
The producer must look at three output queues:

MISO (Multiple Input-Single Output) controller
The control rule is the same as for simple pipeline

BUT: what queue we have to look now?
Average (AVG)
Minimum (MIN)
Maximum difference (MAX-DIFF)

They are currently under test using a software 
FMRadio benchmark

DemodFPF

Equalizer

BPF

BPF

BPF

MUX
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Energy Efficiency Comparison

Non- linear control strategy requires 50% of energy 
consumption wrt the ON- OFF controller
30% of energy consumption wrt open- loop (Vertigo)

Energy
Pipeline/parallel soft real-time

0

2000

4000

6000

8000

10000

12000

Prod Wk 1 Wk 2 Wk 3 Total

En
er

gy
 [m

J]

Non-linear
ONOFF
Vertigo
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DVFS + Task migration

Parallel DES load balancing on 4 processors 
configuration

PROCESSOR 3

PROCESSOR 2

PROCESSOR 1

PROCESSOR 0

WK-2

WK-1

WK-0

PROD.

PROCESSOR 1

PROCESSOR 2

PROCESSOR 3

PROCESSOR 0

WK-2

WK-1

WK-0

CONS.PROD.

INITIAL MAPPING POST-MIGRATION MAPPING

CONS.

MIGRATION

MIGRATION

MIGRATION
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time

D
at

a

Scalable 3D decoding (per object): Memory:

Static memory vs Dynamic Memory (DM): 
Compile-time (worst case)

Low quality High qualityMedium quality

Memory size

t1 t2 t3 t4

NO!

Object1

Object 1

Object 2

Object 3

Object2

Object3

[Atienza DATE05]
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time

D
at

a

Scalable 3D decoding (per object): Memory:

Low quality High qualityMedium quality

Memory size

t1 t2 t3 t4

Object 2

Object2

Object1

Object 1

Object 4

OK!Object4

t5

Object3 Memory usage 
scales to   
current input!

Static memory vs Dynamic Memory: 
Run-time (or DM Management)

Object 3

Object 5

Object 5
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New issues in DMMs for MPSoCs
Low Latency

Malloc/new() & Free()/delete() must perform like in 
monoprocessor systems

Scalability
Performance should scale linearly with number of 
processors (independent of number of memories)

Memory efficiency (blowup problem)
Fragmentation competitive with monoprocessors

Orthogonality
Independent of threading models (supporting large number 
of threads in preemptive multitasking environment).

Minimal interconnection traffic
No cache coherency protocol synchronization
Software-based local & main heaps synchronization
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State-of-the-art DMMs MPSoCs (1)

Single shared heap (e.g., Solaris libc, McRT- Malloc)
1 global mutex
Simple design (1 extra layer to monoproc DMM)
No heap memory wastage

LatencyLatency

Not scalable (4-8 proc)Not scalable (4-8 proc)
High

interconnect
traffic (sync) 

High
interconnect
traffic (sync) HW 

HW ex
han

ce
men

t

ex
han

ce
men

t: : 

tra
nsa

cti
onal

tra
nsa

cti
onal

mem
orie

s

mem
orie

s
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LockedHeap

DMMHeap

void * malloc (sz) {
acquire lock;
void * p = 
release lock;
return p;

}

class LockedMallocHeap:
public LockedHeap<DMMHeap> {};

SuperHeap::malloc (sz);

State-of-the-art DMMs MPSoCs (1)

Protecting the upper global heap: 
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State-of-the-art DMMs MPSoCs (2)

Private heap per thread (e.g., CilK, STL)
Memory footprint wastage
Almost no synchronization per thread (local heaps)

Shared

synchro

Shared

synchro

Heap memory sizeHeap memory size

False sharing

(blowup)

False sharing

(blowup)

Special

Special HW 
HW support

support

Locked

Locked/store
/store

conditional

conditional
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State-of-the-art DMMs MPSoCs (3)

Multiple threads per local heap (e.g., Hoard, LFMalloc, 
Vee-Hsu)

Hierarchical structure of shared blocks
Limited false sharing (no blowup)

Tuning
per app.

Tuning
per app.

Extra heaps to avoid
contention

Extra heaps to avoid
contention Threads

have to
become
‘mature’

Threads
have to
become
‘mature’

Emptiness

Emptiness

threshold

threshold
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Still to come in DMMs for MPSoCs
Tuning of DMMs for MPSoCs

Profiling mechanisms not available, manual work
Exploitation of hardware

Scratchpad memories not supported
Management of heaps for HW-controlled caches

Complex design
Custom synchronization methods  
No standard & flexible implementation methods
Support for hardware synchronization in final architecture

Non-orthogonal
Dependencies on number of threads

Influence of interconnect 
Monitoring interconnect status (e.g, congestion?) 
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Debugging
When real code is running on a real MP 
system/models, “bad” things happen
Debugging challenges

Tracing bugs across multiple models of computation
Loosely coupled composition of subsystems
Several different ISA processors
Multiple languages and communications models

How to sanely move from paradigm to paradigm?
A single debugging “driver seat” 

Preferably not with a different debugger per processor
Provide true MP Debug with a unified system view
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Debug & Simulation

Today, simulation speed  
is limiting
Need faster simulation

Enabling trade offs
Flexibility: appropriate 
accuracy at appropriate 
speed

Today, single core 
debugging approaches 
don’t scale to MPSoC
Need true multi 
processor debug

Focused on threads
Scaling to 10+ processors

Source: ARM IQ Magazine

Source: ARM IQ Magazine
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Performance tuning/ Benchmarking

Real-life Application complexity is huge
Current embedded benchmarks are 
focused on single processors
Need to assess scalability (future proof)
Real applications vs. microbenchmarks

Finding common denominator
Generalize to assess future scalability
Compose to assess mixed workload
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μbenchmarks – UCB’s 14 dwarfs

HPC Embed SPEC ML Games DB
1 Dense Matrix
2 Sparse Matrix
3 Spectral (FFT)
4 N-Body
5 Structured Grid
6 Unstructured
7 MapReduce
8 Combinational
9 Nearest Neighbor

10 Graph Traversal
11 Dynamic Prog
12 Backtrack/ B&B
13 Graphical Models
14 FSM

Case study: 
Mercury’s Multicore Plus SDK for CELL

A mature software environment
for a high-performance MPSoC

[Mercury IEEE AESS06]
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Cell BE Processor Architecture

Heterogeneous, distributed memory multiprocessor 
with explicit DMA over a ring-NoC
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Mercury Approach to Cell SDK
Pragmatic

Can’t wait for tools to mature
Develop in-house tools when needed

Emphasis on explicitly programming the architecture rather 
than trying to hide it

When the tools are immature, this allows us to get maximum 
performance 

Achieve usability, portability through function offload model
Run legacy code on PPE
Offload compute intensive workload to SPEs

An API for programming heterogeneous multicores with 
explicit non-cached memory hierarchies
Provides an abstract view of the hardware oriented  toward 
computation of multidimensional data sets
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MultiCore Framework Abstractions
Function offload model

Worker Teams: Allocate tasks to SPEs
Plug-ins: Dynamically load and unload functions from 

within worker programs
Data movement

Distribution Objects: Defining how n-dimensional data is 
organized in memory

Tile Channels: Move data between SPEs and main 
memory

Re-org Channels: Move data among SPEs
Multibuffering: Overlap data movement and computation

Miscellaneous
Barrier and semaphore synchronization
DMA-friendly memory allocator
DMA convenience functions
Performance profiling
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MCF Distribution Objects

One complete data set in main memory

Frame

Distribution Object parameters:
Number of dimensions
Frame size
Tile size and tile overlap
Array indexing order
Compound data type organization (e.g. split / interleaved)
Partitioning policy across workers, partition overlap

One complete data set in main memory

Unit of work for an SPE

Tile

FramePartitions
SPE 0

SPE 1

SPE 2

Partitions
SPE 0

SPE 1

SPE 2

Tile Channel
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manager (PPE) 
generates data set 
and injects it into 
input tile channel

input tile channel 
subdivides data set 
into tiles

each worker (SPE) 
extract tiles out of 
input tile channel 
...

... computes 
on input tiles 
to produce 
output tiles...

...and inserts 
them into 
output tile 
channel

output tile channel 
automatically puts 
tiles into correct 
location in output 
data set

when output data 
set is complete, 
manager is notified 
and extracts data 
set

manager

worker 1

worker 2

worker 3

input tile channel

output tile channel

MCF Tile Channels

Luca Benini ARTIST2 / UNU IIST 2007

MCF Manager Program
main(int argc, char **argv) {

mcf_m_net_create();
mcf_m_net_initialize();

mcf_m_net_add_task();
mcf_m_team_run_task();

mcf_m_tile_distribution_create_3d(“in”);
mcf_m_tile_distribution_set_partition_overlap(“in”);
mcf_m_tile_distribution_create_3d(“out”);

mcf_m_tile_channel_create(“in”);
mcf_m_tile_channel_create(“out”);
mcf_m_tile_channel_connect(“in”);
mcf_m_tile_channel_connect(“out”);

mcf_m_tile_channel_get_buffer(“in”);

// fill input data here

mcf_m_tile_channel_put_buffer(“in”);
mcf_m_tile_channel_get_buffer(“out”); 

// process output data here
}

Add worker tasks

Specify data 
organization

Create and connect
to tile channels

Get empty source 
buffer

Fill it with data
Send it to workers

Wait for results 
from workers
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MCF Worker Program

mcf_w_main (int n_bytes, void * p_arg_ls) {
mcf_w_tile_channel_create(“in”);
mcf_w_tile_channel_create(“out”);
mcf_w_tile_channel_connect(“in”);
mcf_w_tile_channel_connect(“out”);

while (! mcf_w_tile_channel_is_end_of_channel(“in”) 
{

mcf_w_tile_channel_get_buffer(“in”);

mcf_w_tile_channel_get_buffer(“out”);

// Do math here

mcf_w_tile_channel_put_buffer(“in”);

mcf_w_tile_channel_put_buffer(“out”);
}

}

Create and connect
to tile channels

Get full source 
buffer

Put back empty 
source buffer

Put back full
destination buffer

Get empty 
destination bufferDo math and fill 

destination buffer
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MCF Implementation

Consists of
PPE library
SPE library and tiny executive (12 KB)

Utilizes Cell Linux “libspe” support
But amortizes expensive system calls
Reduces overhead from milliseconds to microseconds
Provides faster and smaller footprint memory allocation library

Based on Data Reorg standard 
http://www.data-re.org

Derived from existing Mercury technologies
Other Mercury RDMA-based middleware
DSP product experience with small footprint, non-cached 
architectures
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Scientific Algorithm Library
SAL is a collection of optimized functions

Baseline
Arithmetic, data type conversions, data moves

DSP
FFTs, convolutions, correlation, filters, etc.

Linear Algebra
Linear systems, matrix decomposition, etc.

Parallel Algorithms (future)
High level algorithms on multiple cores
Invoked from application running on PPE
Automatically use one or more SPEs
Initial work done for 1D and 2D FFTs and fast convolutions

PIXL – Image Processing Library
Edge detection, fixed point operations and analysis, filtering, manipulation, 
erosion, dilation, histogram, lookup tables, etc.
Work in this area depend on customer demand.

PPE SAL based on Altivec optimizations for G4 and G4A2 
SAL C source code version also available

SPE SAL is new implementation optimized for SPE architecture
Backwards compatibility with existing SAL API except in very rare cases
Some new APIs needed in order to extract best performance from SPE
Static and plug-in component versions for each function
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Eclipse Framework
Provides an open platform for creating
an Integrated Development
Environment (IDE)
Eclipse Consortium manages
continuous development of the tool
Eclipse plug-ins extend the functionality
of the framework
Written in Java
Compilers, debuggers, TATL, helpfiles, 
etc. are all be Eclipse plug-ins.

PPE and SPE cross build support for
Gcc/gcc++
XLC/C++

Eclipse CDT (C/C++ Development Toolkit)
Syntax highlighting
Code completion
Content assistance
Makefile generation
Remote debugging of PPE and SPE applications
TATL plug-in
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TATL™ Trace Analysis Tool

Log events from PPE 
& SPE threads 
across multiple Cell 
chips
Synchronized global 
timestamps
Minimally intrusive in 
space and time
Timeline trace and 
histogram viewers
Structured log file for 
use in other tools 
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SPE Assembly Development Kit

The SPE architecture encourages “bare metal programmers” 
Very deterministic architecture
Performance benefits from hand tuning the pipelines

SPE-ADK dramatically improves bare metal productivity
SPE-ADK consists of

Assembler preprocessor, optimizer and macro library
Using SPE-ADK is similar to programming with SPE C 
extensions

But with more deterministic control of instruction scheduling and 
hardware resources

SPE-ADK is a productized version of the internal 
development tool used by all Mercury SAL developers
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Summing up

Harnessing the potential of NoC architectures 
from the SW “driver seat” is tough
Programmers need all the help
The landscape is shaping up rapidly

Support for MoCs with exposed parallelism
Frontier of research

Efficient implementation
Parallelism extraction
Dynamic resource management


