
Automatic Code Generation

Several tools allow automatic code generation from high-level control
models:

• Simulink Real-Time Workshop (Mathworks)

• Scicos (Inria)

• Lustre/SCADE (Verimag/Esterel-Tecnologies)

• Targetlink (DSpace)

• ASCET (ETAS)

This presentation is mostly based on our experience of the Lustre/SCADE
Simulink Gateway and Code Generator.
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Model-Based Development

These tools open the way to the Model-Based development method

• Design and validation on models (Simulink, Scicos)

• Automatic deployment on a given architecture guarentying faithfulness

This method avoids the manual coding phase which is error-prone.

It places the computerised control field ahead with respect to other
computing fields
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Steps in Code Generation

We first focus here on single thread code generation.

• Type inference

• Clock inference

• Code organisation

• Equation sorting

• Optimisation
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Type Inference
Simulink/Stateflow is a partially typed system:

The user needs not care about types

Yet the resulting code should be typed.

⇒ need for type inference

This is the same situation as in functional languages (OCaml, Haskell). We
can apply here the techniques that have been studied there (Hindley-Milner):

• writing type equations

• soving them by unification algorithm
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Writing Type Equations

Starting points:

• Blocks have a signature imposing type relations on their inputs and
outputs

• The user can impose types in some blocks

plan defplan defplan def



Simulink Types

SimT = {type variables} ∪ SimNum ∪ {boolean}

SimNum = {numerical type variables} ∪
{double, single,

int8, uint8,

int16, unit16,

int32, uint32}
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Block Type Signatures

Constantα : α, α ∈ SimT

Adder : α× · · · × α → α, α ∈ SimNum

Gain : α → α, α ∈ SimNum

Relation : α× α → boolean, α ∈ SimT

Switch : α× β × α → α, α, β ∈ SimNum

Logical Operator : boolean× · · · × boolean → boolean

Discrete Transfer Function : double → double

Zero-Order Hold, Unit Delay : α → α, α ∈ SimT

Data Type Converterα : β → α, α, β ∈ SimT

InPort, OutPort : α → α, α ∈ SimT
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Writing and Solving Type Equations
Example: the stable subsystem

1

Out1

z

1

==
1

In1
x

u

y

type equations:
1
z

: tu = tx

== :

 tx = tu

ty = boolean

How to solve this system of equations?
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Writing and Solving Type Equations
Example: the stable subsystem

1

Out1

z
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==
1
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y

type equations:
1
z

: tu = tx

== :

 tx = tu

ty = boolean

How to solve this system of equations?

Let’s eliminate the type variable tu

This amounts to unify tx and tx which unify trivially.

Thus we get

stable : tx → boolean
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Writing and Solving Type Equations
More involved: the monitor subsystem
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type equations:
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Writing and Solving Type Equations
More involved: the monitor subsystem

1

Out1

In1 Out1

stable1

In1 Out1

stable

z

1

z
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OR
AND

1

In1
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z
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x

w

v

type equations:
1
z

: tu = tx

stable : tv = boolean

stable1 : tw = boolean

OR : tv = tw = tt = boolean

AND : tt = tz = ty = boolean

1
z

: tz = ty
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Writing and Solving Type Equations
More involved: the monitor subsystem
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Out1

In1 Out1

stable1

In1 Out1

stable

z
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z
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type equations:
1
z

: tu = tx

stable : tv = boolean

stable1 : tw = boolean

OR : tv = tw = tt = boolean

AND : tt = tz = ty = boolean

1
z

: tz = ty

We get ty = boolean and thus:

monitor : tx → boolean
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Other Type Analysis

• Complex Signals

• Signal dimensions

Follow the same lines
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Clock Inference

An important question: when should the implementation compute?

A new issue that doesn’t exist in classical computing.

Yet the same typing techniques can apply:

• writing clock equations

• soving them by unification
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Simulink Clocks

• Periodic clocks defined by:

a rational positive period π ∈ Q+

and a rational positive phase θ < π

• Triggers, akin to boolean signals

• Clock variables
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The GCD Rule
When a block has several inputs with different sample times, the output
sample time is given by the generalised gcd rule:

−1
0
1
2

−1
0
1
2

0 2 4 6 8 10
−1

0
1
2
3

Time offset: 0               

ggcd((π1, θ1), (π2, θ2)) =

 (π = gcd(π1, π2), θ1 modulo π) if θ1 = θ2

(gcd(π1, π2, θ1, θ2), 0) otherwise
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The GCD Rule
When a block has several inputs with different sample times, the output
sample time is given by the generalised gcd rule:
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0
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3

Time offset: 0               

ggcd((2, 0), (3, 0)) = (gcd(2, 3), 0)

= (1, 0)
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Useful Simplifications

• ggcd is associative commutative. So we can write:

ggcd(a, b, c) = ggcd(a, ggcd(b, c))

• ggcd(a, a, b) = ggcd(a, b)

• The solution of a = ggcd(a, b)

is a = b
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Simulink Clock Signatures

Sources−1 : α

Sources(π,θ) : (π, θ)

Maths−1 : α1 × α2 . . .× αn → ggcd(α1, α2, . . . αn)

Maths(π,θ) : α1 × α2 . . .× αn → (π, θ)

Discrete−1 : α → α

Discrete(π,θ) : α → (π, θ)

Sinks−1 : α → α

Sinks(π,θ) : α → (π, θ)
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The Triggered Subsystem Inference Rule

if S : αm → αn

and b : β

then S b̂ : bm → βn

where S b̂ means: the subsystem S triggered by the signal b

This amounts to saying that a trig-
gered subsystem should have a single
clock and that once triggered by a sig-
nal, it executes only when the trigger
is active and then its outputs are hold
when the trigger is inactive.
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The Triggered Subsystem Inference Rule

if S : αm → αn

and b : β

then S b̂ : bm → βn

where S b̂ means: the subsystem S triggered by the signal b

This amounts to saying that a trig-
gered subsystem should have a single
clock and that once triggered by a sig-
nal, it executes only when the trigger
is active and then its outputs are hold
when the trigger is inactive.

1

Out1

In1 Out1

Triggered
Subsystem

2

In2

1

In1
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Clocking the single thread case
Clock inference provides us with a basic clock

• either the fastest periodic clock

• or a clock variable, if there is no periodic clock in the design

In any case, every other clock of the system is slower and can be considered
as a trigger.

In case of periodic clocks, these triggers are implicite and we must make
them explicit by means of clock dividers and phasers
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Clocking the single thread case
Clock inference provides us with a basic clock

• either the fastest periodic clock

• or a clock variable, if there is no periodic clock in the design

In any case, every other clock of the system is slower and can be considered
as a trigger.

In case of periodic clocks, these triggers are implicit and we must make them
explicit by means of clock dividers and phasers
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Example: A (3,1) clock

Scope

1

Constant

In1 Out1

(3,1)clock

1

Out1

z

1

Unit DelaySwitch

 −1
Z   

Integer Delay

3

Constant

<= 0

Compare
To Zero

1

In1
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Example: A (3,1) clock

Scope

1

Constant

In1 Out1

(3,1)clock

1

Out1

z

1

Unit DelaySwitch

 −1
Z   

Integer Delay

3

Constant

<= 0

Compare
To Zero

1

In1

0 2 4 6 8 10
−1

0

1

2

Time offset: 0               
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From Subsystems to Difference Equations
A single-clock subsystem is a system of difference equations

U(0),

U(n + 1) = F (U(n), X(n))

Y (n) = G(U(n), X(n))

where

• U , vector of state variables

• X , vector of inputs

• Y , vector of outputs

• F , state transition function,

• G, output function,
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From Difference Equations to Programs

The idea is to build on object-oriented programming (C++, Java)

Simulink Object-Oriented

system of equations class

state variables class attributes

initialisation object creation

functions class methods
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From Difference Equations to Programs

U(0),

Y (n) = G(U(n), X(n))

U(n + 1) = F (U(n), X(n))

class subsyst{

private :

state u ;

public :

subsyst(state u_init){

u = u_init;

}

output step(input x){

state up;

output y = g(u, x);

up = f(u, x);

u = up;

return y;

}

}

A local version of state variables is used so as to not depend on the order of computations.
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Example

1

y
z

1

Unit Delay1

z

1

Unit Delay

b0 b1

a2a1a0

1

x

u0 u1

U0(z) = z−1(a0X(z)− b0Y (z))

U1(z) = z−1(a1X(z)− b1Y (z) + U0(z))

Y (z) = a2X(z) + U1(z)
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From Simulink to Difference Equations

U0(z) = z−1(a0X(z)− b0Y (z))

U1(z) = z−1(a1X(z)− b1Y (z) + U0(z))

Y (z) = a2X(z) + U1(z)

U0(n + 1) = a0X(n)− b0Y (n)

U1(n + 1) = a1X(n)− b1Y (n) + U0(n)

Y (n) = a2X(n) + U1(n)
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From Difference Equations to Programs

Y (n) = a2X(n) + U1(n)

U0(n + 1) = a0X(n)− b0Y (n)

U1(n + 1) = a1X(n)− b1Y (n) + U0(n)

class second_order {

private :

double a0, a1, a2, b0, b1;

double u0, u1 ;

public :

second_order(double u0, u1)

{....}

double step(double x) {

...

return y;

}
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Building the step function

U0(n + 1) = a0X(n)− b0Y (n)

U1(n + 1) = a1X(n)− b1Y (n) + U0(n)

Y (n) = a2X(n) + U1(n)

double step(double x) {

double y, up0, up1;

y = a2*x + u1 ;

up0 = a0*x - b0*y ;

up1 = a1*x - b1*y + u0;

u0 = up0;

u1 = up1;

return y;

}
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Optimisations

Many optimisations are possible, due to the equational semantics of
block-diagrams

• elimination of unused buffers

• eliminationg buffers by reordering computations

• mofify the original system by z−1 comutation
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Unused Buffers

double step(double x) {

double y, up0, up1;

y = a2*x + u1 ;

up0 = a0*x - b0*y ;

up1 = a1*x - b1*y + u0;

u0 = up0;

u1 = up1;

return y;

}

double step(double x) {

double y, up0;

y = a2*x + u1 ;

up0 = a0*x - b0*y ;

u1 = a1*x - b1*y + u0;

u0 = up0;

return y;

}

u1 is not used since up1 is computed
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Reordering Computations

double step(double x) {

double y, up0;

y = a2*x + u1 ;

up0 = a0*x - b0*y ;

u1 = a1*x - b1*y + u0;

u0 = up0 ;

return y;

}

double step(double x) {

double y;

y = a2*x + u1 ;

u1 = a1*x - b1*y + u0;

u0 = a0*x - b0*y ;

return y;

}

u1 depends on u0 but not the converse. We can compute u1 first.
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Commutating Delays

This is due to the property:

if f a static function (not encompassing z operators), then

zf(x, y) = f(zx, zy)

Note that f can be non-linear, boolean,...

Known as “Leiserson & Saxe retiming”

Used in hardware generation, pipelining,. . .

Is this obvious ???
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Optimisations

Many possibilities

But the problem of buffer optimisation is a “hard problem”

Heuristics are required and obtaining “good code” is not obvious

Yet preferable to human coding
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Subsystems

upper

In1 Out1

some_function

[y][x]

class upper{

private:

...

public:

output step(inputs...){

...

y = some_function.step(x);

...

}

}

Code generation is modular
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Subsystems

upper

In1 Out1

some_function

[y][x]

class upper{

private:

...

public:

output step(inputs...){

...

y = some_function.step(x);

...

}

}

Code generation is modular

But for false causality loops!
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False Causality Loops

In1 Out1

upper
Scope

Pulse
Generator

upper

1

Out1

In1

In2

Out1

Out2

double_id

1

In1

double id

2

Out2

1

Out1

2

In2

1

In1

Is this a correct model ?

What is the result ?
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False Causality Loops

In1 Out1

upper
Scope

Pulse
Generator

upper

1

Out1

In1

In2

Out1

Out2

double_id

1

In1

double id

2

Out2

1

Out1

2

In2

1

In1

−1

0

1

2

0 2 4 6 8 10
−1

0

1

2

Time offset: 0               

There is no causality loop

But modular code generation

is not possible
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False Causality Loops

In1 Out1

upper
Scope

Pulse
Generator

upper
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Out1

In1

In2

Out1

Out2

double_id

1

In1

double id

2

Out2

1

Out1

2

In2

1

In1

−1

0

1

2

0 2 4 6 8 10
−1

0

1

2

Time offset: 0               

There is no causality loop

But modular code generation

is not possible

However code can be generated

by inlining
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False Causality Loops

In1 Out1

upper
Scope

Pulse
Generator

upper

1

Out1

In1

In2

Out1

Out2

double_id

1

In1

double id

2

Out2

1

Out1

2

In2

1

In1

Inlining

class upper{

public:

upper(){}

a_type step(a_type In1){

a_type double_id_In1 = In1;

a_type double_id_Out1 = double_id_In1;

a_type double_id_In2 = double_id_Out1;

a_type double_id_Out2 = double_id_In2;

a_type Out1 = double_id_Out2;

return Out1;

}

}

plan defplan defplan def



Inlining vs Modularity

Inlining allow generating code for more models

Yet modular code generation is often preferred:

• Better readability

• Easier testing
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Triggered Subsystems

upper

In1 Out1

some_function

[u]

[clock]

[x]

class upper{

private:

...

some_type u=0;

...

public:

output step(inputs...){

...

if (clock)

u = some_function.step(x);

...

}

}

The outputs of triggered subsystems are state variables that have to be
initialised properly.
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Code Generation for Verification
Verification of Simulink/Stateflow through SCADE

Uses the translation to Lustre

• Through the Prover Plugin:

Translation to TECLA the internal language of the Prover Engine

Then proof by induction using the Prover SAT - solver.

• using Lustre tools

for instance, enumerative model-checking through autmata code
generation.
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Automaton Code Generation
A boolean Lustre program:

• U(n + 1) = F (U(n), X(n)) : State

• Y (n) = G(U(n), X(n)) : Output

• U(0) : initial state

Enumerate all the reachable states and for each reachable state and possible
input value, the corresponding output value.
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Application to code generation
Build the “verification program”:

property- -

program-

?

If the program is purely boolean and satisfies the property, the code
generation into automaton should never output the value “false”
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Example
Does this program:

1

y

z

1

OR
1

x

satisfies this property

1

Out1

In1 Out1

stable1

In1 Out1

stable

z

1

z

1

OR
AND

1

In1
y

t

z
u

x

w

v
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Translation to Lustre
1

y

z

1

OR
1

x

node once(x: bool) returns (y: bool);

let y = x or (false -> pre y);

tel
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Translation to Lustre

1

Out1

In1 Out1

stable1

In1 Out1

stable

z

1

z

1

OR
AND

1

In1
y

t

z
u

x

w

v

node monitor(x: bool) returns(prop: bool);

let

prop = (stable(x) or stable(false -> pre x))

and (true -> pre prop);

tel
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Verification
We build the verification node

node verif(x: bool) returns (prop : bool);

var y: bool;

let prop = monitor(y);

y = once (x);

tel

and we generate the automaton
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Result
switch(ctx->current_state){

case 0:

ctx->_V2 = _true;

verif_O_prop(ctx->client_data, ctx->_V2);

if(ctx->_V1){

ctx->current_state = 1; break;

} else {

ctx->current_state = 2; break;

}

case 1:

ctx->_V2 = _true;

verif_O_prop(ctx->client_data, ctx->_V2);

ctx->current_state = 3; break;

case 2:

ctx->_V2 = _true;

verif_O_prop(ctx->client_data, ctx->_V2);

if(ctx->_V1){

ctx->current_state = 1; break;

} else {

ctx->current_state = 2; break;

}

case 3:

ctx->_V2 = _true;

verif_O_prop(ctx->client_data, ctx->_V2);

ctx->current_state = 3; break;

}

}
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Conclusions on Single-Thread Code Generation

It allows generating code for any discrete-time model that can be simulated.

Allows many optimisations

The need for Real-Time Operating System is minimised

Provides in general robust and efficient code
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