
From Control Models to Real-Time Software

Paul Caspi
Verimag-CNRS

1. The synchronous approach

2. Simulink

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

The Synchronous Approach

Modelling and programming

• Control Systems

• Signal processing systems

• Hardware systems

Some shared features of these systems ?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Shared Features
• Reactive systems: flows of inputs and flows of outputs

• Parallelism: e.g., video and audio streams

control several dimensions at the same time

many inputs in parallel

• hard real time: because physics doesn’t wait

• Dependability: often safety-critical systems

need for sound tools

• Guaranteed bounds: on memory

on execution times

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Parallelism

Previous implementations were “naturally” parallel

• Analog devices

• Parallel hardware

What about programming ???

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Parallelism in programming
Origins: time-sharing

several users using the same device :

examples:

• a printer

• a central unit

• Google ?

Needs ?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Parallelism in programming
Origins: time-sharing

several users using the same device :

examples:

• a printer

• a central unit

• Google ?

Needs ?

Processes should be as independent as possible

Yet need synchronisation

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Programming concepts
• synchronisation: semaphores

monitors

processes, tasks, threads

priorities

• communication: mailboxes

shared memory

• communication and synchronisation: rendez-vous (hand-shake)

queues

remote procedure call

client-server architecture

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Difficulties of Parallel Software
• with debugging

– deadlocks

– non determinism

– difficult to observe

• with formal verification:

– non determinism
=⇒ combinational explosion

• with time semantics:

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Time Semantics of Asynchronous Programming
Java example:

is

Thread.sleep(2000);

Thread.sleep(3000);

equivalent to

Thread.sleep(5000);

????

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Time Semantics of Asynchronous Programming
Java example:

is

Thread.sleep(2000);

Thread.sleep(3000);

equivalent to

Thread.sleep(5000);

????

Why ??

What solutions to the problem???

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Quoting the Java documentation

“In any case, you cannot assume that invoking sleep will suspend the thread
for precisely the time period specified.”

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Synchronous Approach
Based on the synchronous product of automata:

product asynchronous synchronous

mA
?

a

mB
||

mC
?

b

mD

mAC
�

�
�	

a
@

@
@R

b

mBC mAD
@

@
@R

b �
�

�	

a

mBD

mAC

?

ab

mBD

CCS (asynchronous) is a sub-theory of SCCS

Provides a theoretical justification of practice:

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Interest
• Synchronous primitives are stronger

programming is easier

• No added non determinism:

– easier debugging and test

– less state explosion in formal verification

• Easier temporal reasoning:

– synchronous steps provide a “natural” notion of logical time:

Time flows equally within the different parallel tasks which thus
share the same notion of time

– Easier roll-back and recovery

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Examples of the Synchronous Approach

• Simulation engines (VHDL, Simulink/Stateflow)

• Parallel and Hierachical Automata :

Statecharts, Stateflow

• discrete time systems of equations

Z-transforms, sampled-data control formalisms, Simulink

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Simulink/Stateflow

• Presentation

• Examples

• Analysis

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Some history
• Matlab simulation tool

• Simulink: a graphic interface to Matlab

• Stateflow: hierachical and parallel automata integrated to Simulink

the first tool box allowing for this integration

• Real-Time Workshop automatic code generation for Simulink/Stateflow

Several other code generators :

– ASCET(ETAS), TargetLink(DSpace),

– SCADE(Esterel-Technologies), based on Lustre (Verimag), the only
one qualified for DO178B level A (safety critical Aerospace
applications) and IEN 50128 SIL4 (safety critical railway
applications)

• Many specialised libraries for control and architecture

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Interest of Simulink

Interest:

• Allow for modelling both

– Continuous-time dynamical systems :

physical plants, analog controllers

– Discrete-time dynamical systems:

logical systems, computerised control

• Mostly based on sound mathematical principles:

Laplace transform, Z-transform, differential equation solvers

The defacto standard in control modelling and implementation

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Drawbacks

• But quite poor computer science principles:

poor typing, poor static checks,

unsafe side effects

• This has to be taken into account when generating software!

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Example: And gate

1

z

AND

Logical
Operator

2

x

1

y

What does it mean?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Example: And gate

1

z

AND

Logical
Operator

2

x

1

y

What does it mean?

Precise mathematical meaning:

∀t ∈ T : z(t) = x(t) ∧ y(t)

But what is T ?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Example: And gate

1

z

AND

Logical
Operator

2

x

1

y

What does it mean?

Precise mathematical meaning:

∀t ∈ T : z(t) = x(t) ∧ y(t)

But what is T ?

Two possible settings:

takes the time scale of input periodic sampling

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Example: And gate

1

z

AND

Logical
Operator

2

x

1

y

What does it mean?

Precise mathematical meaning:

∀t ∈ T : z(t) = x(t) ∧ y(t)

But what is T ?

What if x and y have different time scales?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Example: And gate

1

z

AND

Logical
Operator

2

x

1

y

What does it mean?

Precise mathematical meaning:

∀t ∈ T : z(t) = x(t) ∧ y(t)

But what is T ?

What if x and y have different time scales?

T = Tx ∪ Ty

Each signal keeps its preceeding value when it is not updated

Entails a need for a “clock analysis” when generating code

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Typing Issues

We can ask for types and get this 1

z

AND

Logical
Operator

2

x

1

y

boolean

boolean

boolean

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Typing Issues

We can ask for types and get this 1

z

AND

Logical
Operator

2

x

1

y

boolean

boolean

boolean

But we can also get this 1

z

AND

Logical
Operator

2

x

1

y

double

double

boolean

What does it mean ?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Typing Issues

We can ask for types and get this 1

z

AND

Logical
Operator

2

x

1

y

boolean

boolean

boolean

But we can also get this 1

z

AND

Logical
Operator

2

x

1

y

double

double

boolean

What does it mean ? Typing issues are important for safety purposes and
should be carefully addressed when generating code

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Example: Delay Block

1

y
z

1

Unit Delay

1

x

What does it mean?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Example: Delay Block

1

y
z

1

Unit Delay

1

x

What does it mean?

Precise mathematical meaning: y(0) = some setting

∀t ∈ T : y(t + 1) = x(t)

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Example: Delay Block

1

y
z

1

Unit Delay

1

x

What does it mean?

Precise mathematical meaning: y(0) = some setting

∀t ∈ T : y(t + 1) = x(t)

T needs to be a discrete time scale: “clock analysis” needed again

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Typing Issues

We can get this:

1

y
z

1

Unit Delay

1

x

double double

Or this:

1

y
z

1

Unit Delay

1

x

boolean boolean

“Polymorphic” operator

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Basics of Z-Transform
We associate with a discrete-time signal x : N → R

its Z-transform: Z(x)(z) =
∞∑
0

x(i)

zi

This transform has several desirable properties:

• it is linear: Z(ax + by) = aZ(x) + bZ(y)

• it transforms delays into products :

if

 x−(0) = 0

x−(n + 1) = x(n)
then Z(x−)(z) =

Z(x)(z)

z

Why z-transform?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Basics of Z-Transform
We associate with a discrete-time signal x : N → R

its Z-transform: Z(x)(z) =
∞∑
0

x(i)

zi

This transform has several desirable properties:

• it is linear: Z(ax + by) = aZ(x) + bZ(y)

• it transforms delays into products :

if

 x−(0) = 0

x−(n + 1) = x(n)
then Z(x−)(z) =

Z(x)(z)

z

Why z-transform?

Allows algebraic computations over difference equations

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Proof of the Delay Operator

if

 x−(0) = 0

x−(n + 1) = x(n)
then Z(x−)(z) =

1

z
Z(x)(z)

Proof:

Z(x)(z) =
∞∑
0

x(i)

zi

1

z
Z(x)(z) =

1

z

∞∑
0

x(i)

zi
=

∞∑
0

x(i)

zi+1
=

∞∑
0

x−(i + 1)

zi+1

1

z
Z(x)(z) =

∞∑
1

x−(i)

zi
=

0

z0
+

∞∑
1

x−(i)

zi
=

∞∑
0

x−(i)

zi

1

z
Z(x)(z) = Z(x−)(z)

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Example: Filters

A second-order linear filter:

1

y

z −2z+12

z −1.4z+12

Discrete
Transfer Fcn

1

x

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Example: Filters

A second-order linear filter:

1

y

z −2z+12

z −1.4z+12

Discrete
Transfer Fcn

1

x

Another one:

1

y
z

1

z

1

1

1.4−1

1−2

1

x

uo u1

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Example: Filters

A second-order linear filter:

1

y

z −2z+12

z −1.4z+12

Discrete
Transfer Fcn

1

x

Another one:

1

y
z

1

z

1

1

1.4−1

1−2

1

x

uo u1

They are the same ! Why ?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Proof

1

y
z

1

z

1

1

1.4−1

1−2

1

x

uo u1

u0 = x− y

u1 = 1.4y − 2x + u0/z

y = x + u1/z

y = x + 1/z(1.4y − 2x + 1/z(x− y))

y = x− 2x/z + x/z2 + 1.4y/z − y/z2

y − 1.4y/z + y/z2 = x− 2x/z + x/z2

yz2 − 1.4yz + y = xz2 − 2xz + x

(z2 − 1.4z + 1)y = (z2 − 2z + 1)x

y =
z2 − 2z + 1

z2 − 1.4z + 1
x

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Programming in Simulink
Design a sub-system with one boolean input and one boolean output such
that the output

• is initially false

• becomes true as soon as the input becomes true

• stays true for ever as soon as it has become true once

input

output

−1

0

1

2

0 5 10 15 20
−1

0

1

2

Time offset: 0

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Solution

1

y

z

1

OR
1

x

Why?

x 0 0 1 0 0 1 0 0

y/z 0 0

y = y/z ∨ x 0 0

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Solution

1

y

z

1

OR
1

x

Why?

x 0 0 1 0 0 1 0 0

y/z 0 0 0

y = y/z ∨ x 0 0

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Solution

1

y

z

1

OR
1

x

Why?

x 0 0 1 0 0 1 0 0

y/z 0 0 0

y = y/z ∨ x 0 0 1

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Solution

1

y

z

1

OR
1

x

Why?

x 0 0 1 0 0 1 0 0

y/z 0 0 0 1

y = y/z ∨ x 0 0 1

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Solution

1

y

z

1

OR
1

x

Why?

x 0 0 1 0 0 1 0 0

y/z 0 0 0 1

y = y/z ∨ x 0 0 1 1

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Solution

1

y

z

1

OR
1

x

Why?

x 0 0 1 0 0 1 0 0

y/z 0 0 0 1 1 1 1 1

y = y/z ∨ x 0 0 1 1 1 1 1 1

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Programming in Simulink: Functional versus
Imperative
Simulink is mainly a functional and component-based approach:

• most Simulink subsystems is are functions from input signals to output
signals.

As such, it is very safe: the behaviour of a functional subsystem depends
only on its inputs and is the same whatever be the context in which it is
used.

• It is similar to taking a component off the shelf and wiring it in a design.

But there are still non functional blocks whose behaviour departs from this
functional style. These operators should be used with care as they may
produce side effects.

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Imperative Features: the merge operator

Out1

zero

Out1

one

Scope

Pulse
Generator

Merge

Merge

What’s wrong with it ?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Imperative Features: the merge operator

Out1

zero

Out1

one

Scope

Pulse
Generator

Merge

Merge

What’s wrong with it ?
Both subsystems are triggered at
the same time: the result depends
on the order into which the subsys-
tems are created:

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Imperative Features: the merge operator

Out1

zero

Out1

one

Scope

Pulse
Generator

Merge

Merge

What’s wrong with it ?
Both subsystems are triggered at
the same time: the result depends
on the order into which the subsys-
tems are created:

one created before zero

−1
0
1
2

−1
0
1
2

0 2 4 6 8 10
−1

0
1
2

Time offset: 0

zero created before one

−1
0
1
2

−1
0
1
2

0 2 4 6 8 10
−1

0
1
2

Time offset: 0

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Imperative Features: the merge operator

Out1

zero

Out1

one

Scope

Pulse
Generator

Merge

Merge

How to make it order independent?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Imperative Features: the merge operator

Out1

zero

Out1

one

Scope

Pulse
Generator

Merge

Merge

How to make it order independent?

Ensure that the triggers be exclusive

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Imperative Features: the merge operator

Out1

zero

Out1

one

Scope

Pulse
Generator

Merge

Merge

How to make it order independent?

Ensure that the triggers be exclusive

Out1

zero

Out1

one

Scope

Pulse
Generator

Merge

Merge

NOT

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Imperative Features: Memory Block

zero one

ScopePulse
Generator

A

Data Store
Read

A

Data Store
Memory

A

Data Store
Write

0

Constant

Trigger

A

Data Store
Write

1

Constant

Trigger

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Imperative Features: Memory Block

zero one

ScopePulse
Generator

A

Data Store
Read

A

Data Store
Memory

A

Data Store
Write

0

Constant

Trigger

A

Data Store
Write

1

Constant

Trigger

Same problem: when the triggers are non exclusive the execution order
depends on some strange features.

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Imperative Features: Memory Block

zero one

ScopePulse
Generator

A

Data Store
Read

A

Data Store
Memory

A

Data Store
Write

0

Constant

Trigger

A

Data Store
Write

1

Constant

Trigger

Same problem: when the triggers are non exclusive the execution order
depends on some strange features. What can we get ?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Imperative Features: Memory Block

zero one

ScopePulse
Generator

A

Data Store
Read

A

Data Store
Memory

0 2 4 6 8 10
−1

0

1

2

Time offset: 0

A

Data Store
Write

0

Constant

Trigger

A

Data Store
Write

1

Constant

Trigger

Same problem: when the triggers are non exclusive the execution order
depends on some strange features. We can get . . .

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Imperative Features: Memory Block

zero one

ScopePulse
Generator

A

Data Store
Read

A

Data Store
Memory

0 2 4 6 8 10
−1

0

1

2

Time offset: 0

A

Data Store
Write

0

Constant

Trigger

A

Data Store
Write

1

Constant

Trigger

Same problem: when the triggers are non exclusive the execution order
depends on some strange features. Or we can get. . .

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Monitoring Properties
Simulink can also be used for monitoring properties of designs:

• testing

• feeding a model-checker or a theorem prover

• on-line monitoring

The idea is to design monitors as property observers: subsystems that output
a signal carrying the “true value” of the property: the signal is initially true,
stays true as long as the property is fulfilled, becomes false as soon as the
property becomes false and then stays false for ever.

This is due to the fact that discrete-time Simulink is equivalent to a temporal
logic of the past (allows modelling only “safety properties”)

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Monitoring Properties: Example
Design a property observer that monitors the property:

a signal doesn’t change its value in two consecutive samples

Typical bevaviour:

signal

observer output

−1

0

1

2

0 2 4 6 8 10
−1

0

1

2

Time offset: 0

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Monitoring Properties: Solution

The “stable” subsystem checks

whether the current sample

and the previous one

are equal

1

Out1

z

1

==
1

In1
x

u

y

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Monitoring Properties: Solution
We cannot ask the signal to be always stable because it wouldn’t be allowed
to change.

But if it is not stable now, at least it should have been stable at the previous
instant.

Finally, when the property becomes false, the observer output should stay
false for ever.

1

Out1

In1 Out1

stable1

In1 Out1

stable

z

1

z

1

OR
AND

1

In1
y

t

z
u

x

w

v

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Monitoring Properties: Checking the Solution

In1 Out1

stable monitor
Scope

Repeating
Sequence

Stair

−1

0

1

2

0 2 4 6 8 10
−1

0

1

2

Time offset: 0

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Simulink and Kahn Networks

• Kahn networks

• Their semantics

• Simulink as Kahn networks

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Kahn Networks
Process networks deterministic but asynchronous communicating through
FIFOs (Unix sockets for instance)

U1

U2

X1

X2P2

P1

P3
Y

FIFO: reading blocks on empty queues

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Kahn Semantics
An observer records the history of every queuee: X = x0, x1, . . .

Processes are deterministic : X1 = P1(Y, U1)

The system computes a solution of the system of equations:

X1 = P1(Y, U1)

X2 = P2(Y, U2)

Y = P3(X1, X2)

What does it mean?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Domains
An history belongs to a domain D: D∞ = D∗ + Dω (finite or infinite
sequences) endowed with a partial order≤ (prefix order)

x ≤ y ⇔ ∃z : y = x@z

• minimum element ε ;

∀x ∈ D∞ : ε ≤ x

• any chain C = {x0 ≤ x1 ≤ . . . xn ≤ . . .} has a least upper bound

∀x ∈ C : x ≤ sup C

∀y ∈ D∞ : (∀x ∈ C : x ≤ y) ⇒ sup C ≤ y

⇒ (D∞,≤, ε) is a Complete Partial Order (CPO)

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Least Fixpoints
• a function f : D∞ ⇒ D∞ is continuous if for every chain

C = x0 ≤ x1 ≤ . . . xn . . .

f(sup C) = sup{f(xi)|xi ∈ C}

[continuous ⇒ monotonic : x ≤ y ⇒ f(x) ≤ f(y)]

⇒ an equation x = f(x) has a least solution (least fixpoint) and this can be
extended to any order:

µf = sup{ε ≤ f(ε) ≤ . . . fn(ε) ≤ . . .}

Kahn claimed that this was what the network would compute!

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

And Simulink?
Simulink doesn’t allow bad behaved networks such that this one

-

- even -

and
-

-

whose queues will eventually overflow

Thus Simulink networks can also be executed asynchronously by connecting
them via FIFOs.

But some care has to be taken when generating code for each process.
(Benveniste’s work)

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Conclusion about Simulink

• Allows modelling both controllers, environments (plants) and properties

• Mostly based on sound mathematical bases

• Provides means for parallelisation

• Some dangerous error-prone features which have to be handled with
much care.

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

	From Control Models to Real-Time Software
	The Synchronous Approach
	Shared Features
	Parallelism
	Parallelism in programming
	Parallelism in programming
	Programming concepts
	Difficulties of Parallel Software
	Time Semantics of Asynchronous Programming
	Time Semantics of Asynchronous Programming
	Quoting the Java documentation
	Synchronous Approach
	Interest
	Examples of the Synchronous Approach
	Simulink/Stateflow
	Some history
	Interest of Simulink
	Drawbacks
	Example: And gate
	Example: And gate
	Example: And gate
	Example: And gate
	Example: And gate
	Typing Issues
	Typing Issues
	Typing Issues
	Example: Delay Block
	Example: Delay Block
	Example: Delay Block
	Typing Issues
	Basics of Z-Transform
	Basics of Z-Transform
	Proof of the Delay Operator
	Example: Filters
	Example: Filters
	Example: Filters
	Proof
	Programming in Simulink
	Solution
	Solution
	Solution
	Solution
	Solution
	Solution
	Programming in Simulink: Functional versus Imperative
	Imperative Features: the merge operator
	Imperative Features: the merge operator
	Imperative Features: the merge operator
	Imperative Features: the merge operator
	Imperative Features: the merge operator
	Imperative Features: the merge operator
	Imperative Features: Memory Block
	Imperative Features: Memory Block
	Imperative Features: Memory Block
	Imperative Features: Memory Block
	Imperative Features: Memory Block
	Monitoring Properties
	Monitoring Properties: Example
	Monitoring Properties: Solution
	Monitoring Properties: Solution
	Monitoring Properties: Checking the Solution
	Simulink and Kahn Networks
	Kahn Networks
	Kahn Semantics
	Domains
	Least Fixpoints
	And Simulink?
	Conclusion about Simulink

