Automatic Code Generation

Several tools allow automatic code generation from high-level control models:

- Simulink Real-Time Workshop (Mathworks)
- Scicos (Inria)
- Lustre/SCADE (Verimag/Esterel-Tecnologies)
- Targetlink (DSpace)
- ASCET (ETAS)

This presentation is mostly based on our experience of the Lustre/SCADE Simulink Gateway and Code Generator.

Model-Based Development _____

These tools open the way to the Model-Based development method

- Design and validation on models (Simulink, Scicos)
- Automatic deployment on a given architecture guarentying faithfulness

This method avoids the manual coding phase which is error-prone. It places the computerised control field ahead with respect to other computing fields

Steps in Code Generation ____

We first focus here on single thread code generation.

- Type inference
- Clock inference
- Code organisation
- Equation sorting
- Optimisation

Type Inference ____

Simulink/Stateflow is a partially typed system:

The user needs not care about types

Yet the resulting code should be typed.

 \Rightarrow need for type inference

This is the same situation as in functional languages (OCaml, Haskell). We can apply here the techniques that have been studied there (Hindley-Milner):

- writing type equations
- soving them by unification algorithm

Writing Type Equations _____

Starting points:

- Blocks have a signature imposing type relations on their inputs and outputs
- The user can impose types in some blocks

Simulink Types _

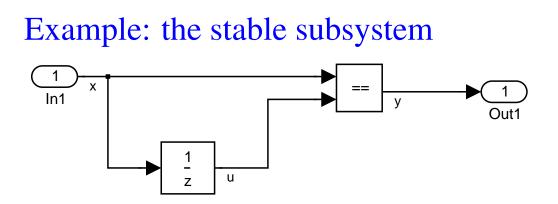
 $SimT = \{type \ variables\} \cup SimNum \cup \{boolean\}$

 $SimNum = \{numerical type variables\} \cup \\ \{double, single, \\ int8, uint8, \\ int16, unit16, \\ int32, uint32\}$

Block Type Signatures _

Constant_{α} : $\alpha, \alpha \in SimT$ Adder : $\alpha \times \cdots \times \alpha \to \alpha, \alpha \in SimNum$ Gain : $\alpha \to \alpha, \alpha \in SimNum$ Relation : $\alpha \times \alpha \rightarrow boolean, \alpha \in SimT$ Switch : $\alpha \times \beta \times \alpha \to \alpha, \alpha, \beta \in SimNum$ *Logical Operator* : *boolean* $\times \cdots \times$ *boolean* \rightarrow *boolean* Discrete Transfer Function : double \rightarrow double *Zero-Order Hold, Unit Delay* : $\alpha \rightarrow \alpha, \alpha \in SimT$ Data Type Converter $\beta \rightarrow \alpha, \alpha, \beta \in SimT$ InPort, OutPort : $\alpha \to \alpha, \alpha \in SimT$

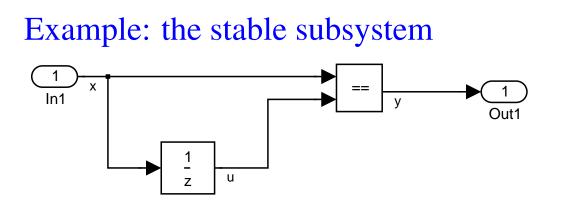
Writing and Solving Type Equations _



How to solve this system of equations?

 $\begin{array}{rcl} \text{type equations:} \\ \frac{1}{z} & : & tu = tx \\ = = & : & \begin{cases} tx = tu \\ ty = boolean \end{cases} \end{array}$

Writing and Solving Type Equations _



 $\begin{array}{rcl} \text{type equations:} \\ \frac{1}{z} & : & tu = tx \\ = = & : & \begin{cases} tx = tu \\ ty = boolean \end{cases} \end{array}$

How to solve this system of equations?

Let's eliminate the type variable tu

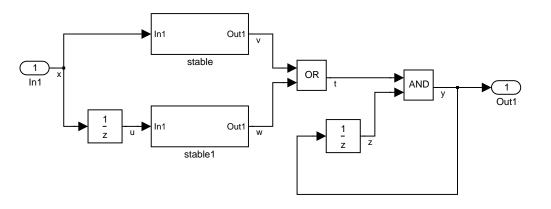
This amounts to unify tx and tx which unify trivially.

Thus we get

 $stable: tx \rightarrow boolean$

Writing and Solving Type Equations

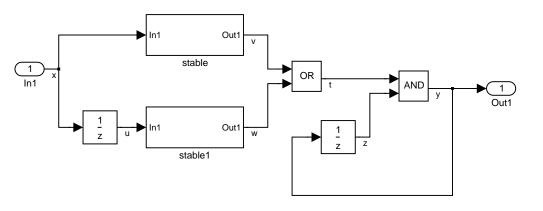
More involved: the monitor subsystem



type equations:

Writing and Solving Type Equations

More involved: the monitor subsystem

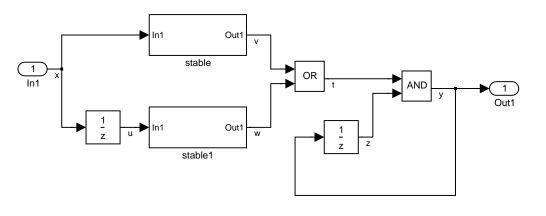


type equations:

$\frac{1}{z}$:	tu = tx
stable	:	tv = boolean
stable1	:	tw = boolean
OR	:	tv = tw = tt = boolean
AND	:	tt = tz = ty = boolean
$\frac{1}{z}$:	tz = ty

Writing and Solving Type Equations

More involved: the monitor subsystem



We get ty = boolean and thus:

type equations:

$\frac{1}{z}$:	tu = tx
stable	:	tv = boolean
stable1	:	tw = boolean
OR	:	tv = tw = tt = boolean
AND	:	tt = tz = ty = boolean
$\frac{1}{z}$:	tz = ty

 $monitor: tx \rightarrow boolean$

Other Type Analysis _____

- Complex Signals
- Signal dimensions

Follow the same lines

Clock Inference _____

An important question: when should the implementation compute?

A new issue that doesn't exist in classical computing.

Yet the same typing techniques can apply:

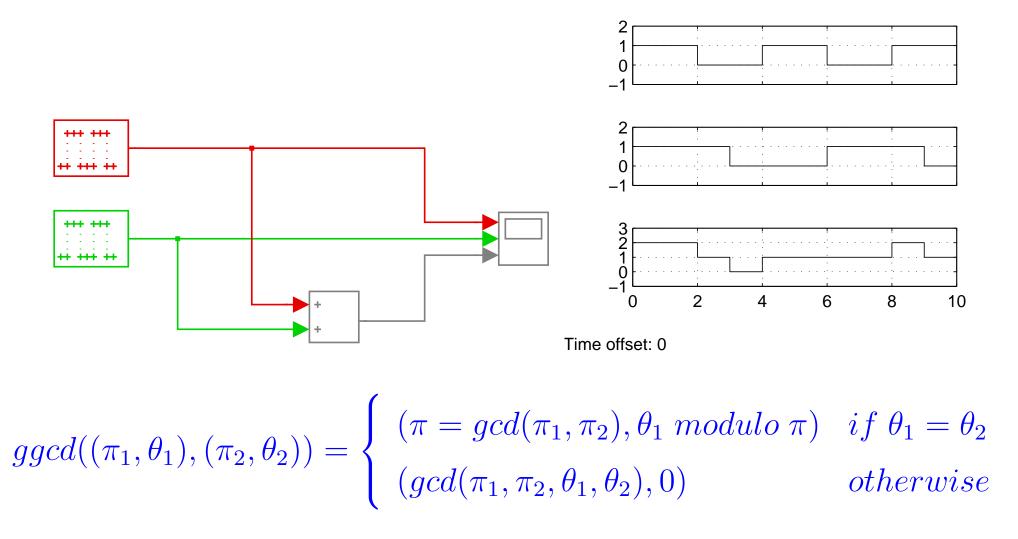
- writing clock equations
- soving them by unification

Simulink Clocks _

- Periodic clocks defined by:
 a rational positive period π ∈ Q⁺
 and a rational positive phase θ < π
- Triggers, akin to boolean signals
- Clock variables

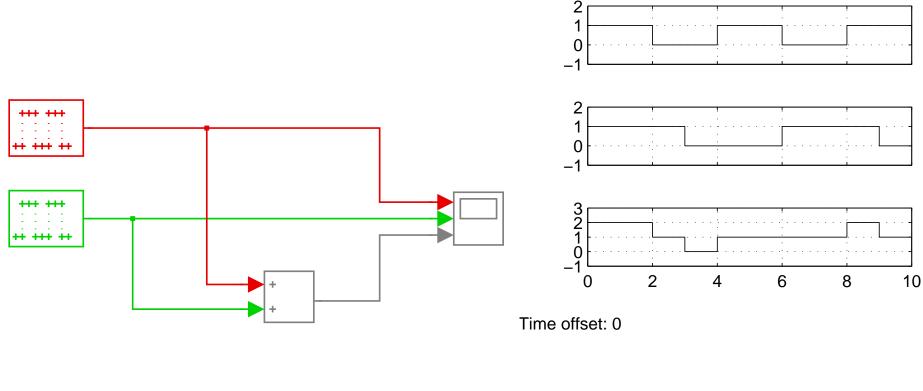
The GCD Rule

When a block has several inputs with different sample times, the output sample time is given by the generalised gcd rule:



The GCD Rule -

When a block has several inputs with different sample times, the output sample time is given by the generalised gcd rule:



$$ggcd((2,0), (3,0)) = (gcd(2,3), 0)$$

= (1,0)

Useful Simplifications _

• ggcd is associative commutative. So we can write:

ggcd(a, b, c) = ggcd(a, ggcd(b, c))

- ggcd(a, a, b) = ggcd(a, b)
- The solution of a = ggcd(a, b)
 is a = b

Simulink Clock Signatures

Sources_1 : α $Sources_{(\pi,\theta)}$: (π,θ) Maths₋₁ : $\alpha_1 \times \alpha_2 \ldots \times \alpha_n \to ggcd(\alpha_1, \alpha_2, \ldots, \alpha_n)$ $Maths_{(\pi,\theta)}$: $\alpha_1 \times \alpha_2 \ldots \times \alpha_n \to (\pi,\theta)$ $Discrete_{-1} : \alpha \to \alpha$ $Discrete_{(\pi,\theta)} : \alpha \to (\pi,\theta)$ Sinks_1 : $\alpha \rightarrow \alpha$ $Sinks_{(\pi,\theta)} : \alpha \to (\pi,\theta)$

The Triggered Subsystem Inference Rule _____

 $\begin{array}{rrrr} if & S & : & \alpha^m \to \alpha^n \\ \\ and & b & : & \beta \\ \\ then & S^{\hat{b}} & : & b^m \to \beta^n \end{array}$

where $S^{\hat{b}}$ means: the subsystem S triggered by the signal b

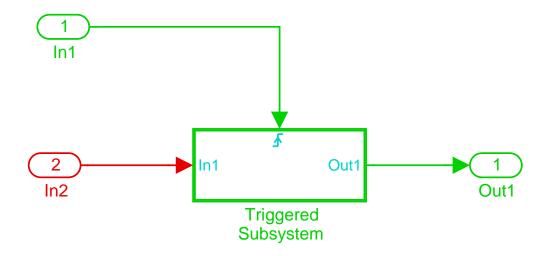
This amounts to saying that a triggered subsystem should have a single clock and that once triggered by a signal, it executes only when the trigger is active and then its outputs are hold when the trigger is inactive.

The Triggered Subsystem Inference Rule _

 $\begin{array}{lll} if & S & : & \alpha^m \to \alpha^n \\ and & b & : & \beta \\ \\ then & S^{\hat{b}} & : & b^m \to \beta^n \end{array}$

where $S^{\hat{b}}$ means: the subsystem S triggered by the signal b

This amounts to saying that a triggered subsystem should have a single clock and that once triggered by a signal, it executes only when the trigger is active and then its outputs are hold when the trigger is inactive.



Clocking the single thread case ____

Clock inference provides us with a basic clock

- either the fastest periodic clock
- or a clock variable, if there is no periodic clock in the design

In any case, every other clock of the system is slower and can be considered as a trigger.

In case of periodic clocks, these triggers are implicite and we must make them explicit by means of clock dividers and phasers

Clocking the single thread case ____

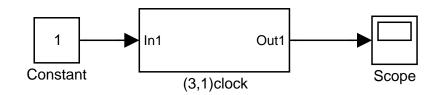
Clock inference provides us with a basic clock

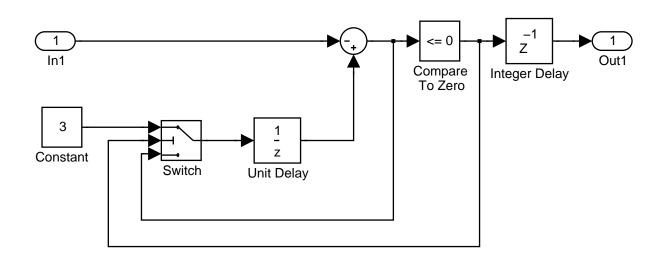
- either the fastest periodic clock
- or a clock variable, if there is no periodic clock in the design

In any case, every other clock of the system is slower and can be considered as a trigger.

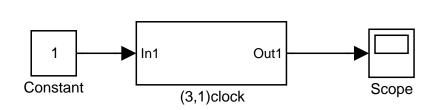
In case of periodic clocks, these triggers are implicit and we must make them explicit by means of clock dividers and phasers

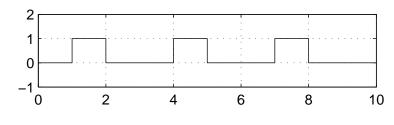
Example: A (3,1) clock _____



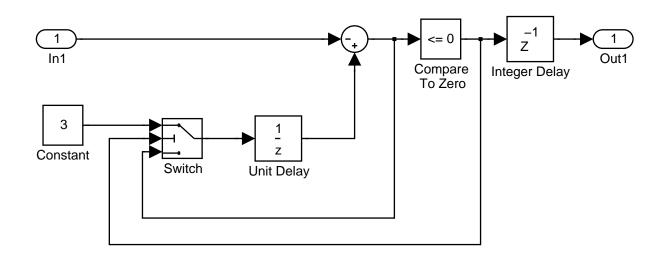


Example: A (3,1) clock _





Time offset: 0



From Subsystems to Difference Equations _____

A single-clock subsystem is a system of difference equations

$$U(0),$$

$$U(n+1) = F(U(n), X(n))$$

$$Y(n) = G(U(n), X(n))$$

where

- U, vector of state variables
- X, vector of inputs
- *Y*, vector of outputs
- *F*, state transition function,
- *G*, output function,

From Difference Equations to Programs _____

The idea is to build on object-oriented programming (C^{++} , Java)

Simulink	Object-Oriented
system of equations	class
state variables	class attributes
initialisation	object creation
functions	class methods

From Difference Equations to Programs _

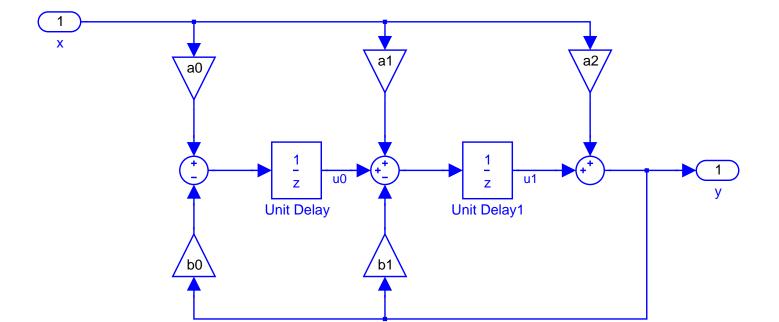
U(0),

Y(n) = G(U(n), X(n))U(n+1) = F(U(n), X(n))

```
class subsyst{
private :
  state u ;
public :
  subsyst(state u_init) {
    u = u_init;
  }
  output step(input x) {
    state up;
    output y = q(u, x);
    up = f(u, x);
    u = up;
    return y;
```

A local version of state variables is used so as to not depend on the order of computations.

Example _



$$U_0(z) = z^{-1}(a_0 X(z) - b_0 Y(z))$$

$$U_1(z) = z^{-1}(a_1 X(z) - b_1 Y(z) + U_0(z))$$

$$Y(z) = a_2 X(z) + U_1(z)$$

From Simulink to Difference Equations _

 $U_{0}(z) = z^{-1}(a_{0}X(z) - b_{0}Y(z))$ $U_{1}(z) = z^{-1}(a_{1}X(z) - b_{1}Y(z) + U_{0}(z))$ $U_{0}(n+1) = a_{0}X(n) - b_{0}Y(n)$ $U_{1}(n+1) = a_{1}X(n) - b_{1}Y(n) + U_{0}(n)$ $Y(z) = a_2 X(z) + U_1(z)$ $Y(n) = a_2 X(n) + U_1(n)$

From Difference Equations to Programs

 $Y(n) = a_2 X(n) + U_1(n)$ $U_0(n+1) = a_0 X(n) - b_0 Y(n)$ $U_1(n+1) = a_1 X(n) - b_1 Y(n) + U_0(n)$

```
class second_order {
  private :
    double a0, a1, a2, b0, b1;
    double u0, u1 ;
  public :
    second_order(double u0, u1)
    {....}
    double step(double x) {
    ...
    return y;
  }
```

Building the step function

$$U_0(n+1) = a_0 X(n) - b_0 Y(n)$$

$$U_1(n+1) = a_1 X(n) - b_1 Y(n) + U_0(n)$$

$$Y(n) = a_2 X(n) + U_1(n)$$

double step(double x) {
 double y, up0, up1;
 y = a2*x + u1 ;
 up0 = a0*x - b0*y ;
 up1 = a1*x - b1*y + u0;
 u0 = up0;
 u1 = up1;
 return y;
}

Optimisations _____

Many optimisations are possible, due to the equational semantics of block-diagrams

- elimination of unused buffers
- eliminationg buffers by reordering computations
- mofify the original system by z^{-1} comutation

Unused Buffers

```
double step(double x) {
  double y, up0, up1;
  y = a2 * x + u1;
  up0 = a0 * x - b0 * y;
  up1 = a1 * x - b1 * y + u0;
  u0 = up0;
  u1 = up1;
  return y;
  }
```

ul is not used since upl is computed

double step(double x) {
 double y, up0;
 y = a2*x + u1 ;
 up0 = a0*x - b0*y ;
 u1 = a1*x - b1*y + u0;
 u0 = up0;
 return y;
 }

Reordering Computations _

double step(double x) {
 double y, up0;
 y = a2*x + u1;
 up0 = a0*x - b0*y;
 u1 = a1*x - b1*y + u0;
 u0 = up0;
 return y;
 }

double step(double x) {
 double step(double x) {
 double y;
 y = a2*x + u1;
 u1 = a1*x - b1*y + u0;
 u0 = a0*x - b1*y + u0;
 u0 = a0*x - b0*y;
 return y;
 }

ul depends on ul but not the converse. We can compute ul first.

Commutating Delays _

This is due to the property:

if f a static function (not encompassing z operators), then

$$zf(x,y) = f(zx,zy)$$

Note that *f* can be non-linear, boolean,... Known as "Leiserson & Saxe retiming" Used in hardware generation, pipelining,... Is this obvious ???

Optimisations _____

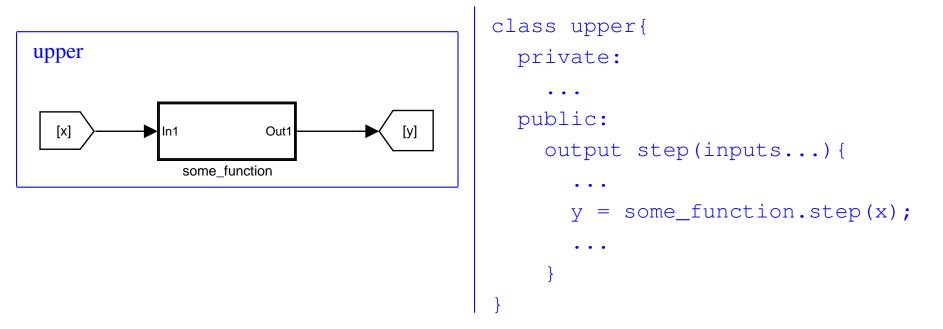
Many possibilities

But the problem of buffer optimisation is a "hard problem"

Heuristics are required and obtaining "good code" is not obvious

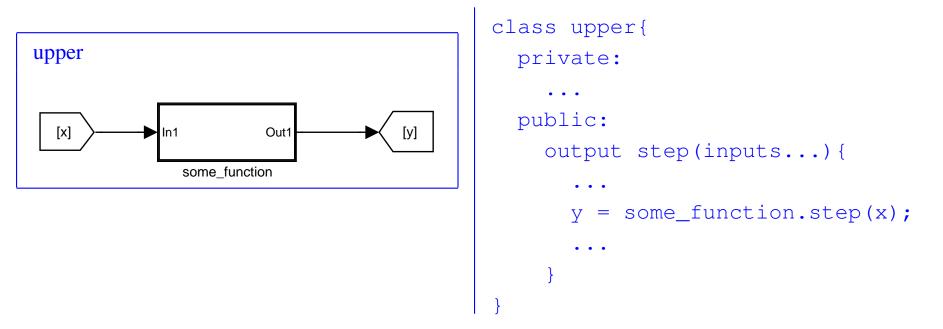
Yet preferable to human coding

Subsystems



Code generation is modular

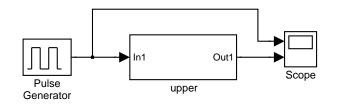
Subsystems



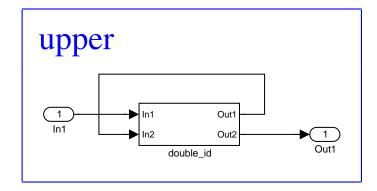
Code generation is modular

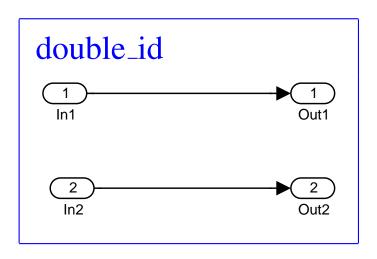
But for false causality loops!

False Causality Loops _

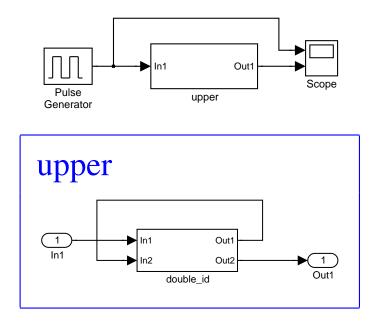


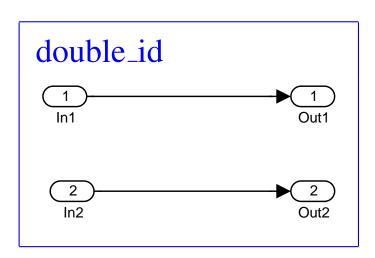
Is this a correct model ? What is the result ?

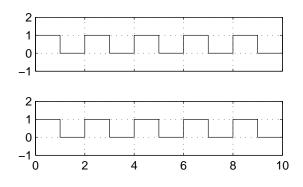




False Causality Loops



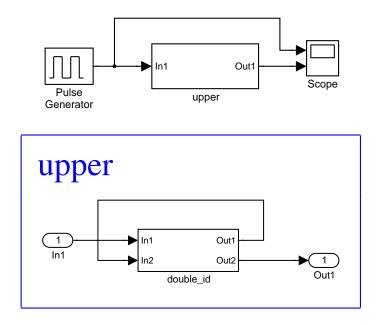


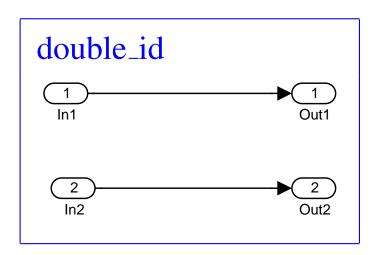


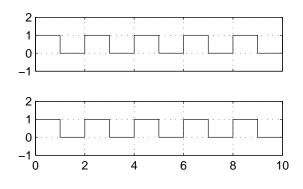
Time offset: 0

There is no causality loop But modular code generation is not possible

False Causality Loops



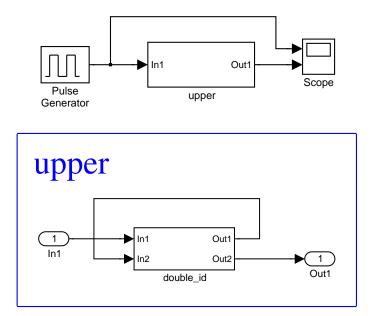


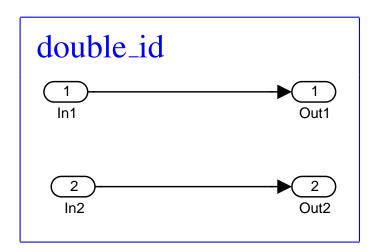


Time offset: 0

There is no causality loop But modular code generation is not possible However code can be generated by inlining

False Causality Loops





Inlining

```
class upper{
```

public:

```
upper(){}
```

```
a_type step(a_type In1) {
```

```
a_type double_id_In1 = In1;
```

```
a_type double_id_Out1 = double_id_In1;
```

```
a_type double_id_In2 = double_id_Out1;
```

```
a_type double_id_Out2 = double_id_In2;
```

```
a_type Out1 = double_id_Out2;
```

```
return Out1;
```

Inlining vs Modularity _____

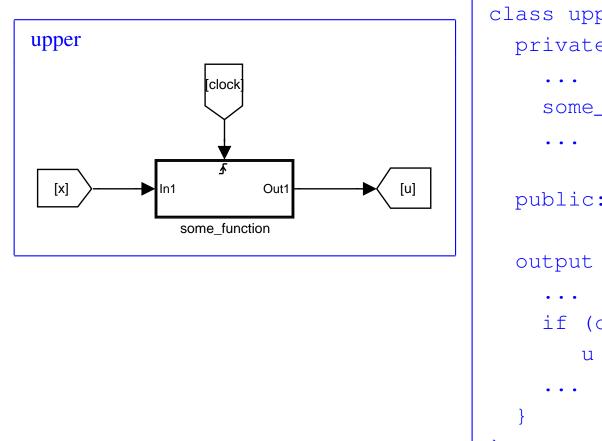
Inlining allow generating code for more models

Yet modular code generation is often preferred:

• Better readability

• Easier testing

Triggered Subsystems



class upper{ private: some_type u=0; public: output step(inputs...) { if (clock) u = some_function.step(x);

The outputs of triggered subsystems are *state variables* that have to be initialised properly.

Code Generation for Verification _

Verification of Simulink/Stateflow through SCADE

Uses the translation to Lustre

• Through the Prover Plugin:

Translation to TECLA the internal language of the Prover Engine Then proof by induction using the Prover SAT - solver.

• using Lustre tools

for instance, enumerative model-checking through autmata code generation.

Automaton Code Generation

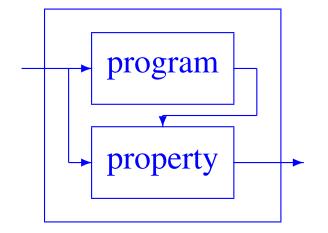
A boolean Lustre program:

- U(n+1) = F(U(n), X(n)): State
- Y(n) = G(U(n), X(n)): Output
- U(0) : initial state

Enumerate all the reachable states and for each reachable state and possible input value, the corresponding output value.

Application to code generation

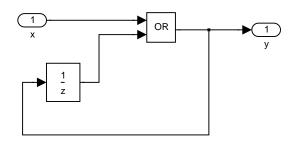
Build the "verification program":



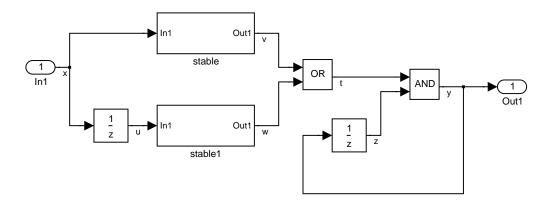
If the program is purely boolean and satisfies the property, the code generation into automaton should never output the value "false"

Example

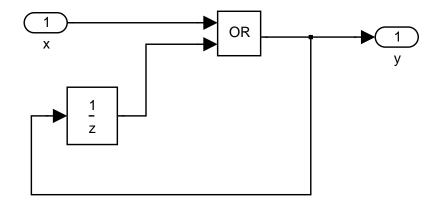
Does this program:



satisfies this property

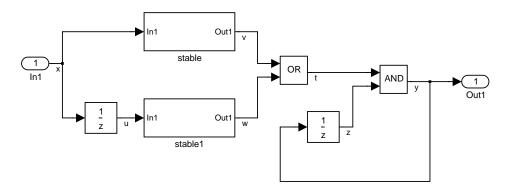


Translation to Lustre



node once(x: bool) returns (y: bool); let y = x or (false -> pre y); tel

Translation to Lustre



Verification ____

We build the verification node

```
node verif(x: bool) returns (prop : bool);
var y: bool;
```

```
let prop = monitor(y);
    y = once (x);
```

tel

and we generate the automaton

Result

```
switch(ctx->current_state) {
case 0:
   ctx \rightarrow V2 = true;
   verif_0_prop(ctx->client_data, ctx->_V2);
   if(ctx->_V1){
      ctx->current_state = 1; break;
   } else {
      ctx->current state = 2; break;
   }
case 1:
   ctx \rightarrow V2 = true;
   verif_0_prop(ctx->client_data, ctx->_V2);
   ctx->current_state = 3; break;
case 2:
   ctx \rightarrow V2 = true;
   verif_0_prop(ctx->client_data, ctx->_V2);
   if(ctx->_V1){
      ctx->current_state = 1; break;
   } else {
      ctx->current_state = 2; break;
   }
case 3:
   ctx \rightarrow V2 = true;
   verif_0_prop(ctx->client_data, ctx->_V2);
   ctx->current_state = 3; break;
```

plan .

Conclusions on Single-Thread Code Generation ____

It allows generating code for any discrete-time model that can be simulated.

Allows many optimisations

The need for Real-Time Operating System is minimised

Provides in general robust and efficient code