

Model-based Development for Embedded Control Systems

Paul Caspi Laboratoire Verimag (CNRS-UJF-INPG)

- ⇒ Which embedded control systems?
- ⇒ Aérospatiale pioneering role
- \Rightarrow State of the art
- **⇒** Table of Contents

Which Embedded Control Systems? _____

safety critical systems

mission critical systems, time to market

Looking inside

Fly-by-wire? Drive-by-wire? Electronic Control Units?

Looking inside

Fly-by-wire? Drive-by-wire? Electronic Control Units?

Fly-by-computers! Fly-by-software!

Traditional Ways to Critical Software/System

Traditional Ways to Critical Software/System

Is it the way we design bridges? By trials and errors?
Is it an engineering way?

Model-based: move from this...

designed by trial and errors

to this...

model-based design

Aérospatiale pioneering steps in the early eighties

control models (block-diagrams)

Aérospatiale pioneering steps in the early eighties ____

control models (block-diagrams)

= formal software specification

Aérospatiale pioneering steps in the early eighties ___

control models (block-diagrams)

= formal software specification

automatic code generation

Software

Aérospatiale pioneering steps in the early eighties

control models (block-diagrams)

formal software specification

automatic code generation

 \downarrow

Software

"Spécification Assistée par Ordinateur" (SAO)

"Computer Aided Specification"

Interest of SAO _____

Twofold:

Automatic code generation from high-level control models:
 easier and earlier debugging

 Graphic language close to the cultural background of avionic engineers, test pilots, suppliers, certification authorities, ...:
 allows easier communication within the entreprise
 preserves the know-how and makes easier the technology transfer

SAO participates to the success of A320

From then on...

Powerful model-based development tools:

SAO replaced by SCADE

commercial product partially based on technology

synchronous

Do178B level A qualified automatic code generator

Simulink/Stateflow

continuous/discrete time simulation toolbox the defacto standard in control modelling

• Formal methods: automatic mathematical proofs for dynamic systems

. . .

From then on...

More powerful execution platforms:

multi-tasking

distributed and multi-processor

modelling

modelling

Perspectives

Perspectives _____

more modelling frameworks:
 networks, telecommunications, ...

more powerful formal methods

more execution platforms
 CAN, Ethernet, Internet, ...

more test methods

A Key Issue: Faithfulness ___

What does it mean?

Outline of the Course _____

• Simulink

Stateflow

Code generation

Multi-threading

Faithfulness