
Luca Benini ARTIST2 / UNU IIST 2007

Part III – MPSoC SW Platforms

Software challenges-
System software – middleware
Industrial standardization intiatives
Case studies

Luca Benini – DEIS Università di Bologna
lbenini@deis.unibo.it

Luca Benini ARTIST2 / UNU IIST 2007

Roadmap continues: 90→65→45 nm
“Traditional” Bus- based SoCs fit in one tile !!

Architecture Evolution

Communication demand is staggering, but unevenly
distributed, because of architectural heterogeneity

I/0

I/0

PE

PE PE PE

SRAM SRAM

DRAM

I/O

I/O
P
E
R
I
P
H
E
R
A
L
S

3D
 stacked m

ain m
em

ory

PE

Local
Memory

hierarchy

CPU

i/o

Luca Benini ARTIST2 / UNU IIST 2007

Multicores Are Here!

For uniprocessors,
C was:
•Portable
•High Performance
•Composable
•Malleable
•Maintainable

Uniprocessors:
C is the common
machine language

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005

Raw

Power4
Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480

20??

of
cores

1

2

4

8

16

32

64

128
256

512

Opteron 4P
Xeon MP

Athlon

Ambric
AM2045

Luca Benini ARTIST2 / UNU IIST 2007

What is the common
machine language
for multicores?

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005

Raw

Power4
Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480

20??

of
cores

1

2

4

8

16

32

64

128
256

512

Opteron 4P
Xeon MP

Athlon

Ambric
AM2045

Multicores Are Here!

Luca Benini ARTIST2 / UNU IIST 2007

Common Machine Languages

Single memory image

Single flow of control

Common Properties
Uniprocessors:

ISA

Functional Units

Register File

Differences:
Register Allocation

Instruction Selection
Instruction Scheduling

Multiple local memories

Multiple flows of control

Common Properties
Multicores:

Communication Model

Synchronization Model

Number and capabilities of cores

Differences:

von-Neumann languages represent the
common properties and abstract away
the differences

Need common machine language(s)
for multicores

Luca Benini ARTIST2 / UNU IIST 2007

Embedded vs. General Purpose

Embedded Applications
Asymmetric Multi-Processing

Differentiated Processors

Specific tasks known early
Mapped to dedicated processors

Configurable and extensible
processors: performance, power
efficiency
Communication

Coherent memory
Shared local memories
HW FIFOS, other direct connections

Dataflow programming models
Classical example – Smart
mobile – RISC + DSP + Media
processors

Server Applications
Symmetric Multi-Processing

Homogeneous cores

General tasks known late
Tasks run on any core

High-performance, high-speed
microprocessors
Communication

large coherent memory space on
multi-core die or bus

SMT programming models
(Simultaneous Multi-Threading)
Examples: large server chips (eg
Sun Niagara 8x4 threads),
scientific multi-processors

Luca Benini ARTIST2 / UNU IIST 2007

Parallelism & Programming Models
MP is difficult: Concurrency, and “Fear of
Concurrency”
No robust and general models to automatically
extract concurrency in 20-30+ years of research
Many programming models/libraries - SMT, SMP

OpenMP, MPI (message passing interface)
Users manually modify code

Concurrent tasks or threads
Communications
Synchronisation

Today:
Coarse-grained (whole application/data-wise)
concurrency – unmodified source + MP scheduler
API for communications and synchronisation

Luca Benini ARTIST2 / UNU IIST 2007

Sequential execution model

The most common
Supported by traditional (imperative) languages (C, C++,
Fortran, etc.)
Huge bulk of legacy code

The most well understood
We are trained to solve problems algorithmically (sequence
of steps)
Microprocessors have been originally designed to run
sequential code

The easiest to debug
Tracing the state of the CPU
Step-by-step execution

But… it HIDES parallelism!!

Luca Benini ARTIST2 / UNU IIST 2007

Types of Parallelism

Instruction Level Parallelism (ILP)
Compilers & HW are mature

Task Parallelism
Parallelism explicit in algorithm
Between filters without
producer/consumer relationship

Data Parallelism
Between iterations of a stateless filter
Place within scatter/gather pair (fission)
Can’t parallelize filters with state

Pipeline Parallelism
Between producers and consumers
Stateful filters can be parallelized

Scatter

Gather

Scatter

Gather

Task

P
ip

el
in

e

Data

Data Parallel

Luca Benini ARTIST2 / UNU IIST 2007

Parallelizing Loops: a Key Problem

FORALL
No “loop carried
dependences”
Fully parallel

FORACROSS
Some “loop carried
dependences”

90% of execution time is in loops
Partial success in automatic extraction

Mostly “well-behaved loops”
Challenges: dependency analysis & interaction with data placement

Cooperative approaches are common
The programmers drives automatic parallelization (openMP)

Parallelized loops rely on Barrier Synchronization

Luca Benini ARTIST2 / UNU IIST 2007

Barrier with Pthreads

Master core
only

initializes
synchronization

structures

pthread_mutex_init()

SERIAL REGION PARALLEL REGION

BARRIER

pthread_create()

Luca Benini ARTIST2 / UNU IIST 2007

Pthreads on Heterogeneous CPUs?

ISSUES
There is an OS running on
each core.
No means for the master
core to fork new threads
on slave nodes.
Use of pthreads is not a
suitable solution.

SOLUTION
Standalone
implementation.
Master/Slave cores instead
of threads.
Synchronization through
shared memory.

Heterogeneous MPSoC

Master
CPU

Slave
CPU

Slave
CPU

Private
Mem

Private
Mem

Private
Mem

Private
Mem

Shared
Mem

INTERCONNECT

Slave
CPU

Luca Benini ARTIST2 / UNU IIST 2007

SPMD Barrier

SERIAL REGION PARALLEL REGION

All cores
initialize

synchronization
structures and

common data in
shared memory

Additional serial
code is only
executed by
master core
while slaves

wait on barrier

Slaves notify
their presence

on the barrier to
the master

Master releases
slaves as soon
as he’s ready to

start parallel
region

Luca Benini ARTIST2 / UNU IIST 2007

OptComp – Backend SDK bridge

original
C code

parallel
code

MPARM
ported
runtime
library

MPARM
Master

CPU
Slave
CPU

Slave
CPU

Private
Mem

Private
Mem

Private
Mem

Private
Mem

Shared
Mem

INTERCONNECT

Slave
CPU

SUIF optimization
pass

(with modifications for
MPARM)

binary
code
binary
code
binary
code
binary
codegcc

Luca Benini ARTIST2 / UNU IIST 2007

Runtime Library

The Runtime Library is responsible for

Initializing needed synchronization features,
creating new worker threads (in the original
implementation) and coordinating their
parallel execution over multiple cores

Providing implementation of synchronization
facilities (locks, barriers)

Luca Benini ARTIST2 / UNU IIST 2007

Code Execution
Each CPU execute the same program. Basing upon the CPU id we
separate portions of code to be executed by master and slaves.
Master CPU executes serial code, initializes synchronization
structures in shared memory, etc..
Slave CPUs only execute the parallel regions of code, behaving
like the typical slave threads

Master
CPU

Slave
CPU

Slave
CPU

Private
Mem

Private
Mem

Private
Mem

Private
Mem

Shared
Mem

NoC INTERCONNECT

Slave
CPU

int main() {

…

if (MASTERID) {

serial code

synchronization

}

…

if (SLAVEID) {

parallel code

}

…

}

int main() {

…

if (MASTERID) {

serial code

synchronization

}

…

if (SLAVEID) {

parallel code

}

…

}

int main() {

…

if (MASTERID) {

serial code

synchronization

}

…

if (SLAVEID) {

parallel code

}

…

}

int main() {

…

if (MASTERID) {

serial code

synchronization

}

…

if (SLAVEID) {

parallel code

}

…

}

Synchronization
structures

(barriers, locks)

Luca Benini ARTIST2 / UNU IIST 2007

Synchronization
Parallel programming through shared memory requires
global and point-to-point synchronization
Original implementation uses pthreads library
synchronization facilities, MPARM library uses hw
semaphores

void lock(pthread_mutex_t *lock)
{

pthread_mutex_lock(lock);
}

void unlock(pthread_mutex_t *lock)
{

pthread_mutex_unlock(lock);
}

void lock(int *lock)
{

while(*lock);
}

void unlock(pthread_mutex_t *lock)
{

*lock = 0;
}

Luca Benini ARTIST2 / UNU IIST 2007

Typical Barrier implementation

LOCK(bar->lock);
bar->entry_count++;
if (bar->entry_count < nproc) {

UNLOCK(bar->lock);
while(bar->entry_count != nproc);
LOCK(bar->lock);
bar->exit_count++;
if (bar->exit_count == nproc)

bar->entry_count = 0x0;
UNLOCK(bar->lock);

} else {
bar->exit_count = 0x1;
if (bar->exit_count == nproc)

bar->entry_count = 0x0;
UNLOCK(bar->lock);

}
while(bar->exit_count != nproc);

struct barrier {
lock_type lock;
int entry_count;
int exit_count;

} *bar;

Shared counters
protected by locks

Luca Benini ARTIST2 / UNU IIST 2007

Barrier Implementation Issues

ISSUES
This approach is not very scalable
Every processor notifies its arrival to the barrier
increasing the value of a common shared variable
As the number of cores increases contention for the
shared resource may increase significantly

POSSIBLE SOLUTION
A vector of flags, one per each core, instead of a
single shared counter

Luca Benini ARTIST2 / UNU IIST 2007

New Barrier Implementation

typedef struct Barrier {
int entered[NSLAVES];
int usecount;

} Barrier;

void Slave_Enter (Barrier b, int id) {
int ent = b−>usecount;
b−>entered[id] = 1;
while (ent == b−>usecount);

}

void Master_Wait (Barrier b, int num_procs) {
int i;
for (i = 1; i < num_procs ; i++)
while (!b−>entered[i]);
//Reset flags to 0

}

void Master_Release(Barrier b) {
b−>usecount++;

}

No busy-waiting
due to contention

of a shared
counter. Each

slave updates its
own flag

Only the master
spin waits on

each slave’s flag
to detect their

presence on the
barrier

Only the slaves
spin wait on a

shared counter
that is updated by

the master

Luca Benini ARTIST2 / UNU IIST 2007

Compiler aware of
synchronization cost?

A lightweight implementation of the synchronization structures
allows a parallelized code with a big number of barrier
instruction to still perform better than the serial version

It would be useful to let the compiler know about the cost of
synchronization. This would allow it not only to select the
parallelizable loops, but also to estabilish if the parallelization is
worthwhile

For well distributed workloads across the cores the proposed
barrier performs well, but for a high degree of load imbalance
an interrupt-based implementation may be best suited. The
compiler may choose which barrier instruction to insert
depending on the amount of busy waiting

Luca Benini ARTIST2 / UNU IIST 2007

Upper triangular 32x32 matrix filling

0

500

1000

1500

2000

2500

Serial 1 2 4 8
Cores

C
os

t (
*)

Texec (overhead)
Texec (ideal)
Tsync (overhead)
Tsync (ideal)
Tinit (overhead)
Tinit (ideal)

Performance analysis

Time needed for initializing
synchronization structures in
shared memory was measured
on a single core simulation.

It is expected to be invariant with
increasing numbers of cores.

Simultaneous accesses to the
shared memory generate a traffic
on the bus that produces a
significant overhead.

Ideal synchronization time was
estimated for the various
configurations making the master
core wait on the barrier after all
slaves entered.

In the real case synchronization
requires additional waiting time.

Those additional cycles also
include the contribution due to
polling on the synchronization
structures in shared memory.

Ideal parallel execution time was
calculated simulating on one core
the computational load of the
various configurations.

As expected, it almost halves
with the doubling of the number
of working cores.

Overall execution time is
lenghtened by the waiting cycles
due to the concurrent accesses
to shared memory.

(*) Overall number of cycles normalized by the number of cycles spent for an ideal bus transaction (1 read + 1 write)

Luca Benini ARTIST2 / UNU IIST 2007

Upper triangular 1024x1024 matrix filling

0

200000

400000

600000

800000

1000000

1200000

1400000

Serial 1 2 4 8
Cores

C
os

t

Texec (overhead)
Texec (ideal)
Tsync (overhead)
Tsync (ideal)
Tinit (overhead)
Tinit (ideal)

Upper triangular 32x32 matrix filling

0

500

1000

1500

2000

2500

Serial 1 2 4 8
Cores

C
os

t
.

Texec (overhead)
Texec (ideal)
Tsync (overhead)
Tsync (ideal)
Tinit (overhead)
Tinit (ideal)

Performance analysis 2

For small computational load (i.e.
few matrix elements) initialization
and synchronization have a big
impact on overall performance.
No speedup.

Possible optimizations on
barriers in order to reduce
accesses to shared memory.

Possible optimizations on
initialization, serializing /
interleaving accesses to bus.

For bigger computational load
initialization and synchronization
contribution go completely
unnoticed. Big speedup margin.

Speedup is heavily limited by
frequent accesses to shared
memory. Would pure
computation follow the profile of
the blue bars?

Would cacheable shared
memory regions help?

Luca Benini ARTIST2 / UNU IIST 2007

Performance analysis 3

Allowing shared data to be
cached improves performance
but…

Cache coherency has to be
granted by means of software
flushes after a barrier instruction

for (i=0; i<ITER; i++)
for (j=SIZE*ID/nprocs;

j<SIZE*(ID+1)/nprocs; j++)
tmp += A[j];

Enabling caching of shared (read- only) data

Luca Benini ARTIST2 / UNU IIST 2007

Different model of computation
Regular and repeating computation

Independent processes (filters)
with explicit communication

Segregated address spaces and
multiple program counters

Natural expression of Parallelism:
Producer / Consumer dependencies
Enables powerful, whole- program
transformations

Expressing control flow is difficult
Adder

Speaker

AtoD

FMDemod

LPF1

Scatter

Gather

LPF2 LPF3

HPF1 HPF2 HPF3

Dataflow/Streams

Luca Benini ARTIST2 / UNU IIST 2007

Kahn Process Network (KPN)

Formal model for DF [Kahn 1974][Parks&Lee 95]
Processes run autonomously
Communicate via unbounded FIFOs
Synchronize via blocking read

Process is either
executing (execute)
communicating
(send/get)

Characteristics
Deterministic
Distributed Control

No Global Scheduler
is needed

Distributed Memory
No memory contention

Fc

A

Fa Fb

get
execute
send C

get
execute

send
send

get
get
execute
send

Fifo

C

B

NATURAL MATCH for NoC Architecture

Luca Benini ARTIST2 / UNU IIST 2007

Example: MP-Queue library

MP- Queue is a library intended for message- passing
among different cores in a MPSoc environment.

Highly optimized C implementation:
Low level exploitation of data structures and semaphores:

low overhead;
data transfer optimized for performance:

analyses of disassembled code;
synch operations optimized for minimal interconnect utilization

Producer- consumer paradigm, different topologies:
1-N
N-1
N-N

Luca Benini ARTIST2 / UNU IIST 2007

Communication library API
1. Autonit_system()

1. Every core has to call it at the very beginning.
2. Allocates data structures and prepares the semaphore arrays.

2. Autoinit_producer()
1. To be called by a producer core only.
2. Requires a queue id.
3. Creates the queue buffers and signals its position to n consumers.

3. Autoinit_consumer()
1. To be called by a consumer core only.
2. Requires a queue id.
3. Waits for n producers to be bounded to the consumer structures.

4. Read()
1. Gets a message from the circular buffer (consumer only).

5. Write()
1. Puts a message into the circular buffer (producer only).

Luca Benini ARTIST2 / UNU IIST 2007

Communication semantics
Notification mechanisms
available:

Round robin.
Notify all.
Target core specifying.

The i-th producer:
– Gets the write position index.
– Puts data onto the buffer.
– Signals either one consumer

(round-robin / fixed) or all
consumers (notify all).

The i-th consumer:
– Gets the read position index.
– Gets data from the buffer.
– Signals either one producer

(round-robin / fixed) or all
producers (notify all).

P2

P1C1

C2

Luca Benini ARTIST2 / UNU IIST 2007

Architectural Flexibility

1. Multi core
architectures with
distributed memory.

2. Purely shared
memory based
architectures.

3. Hybrid platforms

Luca Benini ARTIST2 / UNU IIST 2007

Transaction Chart
Shares bus accesses
are minimized as
much as possible:

Local polling on
scratchpad
memories.

Insertion and
extraction indexes
are stored into
shared memory and
protected by mutex.

Data transfer section
involves shared bus

Critical for
performance.

Luca Benini ARTIST2 / UNU IIST 2007

Sequence diagrams
1 producer and 1
consumer (parallel
activity).

Synch time vs pure data
transfer.

Local polling onto scratch
semaphore

Signaling to remote core
scratch

“Pure” data transfer to and
from FIFO buffer in shared
memory

Message size 8 WORDS Message size 64 WORDS

Luca Benini ARTIST2 / UNU IIST 2007

Communication efficiency

Comparison against
ideal point-to-point
communication.

1-N queues
leverages bus
pipelining:

bigger
asymptotic
efficiency.

Interrupt based
notification allows
more than one task
per core.

significant
overhead (up to
15%).

Luca Benini ARTIST2 / UNU IIST 2007

Low-level optimizations are critical!
16 words per token 32 words per token

Not produced any
more by compiler!!!

Luca Benini ARTIST2 / UNU IIST 2007

Growth of assembly length for copy sections

Gcc compiler avoids to
insert the multiple load
/multiple store loop from
32 words on.

Code size would be
exponentially rising.

Where high throughput is
required, a less compact
but more optimized
representation is desired.

Luca Benini ARTIST2 / UNU IIST 2007

Compiler-aware optimization benefits

Compiler may be
forced to unroll data
transfer loops.

About 15%
improvement with 32
word sized
messages.

A Typical JPEG 8x8
block is encoded in a
32 word struct.

8x8x16 bit data.

Luca Benini ARTIST2 / UNU IIST 2007

Shared cacheable memory management with flush

Flushing is
needed to avoid
“thrashing”.

With small
messages, flush
compromises
performance.

64 words is the
break-even size
for cacheable-
shared based
communication.

Efficiency is
asymptotically
rising to 98% !

Luca Benini ARTIST2 / UNU IIST 2007

Data bandwidth bottleneck
Frame memory size = width x height x bits/pixel

WVGA aRGB overlay: 848 x 480 x 4 ~= 1.62 MB/frame
SDTV YUV4:2:0 8bit: 720 x 576 x 1.5 ~= 0.62 MB/frame
HDTV YUV4:2:0 8bit: 1920 x 1080 x 1.5 ~= 3.1 MB/frame

Trends
Resolution 1920x1080p standard for TV
Longer term 2500*1600 and quad HD
Refresh rate 120Hz
Color resolution YUV4:4:4
Increasing bit depth 10,12,16

Huge frame size Ext DRAM
DRAM port becomes the
architectural bottleneck!!

[Philips07]

MPEG2 Decode (HD)

Luca Benini ARTIST2 / UNU IIST 2007

Distributed objects

Object1
Object2

Object4Object3 IDL-based I/F

Distributed Object Modeling: e.g. CORBA, DCOM
Objects represent application functionality

Granularity of simple function to complete sub-system

Inter- object communication via standard interface
Use of lightweight IDL (Interface Description Language)
Strong communication-computation decoupling: more flexibile than DF!

No assumptions on subsequent assignment of processing
engines (H/W or S/W), interconnect, O/S

[Paulin TVLSI06]

Luca Benini ARTIST2 / UNU IIST 2007

What are distributed objects?

Natural extension of OOP to distributed system
Call methods on remote objects as well as local
Remote call mediated by message passing
Marshal method id, object id, parameters into request
Update parameters with response

Message passing layer generated automatically from
interface specification

Maps between messages and method calls

Generalized object reference
includes location as well as address
Can be copied between nodes

Luca Benini ARTIST2 / UNU IIST 2007

Remote Method Call

Node 2Node 1

reference :Message

method()
create(...)

:Transport

send(node, msg)

:Transport :Dispatcher call_method object

method()

return

:Message

create(RETURNED)
send(node, msg)

return

Luca Benini ARTIST2 / UNU IIST 2007

Example: Redplain’s redFOX

Flexibility & convenience of distributed objects
Suitable for Board/Chip level Distributed System
Compatible with

Low Latency Messaging
Slow processors with limited memory

Real Time
Maintain thread priority, Bounded Processing
Times

Heterogeneous
Programs, Processors (32/64 bit, mixed endian),
OSes, message transports

[Multicore Expo06]

Luca Benini ARTIST2 / UNU IIST 2007

What is a dref ?

Distributed Reference
Conceptually like C++ reference
dref<T> ~ T&
dref<const T> ~ const T&
dptr<T> ~ T*
dptr<const T> ~ const T*

Knows object location and methods
direct call if local
message passing if needed

Fixed size node number and object address
Small, fixed size, fast to use, copy and transmit, valid on any node
Control application by passing around drefs

Luca Benini ARTIST2 / UNU IIST 2007

Using drefs

Automatically generated template class specialization
class A { ... };
#pragma redplain dref<A> interface implementation

Supports method calls locally and remotely
dref<A> myA(…);
myA.f();

Constructors support remote object creation
Control nodes by creating, using and destroying remote objects on them.
No name service needed

Can copy and pass as method parameters

Luca Benini ARTIST2 / UNU IIST 2007

Tool Chain

redFOX injects middleware into C++ source
No intermediate files to manage

counter.cpp rpp counter.cpp +
dref<counter> cc .o

ln

redfox.a

a.out

Node

Node

Node

rcc

Luca Benini ARTIST2 / UNU IIST 2007

Distributed Method Calls

Processor 2Processor 1

Operating System

O1
r2

Application Object

dref

O2

r3

Distributed Object Kernel

Message
Transport

Distributed Object Kernel

O3

Operating System
Message
Transport

Processor 3

Distributed Object Kernel

O4

Operating System
Message
Transport

r4

r1

Invocation

Luca Benini ARTIST2 / UNU IIST 2007

MoCs and Productivity

Distributed computing MoCs match NoC
architecture very well
Difficult to convince programmers to use them

Learning curve
What’s the productivity at steady state?

Productivity enhancement approaches
Automatic transformations (academia)
New languages (academia)
Standardized Component- based design (industry)

Luca Benini ARTIST2 / UNU IIST 2007

Automatic Transformations

Application

Programmable Interconnect
(NoC)
Programmable Interconnect
(NoC)

IP
core

IP
core

R
P

U
R

P
U

M
em

ory
M

em
ory

C
P

U
C

P
U

M
icro

P
rocessor

M
icro

P
rocessor

MemoryMemory

...

Programming

P1 P2

S1Source

P3 P4

Sink

Parallel
Application Specification

EASY to map

DIFFICULT to specify

for j = 1:1:N,
[x(j)] = Source1();

end
for i = 1:1:K,

[y(i)] = Source2();
end
for j = 1:1:N,

for i = 1:1:K,
[y(i), x(j)] = F(y(i), x(j));

end
end
for i = 1:1:K,

[Out(i)] = Sink(y(I));
end

Sequential
Application Specification

EASY to specify

DIFFICULT to map

Translator

Map
per

COMPAAN

LA
URA

[Stefanov DATE04]

Luca Benini ARTIST2 / UNU IIST 2007

New Languages

StreamIt: a language for streaming applications
Provides high- level stream abstraction

Exposes Pipeline Parallelism

Improves programmer productivity

Breaks the von Neumann language barrier
Each filter has its own control- flow
Each filter has its own address space
No global time
Explicit data movement between filters
Compiler is free to reorganize the computation

[Amarasinghe MIT]

Luca Benini ARTIST2 / UNU IIST 2007

Example StreamIt Filter
0 1 2 3 4 5 6 7 8 9 10 11 input

output

FIR
0 1

float→float filter FIR (int N, float[N] weights) {

work push 1 pop 1 peek N {
float result = 0;

for (int i = 0; i < N; i++) {
result += weights[i] ∗ peek(i);

}
pop();
push(result);

}
}

Stateless
float→float filter FIR (int N) {

work push 1 pop 1 peek N {
float result = 0;

for (int i = 0; i < N; i++) {
result += weights[i] ∗ peek(i);

}
pop();
push(result);

}
}

Stateful

Luca Benini ARTIST2 / UNU IIST 2007

parallel computation

StreamIt Language Overview

Modular and
composable

Simple structures
composed to creates
complex graphs

Malleable
Change program
behavior with small
modifications

Compiler support

may be
any StreamIt
language construct

joinersplitter

pipeline

feedback loop

joiner splitter

splitjoin

filter

Luca Benini ARTIST2 / UNU IIST 2007

Industrial Approaches

TIPC, Chronos OpenMax, …
Strongly emphasize standardization

Platform- independent
Architecture- agnostic
Very generic

Domain specific
Large market segments (e.g. multimedia,
automotive, communication)

A lot of market hype: adoption is the ultimate
measure of success

Luca Benini ARTIST2 / UNU IIST 2007

TIPC: Transparent
Interprocess Communication

Socket-based messaging for cluster environments
Footprint: smaller than IP
Performance: greater than IP
Scalability: From a single-node to a large cluster
Portability: OS and hardware-independent, standard socket API
Reliability: Link failover, reliable delivery, system monitoring
Flexibility: Dynamic discovery, location-transparent addressing

Adapted to NoC characteristics:
Most messages are delivered in one hop (intracluster)
Transfer time is short for most messages
Packet loss is low; retransmission is infrequent
Available bandwidth and memory are high
Packet integrity is checked by underlying hardware
Security is not a major issue for intracluster messages
Network topology is relatively stable [Windriver 06]

Luca Benini ARTIST2 / UNU IIST 2007

TIPC Networking

Hierarchy of nodes within clusters within zones
within a network

Luca Benini ARTIST2 / UNU IIST 2007

TIPC Messaging
All communication involves an exchange of data
between ports using sockets (AF_TIPC)
A message is a byte array from 1 to 66KB long
Connectionless and connection-oriented messaging
Services are identified by port name

250

115

Provides a consistent message passing method that is OS-agnostic

Luca Benini ARTIST2 / UNU IIST 2007

TIPC architecture

Location transparency for services
Allows redundant services to gracefully (even seamlessly) handle failures

Easy migration from a multiprocessor to a multicore system
TIPC is open-source

NoC

Luca Benini ARTIST2 / UNU IIST 2007

Kronos Media APIs
An API is a contract between hardware and software worlds
SW developers see reduced variability across multiple platforms

More software can reach market faster at a better level of functionality and quality
Hardware vendors can accelerate many applications

Adding value to their platform

Software DeveloperHardware Provider

Hardware Provider

Hardware Provider

Hardware Provider

Hardware Provider

Software Developer

Software Developer

Software Developer

Software Developer

Khronos develops “Foundation-Level” APIs
As close-to-the-HW as possible while providing portable access to hardware

acceleration. High performance.
Good foundation for higher-level engines and middleware

[Freescale 05]

Luca Benini ARTIST2 / UNU IIST 2007

Khronos’ Business Model
Open Membership

Any company can become member
Funded by membership dues - $5K / year

Open Standards
Publicly available on web-site

Royalty-free

Cross Platform
Enabling diverse handheld and

embedded markets

Promoting Ecosystem
Conformance tests, tools,

developer materials and outreach

Open Standard Platform for Embedded Rich Media Acceleration

Ma
rk

et
 ad

op
tio

n
in

 m
ed

ia-
ac

ce
ler

at
ed

 h
an

ds
et

s

Mid-2005
OpenVG 1.0 Time

Silicon Designs
in progress

Rapid adoption
when silicon

ships

Widespread,
cross-platform

availability

Mid-2004
OpenGL ES 1.1

Beginning-2006
OpenMax IL 1.0

End-2006
OpenSL ES 1.0

100%

Luca Benini ARTIST2 / UNU IIST 2007

OpenMAX-based Media Stack

Media Engines - CPUs, DSP, Hardware
Accelerators etc.

“Development Layer”
Defines media primitives

and concurrency
constructs

Audio
Components

e.g. MP3

Media components can be integrated
into flexible media graphs for
advanced streaming media

processing

Media components can be written
using primitives for portability across

diverse parallel and serial silicon
architectures

Application

Platform Media
Framework

“Application Layer”
Defines high-level

playback and recording
interface API

Media applications can be
written portably, independent of
the underlying media platform

IL

DL

AL

“Integration Layer”
Defines media component interfaces

Video
Components

e.g. H.264
Image

Components
e.g. JPEG

OpenMAX layers can be implemented together or
independently from the other layers

Luca Benini ARTIST2 / UNU IIST 2007

System Architecture

OMX components behave deterministically
Whether they are loosely or tightly accelerated

Interop profile components are guaranteed to interoperate
Via a specified interoperability protocol

IL Client

Host
Component

Accelerator
Component

Hardware
Accelerated

Codec

Source
Component

Sink
Component

OMX
Core

IPCIPC

Framework
Component

Framework
Component

Framework
Component

Framework
Component

Multimedia Framework

Tunneled
Communication

Tunneled
Communication

Non - Tunneled
Communication

Luca Benini ARTIST2 / UNU IIST 2007

OpenMAX AL - Application Level
Enabling application developers to easily leverage
OpenMax acceleration

A simple high-level interface for common multimedia playback
and capture use cases

Typical applications are found in:
Mobile Phones
Mobile Music/Video Players
PDAs
Digital still cameras
Digital Media Adapters
STBs, PCs, etc…

Luca Benini ARTIST2 / UNU IIST 2007

OpenMAX IL - Integration Level

Defines component interfaces to construct portable media graphs
OpenMAX IL graphs are consistent across systems

Abstracts hardware architecture
Processor specific code is encapsulated within components
Intelligently built components maximize system utilization

Reusable integration with major media frameworks
Provides a uniform interface for integration across many architectures
Designed to sit below major frameworks - e.g. Symbian MDF, GStreamer,
Defines a low level initialization and communication protocol

Extensible
Extensions to expose non standard features with only minor tweaks

Enables Performance Comparisons and Optimization
Common API allows benchmarking of different architectures,
implementations and frameworks

Luca Benini ARTIST2 / UNU IIST 2007

OpenMAX IL Example Graph

Standardized component interfaces enable
flexible media graphs
Includes multi-stream synchronization

*.mp4 / *.3gp
File Reader

*.mp4 / *.3gp
File Reader

Clock
for AV Sync

Clock
for AV Sync

Audio
Decoder
Audio

Decoder Audio
Renderer
Audio

Renderer

Video
Scheduler

Video
Scheduler Video

Renderer
Video

Renderer

Speakers

Display

File

AAC Audio

MPEG4/
H.264 Video

Time
Data

Video
Decoder
Video

Decoder Decompressed
Video

OpenMAX IL Component Interfaces
Enables components to be flexibly
connected in any graph topology

Example: MPEG-4 video synchronized with AAC audio decode

Luca Benini ARTIST2 / UNU IIST 2007

Component Architecture
Component Registration is specified for low level operating systems

May not have a defined mechanism for discovery
Statically linked components use OpenMAX mechanisms
Dynamically linked components may be registered and loaded with
system mechanisms

Standard configuration structures are assigned to individual ports
Ensuring component interoperability and may be expanded with
proprietary configurations

Parameter/
Configuration

SET/GET

Commands

Buffer Sent

Port A
Input

Port B
Output

IL Client
Event
Handler

Component
Handle

Command
Queue

Port A Buffer
Header
Pointer
Queue

Port B Buffer
Header
Pointer
Queue

Port
Callbacks
And Calls

IL Client
Or other
component

Component Event
Handler

Configuration
Structures

Port
Callbacks
And Calls

Luca Benini ARTIST2 / UNU IIST 2007

Component States

Resource allocation takes place between Loaded and Idle
With possible resource management pending in Wait For Resources

The invalid state is entered only upon internal detection of
a problem

LOADED

IDLE

EXECUTING

PAUSED

INVALID

UNLOADED

WAIT FOR
RESOURCES

Luca Benini ARTIST2 / UNU IIST 2007

Co
m

bi
na

to
ria

l
Pr

ob
lem

OpenMAX DL – Low-Level Media API
OpenMAX DL is a library of key static primitive functions

Designed to cover 80% of the processing required in a multimedia codec
Abstracts the ISA from the multimedia codec

Enables faster codec development time and faster porting of existing codecs
Enables third party codec vendors to sell processor-agnostic codecs

Multi-cores architectures gain greater code reuse between cores

A wide range of media
acceleration silicon using

many diverse architectures
Silicon vendors supply optimized

OpenMAX DL library for rapid
porting of codecs across multiple

accelerators

An increasing number of
multimedia API codecs for
video, audio, graphics and

images

Luca Benini ARTIST2 / UNU IIST 2007

Example: OpenMAX DL Video Domain
Computationally intensive “hotspots” for video applications

Basic video processing building blocks

Typical devices
Digital still cameras, PDAs, Mobile Phones, Portable Media Players, Set-
top-boxes, PCs, etc.

Example video primitive functions in OpenMAX DL 1.0
8x8 Add, Sub and 16X16 Add, Sub
8x8 DCT+Q+Scan and 8x8 IDCT+Q+InvScan
MPEG-4 Variable Length Decode

Merged functions, improved performance on some architectures
Motion Estimation, Motion Compensation, Deblocking

Video codecs covered by OpenMAX DL 1.0
MPEG-4 SP/H.263 BL (encode & decode)
H.264 (encode and decode)

Luca Benini ARTIST2 / UNU IIST 2007

Advanced SoC Applications Scenario

Scalable video rendering 3D Virtual reality games Wireless protocols

Complex object-oriented high-level design (C++, Java)
Very dynamic (variable use of resources for each input)
High demand for processing (energy cost?)

Luca Benini ARTIST2 / UNU IIST 2007

Dynamic Resource Management: Why?
The need for dynamic resource management in MPSoCs

Strongly impacts performance, energy consumption and reliability
Required by flexible (programmable/configurable) platforms
Strongly impacted by algorithm/application architecture

DRM objectives
Performance
Energy
Reliability
Variability

DRM should accomplish these task without impacting
programmability

However, cooperative design-time/offline run-time/online
approaches are needed

Luca Benini ARTIST2 / UNU IIST 2007

System Model

Distributed MPSoC
architecture

Software architecture

tile Mtile 0

processor
private

memory

cache

shared
memory

semaphores
peripheral

interrupts
peripheral

processor

private
memory

cache

addresses re-mapper addresses re-mapper

PROCESSORN

COMM. AND SYNCHRONIZ. LAYER

TASK MIGR . SUPPORTLAYER

TASK 1 TASK MTASK 2

PROCESSOR 1

OP. SYST. NOP. SYST. 1

TASK MIGR . MANAGER

HW

OS/MW

USER

DISTRIB .
FREQ.

MANAGER

resource
management
layer

NoC

Luca Benini ARTIST2 / UNU IIST 2007

Task migration support

Process migration to:
facilitate thermal chip management by moving tasks away from
hot processing elements,
balance the workload of parallel processing
reduce power consumption by coupling with dynamic voltage
and frequency scaling

Well developed for cache-coherent SMPs
New challenge in NoC- based MPSoCs, where each core
runs its own local copy of the operating system in private
memory.

A migration paradigm similar to computer clusters
With the addition of a shared memory support for inter-
processor communication
Extremely low overhead

[Acquaviva DATE06]

Luca Benini ARTIST2 / UNU IIST 2007

Kernel Daemons Infrastructure

The migration process is managed using two
kinds of kernel daemons:

a master daemon on a single (master) processor,
slave daemons on each (worker) processor.

The master daemon is directly interfaced to the
decision engine providing the selected policy for
run time task allocation.
Master and slaves interact using interrupts and
shared memory data structures to perform:

synchronized allocation/deallocation of tasks data structures
inside the private Oses
task data copy from the source processor to the destination
processor

Mechanism: task replication / recreation

Luca Benini ARTIST2 / UNU IIST 2007

Task replication

CORE
#0

CORE
#1

CORE
#2

P0 P0
S_daemon S_daemonM_daemon

private

private private

P0

task replication

P0 running P0 sleeping P0 sleepingExecution
view:

Memory
view:

shared

Luca Benini ARTIST2 / UNU IIST 2007

Task re-creation

CORE
#0

CORE
#1

CORE
#2

S_daemon S_daemonM_daemon
private

private private

P0

task deallocation

P0 running exitedExecution
view:

Memory
view:

shared

Luca Benini ARTIST2 / UNU IIST 2007

Task re-creation

CORE
#0

CORE
#1

CORE
#2

P0
S_daemon S_daemonM_daemon

private

private private

task re-creation

P0 P0 runningExecution
view:

Memory
view:

shared

exited

Luca Benini ARTIST2 / UNU IIST 2007

Migration mechanism

CORE
#0

CORE
#1

process0() {
…
migration_point

if (migration_taken)
exit;

…
}

set migration request

M_daemon() {
…
load_balancing();
set_migration_request;
…
}

CORE
#2

check migration request

M? D?
P0 N -
P1 N -
P2 Y 1

M? D?
P0 Y 2
P1 N -
P2 Y 1

P0

P1

P0

process0() {
…
migration_point

if (migration_taken)
exit;

…
}

S_daemon S_daemonM_daemon

task resume msg

P0 state
(data,
user stack,
kernel stack)

private

private private

shared

Luca Benini ARTIST2 / UNU IIST 2007

Replication vs. Re-creation

Replication vs re-creation overhead

TASK RE-CREATION

TASK REPLICATION

Cost of replication: increased memory usage

Luca Benini ARTIST2 / UNU IIST 2007

Frequency, Voltage Setting Support

COMM. AND SYNCHRONIZ. LAYER

PROCESSOR N

OP. SYST. N+2OP. SYST. N

HW

OS/MW

USER

FREQ.
CONTR.

N

FREQ.
CONTR.

N+1

PROCESSOR N+1 PROCESSOR N+2

STAGE
N+1

STAGE
N

STAGE
N

OP. SYST. N+1

D
A
T
A

O
U
T

D
A
T
A

I
NQ

U
E
U
E OCC.

F
R
E
Q.

Migration+dynamic f,Vdd setting critical for energy management
DVFS for multi-stage producer-consumer streaming exploits info on
occupancy of the synchronization queues
@equilibrium, average output rate should match input rate in each
queue occupancy level monitored to adjust PE speed and Vdd

Local PE frequency, voltage controller

[Carta TECS07]

Luca Benini ARTIST2 / UNU IIST 2007

PI controller setup 1:
Low reactivity
Small steady-state oscillations

PI controller setup 2:
High reactivity
High steady-state oscillations

Non Linear controller:
High reactivity
Low steady-state oscillations

Controller Comparison

3- stage
pipelined streaming application

DES
dec FIR DES

enc

f/v selection f/v selection

Luca Benini ARTIST2 / UNU IIST 2007

Pipeline/Parallel Streaming

P

W3

QP QW2

C

QW1

QW3

W1

W2

Generalization by considering stages composed by multiple
independent processing elements working in parallel.
3-stage architecture including a producer processor P, three
workers W1, W2, W3 working in parallel, and a consumer
processor C
Split-join structure:

[Alimonda ISIES06]

Luca Benini ARTIST2 / UNU IIST 2007

MISO Controller
The producer must look at three output queues:

MISO (Multiple Input-Single Output) controller
The control rule is the same as for simple pipeline

BUT: what queue we have to look now?
Average (AVG)
Minimum (MIN)
Maximum difference (MAX-DIFF)

They are currently under test using a software
FMRadio benchmark

DemodFPF

Equalizer

BPF

BPF

BPF

MUX

Luca Benini ARTIST2 / UNU IIST 2007

Energy Efficiency Comparison

Non- linear control strategy requires 50% of energy
consumption wrt the ON- OFF controller
30% of energy consumption wrt open- loop (Vertigo)

Energy
Pipeline/parallel soft real-time

0

2000

4000

6000

8000

10000

12000

Prod Wk 1 Wk 2 Wk 3 Total

En
er

gy
 [m

J]

Non-linear
ONOFF
Vertigo

Luca Benini ARTIST2 / UNU IIST 2007

DVFS + Task migration

Parallel DES load balancing on 4 processors
configuration

PROCESSOR 3

PROCESSOR 2

PROCESSOR 1

PROCESSOR 0

WK-2

WK-1

WK-0

PROD.

PROCESSOR 1

PROCESSOR 2

PROCESSOR 3

PROCESSOR 0

WK-2

WK-1

WK-0

CONS.PROD.

INITIAL MAPPING POST-MIGRATION MAPPING

CONS.

MIGRATION

MIGRATION

MIGRATION

Luca Benini ARTIST2 / UNU IIST 2007

time

D
at

a

Scalable 3D decoding (per object): Memory:

Static memory vs Dynamic Memory (DM):
Compile-time (worst case)

Low quality High qualityMedium quality

Memory size

t1 t2 t3 t4

NO!

Object1

Object 1

Object 2

Object 3

Object2

Object3

[Atienza DATE05]

Luca Benini ARTIST2 / UNU IIST 2007

time

D
at

a

Scalable 3D decoding (per object): Memory:

Low quality High qualityMedium quality

Memory size

t1 t2 t3 t4

Object 2

Object2

Object1

Object 1

Object 4

OK!Object4

t5

Object3 Memory usage
scales to
current input!

Static memory vs Dynamic Memory:
Run-time (or DM Management)

Object 3

Object 5

Object 5

Luca Benini ARTIST2 / UNU IIST 2007

New issues in DMMs for MPSoCs
Low Latency

Malloc/new() & Free()/delete() must perform like in
monoprocessor systems

Scalability
Performance should scale linearly with number of
processors (independent of number of memories)

Memory efficiency (blowup problem)
Fragmentation competitive with monoprocessors

Orthogonality
Independent of threading models (supporting large number
of threads in preemptive multitasking environment).

Minimal interconnection traffic
No cache coherency protocol synchronization
Software-based local & main heaps synchronization

Luca Benini ARTIST2 / UNU IIST 2007

State-of-the-art DMMs MPSoCs (1)

Single shared heap (e.g., Solaris libc, McRT- Malloc)
1 global mutex
Simple design (1 extra layer to monoproc DMM)
No heap memory wastage

LatencyLatency

Not scalable (4-8 proc)Not scalable (4-8 proc)
High

interconnect
traffic (sync)

High
interconnect
traffic (sync) HW

HW ex
han

ce
men

t

ex
han

ce
men

t: :

tra
nsa

cti
onal

tra
nsa

cti
onal

mem
orie

s

mem
orie

s

Luca Benini ARTIST2 / UNU IIST 2007

LockedHeap

DMMHeap

void * malloc (sz) {
acquire lock;
void * p =
release lock;
return p;

}

class LockedMallocHeap:
public LockedHeap<DMMHeap> {};

SuperHeap::malloc (sz);

State-of-the-art DMMs MPSoCs (1)

Protecting the upper global heap:

Luca Benini ARTIST2 / UNU IIST 2007

State-of-the-art DMMs MPSoCs (2)

Private heap per thread (e.g., CilK, STL)
Memory footprint wastage
Almost no synchronization per thread (local heaps)

Shared

synchro

Shared

synchro

Heap memory sizeHeap memory size

False sharing

(blowup)

False sharing

(blowup)

Special

Special HW
HW support

support

Locked

Locked/store
/store

conditional

conditional

Luca Benini ARTIST2 / UNU IIST 2007

State-of-the-art DMMs MPSoCs (3)

Multiple threads per local heap (e.g., Hoard, LFMalloc,
Vee-Hsu)

Hierarchical structure of shared blocks
Limited false sharing (no blowup)

Tuning
per app.

Tuning
per app.

Extra heaps to avoid
contention

Extra heaps to avoid
contention Threads

have to
become
‘mature’

Threads
have to
become
‘mature’

Emptiness

Emptiness

threshold

threshold

Luca Benini ARTIST2 / UNU IIST 2007

Still to come in DMMs for MPSoCs
Tuning of DMMs for MPSoCs

Profiling mechanisms not available, manual work
Exploitation of hardware

Scratchpad memories not supported
Management of heaps for HW-controlled caches

Complex design
Custom synchronization methods
No standard & flexible implementation methods
Support for hardware synchronization in final architecture

Non-orthogonal
Dependencies on number of threads

Influence of interconnect
Monitoring interconnect status (e.g, congestion?)

Luca Benini ARTIST2 / UNU IIST 2007

Debugging
When real code is running on a real MP
system/models, “bad” things happen
Debugging challenges

Tracing bugs across multiple models of computation
Loosely coupled composition of subsystems
Several different ISA processors
Multiple languages and communications models

How to sanely move from paradigm to paradigm?
A single debugging “driver seat”

Preferably not with a different debugger per processor
Provide true MP Debug with a unified system view

Luca Benini ARTIST2 / UNU IIST 2007

Debug & Simulation

Today, simulation speed
is limiting
Need faster simulation

Enabling trade offs
Flexibility: appropriate
accuracy at appropriate
speed

Today, single core
debugging approaches
don’t scale to MPSoC
Need true multi
processor debug

Focused on threads
Scaling to 10+ processors

Source: ARM IQ Magazine

Source: ARM IQ Magazine

Luca Benini ARTIST2 / UNU IIST 2007

Performance tuning/ Benchmarking

Real-life Application complexity is huge
Current embedded benchmarks are
focused on single processors
Need to assess scalability (future proof)
Real applications vs. microbenchmarks

Finding common denominator
Generalize to assess future scalability
Compose to assess mixed workload

Luca Benini ARTIST2 / UNU IIST 2007

μbenchmarks – UCB’s 14 dwarfs

HPC Embed SPEC ML Games DB
1 Dense Matrix
2 Sparse Matrix
3 Spectral (FFT)
4 N-Body
5 Structured Grid
6 Unstructured
7 MapReduce
8 Combinational
9 Nearest Neighbor

10 Graph Traversal
11 Dynamic Prog
12 Backtrack/ B&B
13 Graphical Models
14 FSM

Case study:
Mercury’s Multicore Plus SDK for CELL

A mature software environment
for a high-performance MPSoC

[Mercury IEEE AESS06]

Luca Benini ARTIST2 / UNU IIST 2007

Cell BE Processor Architecture

Heterogeneous, distributed memory multiprocessor
with explicit DMA over a ring-NoC

Luca Benini ARTIST2 / UNU IIST 2007

Mercury Approach to Cell SDK
Pragmatic

Can’t wait for tools to mature
Develop in-house tools when needed

Emphasis on explicitly programming the architecture rather
than trying to hide it

When the tools are immature, this allows us to get maximum
performance

Achieve usability, portability through function offload model
Run legacy code on PPE
Offload compute intensive workload to SPEs

An API for programming heterogeneous multicores with
explicit non-cached memory hierarchies
Provides an abstract view of the hardware oriented toward
computation of multidimensional data sets

Luca Benini ARTIST2 / UNU IIST 2007

MultiCore Framework Abstractions
Function offload model

Worker Teams: Allocate tasks to SPEs
Plug-ins: Dynamically load and unload functions from

within worker programs
Data movement

Distribution Objects: Defining how n-dimensional data is
organized in memory

Tile Channels: Move data between SPEs and main
memory

Re-org Channels: Move data among SPEs
Multibuffering: Overlap data movement and computation

Miscellaneous
Barrier and semaphore synchronization
DMA-friendly memory allocator
DMA convenience functions
Performance profiling

Luca Benini ARTIST2 / UNU IIST 2007

MCF Distribution Objects

One complete data set in main memory

Frame

Distribution Object parameters:
Number of dimensions
Frame size
Tile size and tile overlap
Array indexing order
Compound data type organization (e.g. split / interleaved)
Partitioning policy across workers, partition overlap

One complete data set in main memory

Unit of work for an SPE

Tile

FramePartitions
SPE 0

SPE 1

SPE 2

Partitions
SPE 0

SPE 1

SPE 2

Tile Channel

Luca Benini ARTIST2 / UNU IIST 2007

manager (PPE)
generates data set
and injects it into
input tile channel

input tile channel
subdivides data set
into tiles

each worker (SPE)
extract tiles out of
input tile channel
...

... computes
on input tiles
to produce
output tiles...

...and inserts
them into
output tile
channel

output tile channel
automatically puts
tiles into correct
location in output
data set

when output data
set is complete,
manager is notified
and extracts data
set

manager

worker 1

worker 2

worker 3

input tile channel

output tile channel

MCF Tile Channels

Luca Benini ARTIST2 / UNU IIST 2007

MCF Manager Program
main(int argc, char **argv) {

mcf_m_net_create();
mcf_m_net_initialize();

mcf_m_net_add_task();
mcf_m_team_run_task();

mcf_m_tile_distribution_create_3d(“in”);
mcf_m_tile_distribution_set_partition_overlap(“in”);
mcf_m_tile_distribution_create_3d(“out”);

mcf_m_tile_channel_create(“in”);
mcf_m_tile_channel_create(“out”);
mcf_m_tile_channel_connect(“in”);
mcf_m_tile_channel_connect(“out”);

mcf_m_tile_channel_get_buffer(“in”);

// fill input data here

mcf_m_tile_channel_put_buffer(“in”);
mcf_m_tile_channel_get_buffer(“out”);

// process output data here
}

Add worker tasks

Specify data
organization

Create and connect
to tile channels

Get empty source
buffer

Fill it with data
Send it to workers

Wait for results
from workers

Luca Benini ARTIST2 / UNU IIST 2007

MCF Worker Program

mcf_w_main (int n_bytes, void * p_arg_ls) {
mcf_w_tile_channel_create(“in”);
mcf_w_tile_channel_create(“out”);
mcf_w_tile_channel_connect(“in”);
mcf_w_tile_channel_connect(“out”);

while (! mcf_w_tile_channel_is_end_of_channel(“in”)
{

mcf_w_tile_channel_get_buffer(“in”);

mcf_w_tile_channel_get_buffer(“out”);

// Do math here

mcf_w_tile_channel_put_buffer(“in”);

mcf_w_tile_channel_put_buffer(“out”);
}

}

Create and connect
to tile channels

Get full source
buffer

Put back empty
source buffer

Put back full
destination buffer

Get empty
destination bufferDo math and fill

destination buffer

Luca Benini ARTIST2 / UNU IIST 2007

MCF Implementation

Consists of
PPE library
SPE library and tiny executive (12 KB)

Utilizes Cell Linux “libspe” support
But amortizes expensive system calls
Reduces overhead from milliseconds to microseconds
Provides faster and smaller footprint memory allocation library

Based on Data Reorg standard
http://www.data-re.org

Derived from existing Mercury technologies
Other Mercury RDMA-based middleware
DSP product experience with small footprint, non-cached
architectures

Luca Benini ARTIST2 / UNU IIST 2007

Scientific Algorithm Library
SAL is a collection of optimized functions

Baseline
Arithmetic, data type conversions, data moves

DSP
FFTs, convolutions, correlation, filters, etc.

Linear Algebra
Linear systems, matrix decomposition, etc.

Parallel Algorithms (future)
High level algorithms on multiple cores
Invoked from application running on PPE
Automatically use one or more SPEs
Initial work done for 1D and 2D FFTs and fast convolutions

PIXL – Image Processing Library
Edge detection, fixed point operations and analysis, filtering, manipulation,
erosion, dilation, histogram, lookup tables, etc.
Work in this area depend on customer demand.

PPE SAL based on Altivec optimizations for G4 and G4A2
SAL C source code version also available

SPE SAL is new implementation optimized for SPE architecture
Backwards compatibility with existing SAL API except in very rare cases
Some new APIs needed in order to extract best performance from SPE
Static and plug-in component versions for each function

Luca Benini ARTIST2 / UNU IIST 2007

Eclipse Framework
Provides an open platform for creating
an Integrated Development
Environment (IDE)
Eclipse Consortium manages
continuous development of the tool
Eclipse plug-ins extend the functionality
of the framework
Written in Java
Compilers, debuggers, TATL, helpfiles,
etc. are all be Eclipse plug-ins.

PPE and SPE cross build support for
Gcc/gcc++
XLC/C++

Eclipse CDT (C/C++ Development Toolkit)
Syntax highlighting
Code completion
Content assistance
Makefile generation
Remote debugging of PPE and SPE applications
TATL plug-in

Luca Benini ARTIST2 / UNU IIST 2007

TATL™ Trace Analysis Tool

Log events from PPE
& SPE threads
across multiple Cell
chips
Synchronized global
timestamps
Minimally intrusive in
space and time
Timeline trace and
histogram viewers
Structured log file for
use in other tools

Luca Benini ARTIST2 / UNU IIST 2007

SPE Assembly Development Kit

The SPE architecture encourages “bare metal programmers”
Very deterministic architecture
Performance benefits from hand tuning the pipelines

SPE-ADK dramatically improves bare metal productivity
SPE-ADK consists of

Assembler preprocessor, optimizer and macro library
Using SPE-ADK is similar to programming with SPE C
extensions

But with more deterministic control of instruction scheduling and
hardware resources

SPE-ADK is a productized version of the internal
development tool used by all Mercury SAL developers

Luca Benini ARTIST2 / UNU IIST 2007

Summing up

Harnessing the potential of NoC architectures
from the SW “driver seat” is tough
Programmers need all the help
The landscape is shaping up rapidly

Support for MoCs with exposed parallelism
Frontier of research

Efficient implementation
Parallelism extraction
Dynamic resource management

