
Automatic Code Generation

Several tools allow automatic code generation from high-level control
models:

• Simulink Real-Time Workshop (Mathworks)

• Scicos (Inria)

• Lustre/SCADE (Verimag/Esterel-Tecnologies)

• Targetlink (DSpace)

• ASCET (ETAS)

This presentation is mostly based on our experience of the Lustre/SCADE
Simulink Gateway and Code Generator.

plan defplan defplan def

Model-Based Development

These tools open the way to the Model-Based development method

• Design and validation on models (Simulink, Scicos)

• Automatic deployment on a given architecture guarentying faithfulness

This method avoids the manual coding phase which is error-prone.

It places the computerised control field ahead with respect to other
computing fields

plan defplan defplan def

Steps in Code Generation

We first focus here on single thread code generation.

• Type inference

• Clock inference

• Code organisation

• Equation sorting

• Optimisation

plan defplan defplan def

Type Inference
Simulink/Stateflow is a partially typed system:

The user needs not care about types

Yet the resulting code should be typed.

⇒ need for type inference

This is the same situation as in functional languages (OCaml, Haskell). We
can apply here the techniques that have been studied there (Hindley-Milner):

• writing type equations

• soving them by unification algorithm

plan defplan defplan def

Writing Type Equations

Starting points:

• Blocks have a signature imposing type relations on their inputs and
outputs

• The user can impose types in some blocks

plan defplan defplan def

Simulink Types

SimT = {type variables} ∪ SimNum ∪ {boolean}

SimNum = {numerical type variables} ∪
{double, single,

int8, uint8,

int16, unit16,

int32, uint32}

plan defplan defplan def

Block Type Signatures

Constantα : α, α ∈ SimT

Adder : α× · · · × α → α, α ∈ SimNum

Gain : α → α, α ∈ SimNum

Relation : α× α → boolean, α ∈ SimT

Switch : α× β × α → α, α, β ∈ SimNum

Logical Operator : boolean× · · · × boolean → boolean

Discrete Transfer Function : double → double

Zero-Order Hold, Unit Delay : α → α, α ∈ SimT

Data Type Converterα : β → α, α, β ∈ SimT

InPort, OutPort : α → α, α ∈ SimT

plan defplan defplan def

Writing and Solving Type Equations
Example: the stable subsystem

1

Out1

z

1

==
1

In1
x

u

y

type equations:
1
z

: tu = tx

== :

 tx = tu

ty = boolean

How to solve this system of equations?

plan defplan defplan def

Writing and Solving Type Equations
Example: the stable subsystem

1

Out1

z

1

==
1

In1
x

u

y

type equations:
1
z

: tu = tx

== :

 tx = tu

ty = boolean

How to solve this system of equations?

Let’s eliminate the type variable tu

This amounts to unify tx and tx which unify trivially.

Thus we get

stable : tx → boolean

plan defplan defplan def

Writing and Solving Type Equations
More involved: the monitor subsystem

1

Out1

In1 Out1

stable1

In1 Out1

stable

z

1

z

1

OR
AND

1

In1
y

t

z
u

x

w

v

type equations:

plan defplan defplan def

Writing and Solving Type Equations
More involved: the monitor subsystem

1

Out1

In1 Out1

stable1

In1 Out1

stable

z

1

z

1

OR
AND

1

In1
y

t

z
u

x

w

v

type equations:
1
z

: tu = tx

stable : tv = boolean

stable1 : tw = boolean

OR : tv = tw = tt = boolean

AND : tt = tz = ty = boolean

1
z

: tz = ty

plan defplan defplan def

Writing and Solving Type Equations
More involved: the monitor subsystem

1

Out1

In1 Out1

stable1

In1 Out1

stable

z

1

z

1

OR
AND

1

In1
y

t

z
u

x

w

v

type equations:
1
z

: tu = tx

stable : tv = boolean

stable1 : tw = boolean

OR : tv = tw = tt = boolean

AND : tt = tz = ty = boolean

1
z

: tz = ty

We get ty = boolean and thus:

monitor : tx → boolean

plan defplan defplan def

Other Type Analysis

• Complex Signals

• Signal dimensions

Follow the same lines

plan defplan defplan def

Clock Inference

An important question: when should the implementation compute?

A new issue that doesn’t exist in classical computing.

Yet the same typing techniques can apply:

• writing clock equations

• soving them by unification

plan defplan defplan def

Simulink Clocks

• Periodic clocks defined by:

a rational positive period π ∈ Q+

and a rational positive phase θ < π

• Triggers, akin to boolean signals

• Clock variables

plan defplan defplan def

The GCD Rule
When a block has several inputs with different sample times, the output
sample time is given by the generalised gcd rule:

−1
0
1
2

−1
0
1
2

0 2 4 6 8 10
−1

0
1
2
3

Time offset: 0

ggcd((π1, θ1), (π2, θ2)) =

 (π = gcd(π1, π2), θ1 modulo π) if θ1 = θ2

(gcd(π1, π2, θ1, θ2), 0) otherwise

plan defplan defplan def

The GCD Rule
When a block has several inputs with different sample times, the output
sample time is given by the generalised gcd rule:

−1
0
1
2

−1
0
1
2

0 2 4 6 8 10
−1

0
1
2
3

Time offset: 0

ggcd((2, 0), (3, 0)) = (gcd(2, 3), 0)

= (1, 0)

plan defplan defplan def

Useful Simplifications

• ggcd is associative commutative. So we can write:

ggcd(a, b, c) = ggcd(a, ggcd(b, c))

• ggcd(a, a, b) = ggcd(a, b)

• The solution of a = ggcd(a, b)

is a = b

plan defplan defplan def

Simulink Clock Signatures

Sources−1 : α

Sources(π,θ) : (π, θ)

Maths−1 : α1 × α2 . . .× αn → ggcd(α1, α2, . . . αn)

Maths(π,θ) : α1 × α2 . . .× αn → (π, θ)

Discrete−1 : α → α

Discrete(π,θ) : α → (π, θ)

Sinks−1 : α → α

Sinks(π,θ) : α → (π, θ)

plan defplan defplan def

The Triggered Subsystem Inference Rule

if S : αm → αn

and b : β

then S b̂ : bm → βn

where S b̂ means: the subsystem S triggered by the signal b

This amounts to saying that a trig-
gered subsystem should have a single
clock and that once triggered by a sig-
nal, it executes only when the trigger
is active and then its outputs are hold
when the trigger is inactive.

plan defplan defplan def

The Triggered Subsystem Inference Rule

if S : αm → αn

and b : β

then S b̂ : bm → βn

where S b̂ means: the subsystem S triggered by the signal b

This amounts to saying that a trig-
gered subsystem should have a single
clock and that once triggered by a sig-
nal, it executes only when the trigger
is active and then its outputs are hold
when the trigger is inactive.

1

Out1

In1 Out1

Triggered
Subsystem

2

In2

1

In1

plan defplan defplan def

Clocking the single thread case
Clock inference provides us with a basic clock

• either the fastest periodic clock

• or a clock variable, if there is no periodic clock in the design

In any case, every other clock of the system is slower and can be considered
as a trigger.

In case of periodic clocks, these triggers are implicite and we must make
them explicit by means of clock dividers and phasers

plan defplan defplan def

Clocking the single thread case
Clock inference provides us with a basic clock

• either the fastest periodic clock

• or a clock variable, if there is no periodic clock in the design

In any case, every other clock of the system is slower and can be considered
as a trigger.

In case of periodic clocks, these triggers are implicit and we must make them
explicit by means of clock dividers and phasers

plan defplan defplan def

Example: A (3,1) clock

Scope

1

Constant

In1 Out1

(3,1)clock

1

Out1

z

1

Unit DelaySwitch

 −1
Z

Integer Delay

3

Constant

<= 0

Compare
To Zero

1

In1

plan defplan defplan def

Example: A (3,1) clock

Scope

1

Constant

In1 Out1

(3,1)clock

1

Out1

z

1

Unit DelaySwitch

 −1
Z

Integer Delay

3

Constant

<= 0

Compare
To Zero

1

In1

0 2 4 6 8 10
−1

0

1

2

Time offset: 0

plan defplan defplan def

From Subsystems to Difference Equations
A single-clock subsystem is a system of difference equations

U(0),

U(n + 1) = F (U(n), X(n))

Y (n) = G(U(n), X(n))

where

• U , vector of state variables

• X , vector of inputs

• Y , vector of outputs

• F , state transition function,

• G, output function,

plan defplan defplan def

From Difference Equations to Programs

The idea is to build on object-oriented programming (C++, Java)

Simulink Object-Oriented

system of equations class

state variables class attributes

initialisation object creation

functions class methods

plan defplan defplan def

From Difference Equations to Programs

U(0),

Y (n) = G(U(n), X(n))

U(n + 1) = F (U(n), X(n))

class subsyst{

private :

state u ;

public :

subsyst(state u_init){

u = u_init;

}

output step(input x){

state up;

output y = g(u, x);

up = f(u, x);

u = up;

return y;

}

}

A local version of state variables is used so as to not depend on the order of computations.

plan defplan defplan def

Example

1

y
z

1

Unit Delay1

z

1

Unit Delay

b0 b1

a2a1a0

1

x

u0 u1

U0(z) = z−1(a0X(z)− b0Y (z))

U1(z) = z−1(a1X(z)− b1Y (z) + U0(z))

Y (z) = a2X(z) + U1(z)

plan defplan defplan def

From Simulink to Difference Equations

U0(z) = z−1(a0X(z)− b0Y (z))

U1(z) = z−1(a1X(z)− b1Y (z) + U0(z))

Y (z) = a2X(z) + U1(z)

U0(n + 1) = a0X(n)− b0Y (n)

U1(n + 1) = a1X(n)− b1Y (n) + U0(n)

Y (n) = a2X(n) + U1(n)

plan defplan defplan def

From Difference Equations to Programs

Y (n) = a2X(n) + U1(n)

U0(n + 1) = a0X(n)− b0Y (n)

U1(n + 1) = a1X(n)− b1Y (n) + U0(n)

class second_order {

private :

double a0, a1, a2, b0, b1;

double u0, u1 ;

public :

second_order(double u0, u1)

{....}

double step(double x) {

...

return y;

}

plan defplan defplan def

Building the step function

U0(n + 1) = a0X(n)− b0Y (n)

U1(n + 1) = a1X(n)− b1Y (n) + U0(n)

Y (n) = a2X(n) + U1(n)

double step(double x) {

double y, up0, up1;

y = a2*x + u1 ;

up0 = a0*x - b0*y ;

up1 = a1*x - b1*y + u0;

u0 = up0;

u1 = up1;

return y;

}

plan defplan defplan def

Optimisations

Many optimisations are possible, due to the equational semantics of
block-diagrams

• elimination of unused buffers

• eliminationg buffers by reordering computations

• mofify the original system by z−1 comutation

plan defplan defplan def

Unused Buffers

double step(double x) {

double y, up0, up1;

y = a2*x + u1 ;

up0 = a0*x - b0*y ;

up1 = a1*x - b1*y + u0;

u0 = up0;

u1 = up1;

return y;

}

double step(double x) {

double y, up0;

y = a2*x + u1 ;

up0 = a0*x - b0*y ;

u1 = a1*x - b1*y + u0;

u0 = up0;

return y;

}

u1 is not used since up1 is computed

plan defplan defplan def

Reordering Computations

double step(double x) {

double y, up0;

y = a2*x + u1 ;

up0 = a0*x - b0*y ;

u1 = a1*x - b1*y + u0;

u0 = up0 ;

return y;

}

double step(double x) {

double y;

y = a2*x + u1 ;

u1 = a1*x - b1*y + u0;

u0 = a0*x - b0*y ;

return y;

}

u1 depends on u0 but not the converse. We can compute u1 first.

plan defplan defplan def

Commutating Delays

This is due to the property:

if f a static function (not encompassing z operators), then

zf(x, y) = f(zx, zy)

Note that f can be non-linear, boolean,...

Known as “Leiserson & Saxe retiming”

Used in hardware generation, pipelining,. . .

Is this obvious ???

plan defplan defplan def

Optimisations

Many possibilities

But the problem of buffer optimisation is a “hard problem”

Heuristics are required and obtaining “good code” is not obvious

Yet preferable to human coding

plan defplan defplan def

Subsystems

upper

In1 Out1

some_function

[y][x]

class upper{

private:

...

public:

output step(inputs...){

...

y = some_function.step(x);

...

}

}

Code generation is modular

plan defplan defplan def

Subsystems

upper

In1 Out1

some_function

[y][x]

class upper{

private:

...

public:

output step(inputs...){

...

y = some_function.step(x);

...

}

}

Code generation is modular

But for false causality loops!

plan defplan defplan def

False Causality Loops

In1 Out1

upper
Scope

Pulse
Generator

upper

1

Out1

In1

In2

Out1

Out2

double_id

1

In1

double id

2

Out2

1

Out1

2

In2

1

In1

Is this a correct model ?

What is the result ?

plan defplan defplan def

False Causality Loops

In1 Out1

upper
Scope

Pulse
Generator

upper

1

Out1

In1

In2

Out1

Out2

double_id

1

In1

double id

2

Out2

1

Out1

2

In2

1

In1

−1

0

1

2

0 2 4 6 8 10
−1

0

1

2

Time offset: 0

There is no causality loop

But modular code generation

is not possible

plan defplan defplan def

False Causality Loops

In1 Out1

upper
Scope

Pulse
Generator

upper

1

Out1

In1

In2

Out1

Out2

double_id

1

In1

double id

2

Out2

1

Out1

2

In2

1

In1

−1

0

1

2

0 2 4 6 8 10
−1

0

1

2

Time offset: 0

There is no causality loop

But modular code generation

is not possible

However code can be generated

by inlining

plan defplan defplan def

False Causality Loops

In1 Out1

upper
Scope

Pulse
Generator

upper

1

Out1

In1

In2

Out1

Out2

double_id

1

In1

double id

2

Out2

1

Out1

2

In2

1

In1

Inlining

class upper{

public:

upper(){}

a_type step(a_type In1){

a_type double_id_In1 = In1;

a_type double_id_Out1 = double_id_In1;

a_type double_id_In2 = double_id_Out1;

a_type double_id_Out2 = double_id_In2;

a_type Out1 = double_id_Out2;

return Out1;

}

}

plan defplan defplan def

Inlining vs Modularity

Inlining allow generating code for more models

Yet modular code generation is often preferred:

• Better readability

• Easier testing

plan defplan defplan def

Triggered Subsystems

upper

In1 Out1

some_function

[u]

[clock]

[x]

class upper{

private:

...

some_type u=0;

...

public:

output step(inputs...){

...

if (clock)

u = some_function.step(x);

...

}

}

The outputs of triggered subsystems are state variables that have to be
initialised properly.

plan defplan defplan def

Code Generation for Verification
Verification of Simulink/Stateflow through SCADE

Uses the translation to Lustre

• Through the Prover Plugin:

Translation to TECLA the internal language of the Prover Engine

Then proof by induction using the Prover SAT - solver.

• using Lustre tools

for instance, enumerative model-checking through autmata code
generation.

plan defplan defplan def

Automaton Code Generation
A boolean Lustre program:

• U(n + 1) = F (U(n), X(n)) : State

• Y (n) = G(U(n), X(n)) : Output

• U(0) : initial state

Enumerate all the reachable states and for each reachable state and possible
input value, the corresponding output value.

plan defplan defplan def

Application to code generation
Build the “verification program”:

property- -

program-

?

If the program is purely boolean and satisfies the property, the code
generation into automaton should never output the value “false”

plan defplan defplan def

Example
Does this program:

1

y

z

1

OR
1

x

satisfies this property

1

Out1

In1 Out1

stable1

In1 Out1

stable

z

1

z

1

OR
AND

1

In1
y

t

z
u

x

w

v

plan defplan defplan def

Translation to Lustre
1

y

z

1

OR
1

x

node once(x: bool) returns (y: bool);

let y = x or (false -> pre y);

tel

plan defplan defplan def

Translation to Lustre

1

Out1

In1 Out1

stable1

In1 Out1

stable

z

1

z

1

OR
AND

1

In1
y

t

z
u

x

w

v

node monitor(x: bool) returns(prop: bool);

let

prop = (stable(x) or stable(false -> pre x))

and (true -> pre prop);

tel

plan defplan defplan def

Verification
We build the verification node

node verif(x: bool) returns (prop : bool);

var y: bool;

let prop = monitor(y);

y = once (x);

tel

and we generate the automaton

plan defplan defplan def

Result
switch(ctx->current_state){

case 0:

ctx->_V2 = _true;

verif_O_prop(ctx->client_data, ctx->_V2);

if(ctx->_V1){

ctx->current_state = 1; break;

} else {

ctx->current_state = 2; break;

}

case 1:

ctx->_V2 = _true;

verif_O_prop(ctx->client_data, ctx->_V2);

ctx->current_state = 3; break;

case 2:

ctx->_V2 = _true;

verif_O_prop(ctx->client_data, ctx->_V2);

if(ctx->_V1){

ctx->current_state = 1; break;

} else {

ctx->current_state = 2; break;

}

case 3:

ctx->_V2 = _true;

verif_O_prop(ctx->client_data, ctx->_V2);

ctx->current_state = 3; break;

}

}

plan defplan defplan def

Conclusions on Single-Thread Code Generation

It allows generating code for any discrete-time model that can be simulated.

Allows many optimisations

The need for Real-Time Operating System is minimised

Provides in general robust and efficient code

plan defplan defplan def

	Automatic Code Generation
	Model-Based Development
	Steps in Code Generation
	Type Inference
	Writing Type Equations
	Simulink Types
	Block Type Signatures
	Writing and Solving Type Equations
	Writing and Solving Type Equations
	Writing and Solving Type Equations
	Writing and Solving Type Equations
	Writing and Solving Type Equations
	Other Type Analysis
	Clock Inference
	Simulink Clocks
	The GCD Rule
	The GCD Rule
	Useful Simplifications
	Simulink Clock Signatures
	The Triggered Subsystem Inference Rule
	The Triggered Subsystem Inference Rule
	Clocking the single thread case
	Clocking the single thread case
	Example: A (3,1) clock
	Example: A (3,1) clock
	From Subsystems to Difference Equations
	From Difference Equations to Programs
	From Difference Equations to Programs
	Example
	From Simulink to Difference Equations
	From Difference Equations to Programs
	Building the step function
	Optimisations
	Unused Buffers
	Reordering Computations
	Commutating Delays
	Optimisations
	Subsystems
	Subsystems
	False Causality Loops
	False Causality Loops
	False Causality Loops
	False Causality Loops
	Inlining vs Modularity
	Triggered Subsystems
	Code Generation for Verification
	Automaton Code Generation
	Application to code generation
	Example
	Translation to Lustre
	Translation to Lustre
	Verification
	Result
	Conclusions on Single-Thread Code Generation

