
Multi-Thread Code Generation

Paul Caspi
Verimag-CNRS

(joint work with Norman Scaife, Stavros Tripakis, Christos Sofronis)

• Why and when ?

• How ?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Single Thread Code Generation
Allows generating code for any discrete-time model that can be simulated

Allows many optimisations

The need for Real-Time Operating System is minimised

Provides in general robust and efficient code

But in some cases it is very inefficient and even not possible:

need for multi-thread code generation

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Multi-Periodic Systems
Models are based on null execution times

But implementations take time !!

Example:

• period (3,0)

• period(1,0)

single-thread code generation:

can yield:

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Multi-Periodic Systems
Models are based on null execution times

But implementations take time !!

Example:

• period (3,0)

• period(1,0)

single-thread code generation:

can yield even worse

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Multi-Periodic Systems
Models are based on null execution times

But implementations take time !!

Example:

• period (3,0)

• period(1,0)

multi-thread code generation:

and preemptive scheduling can yield

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Event and time-triggered systems
An engine control example:

Uniform Random
Number

Scope2

Scope

Pulse
Generator1

Pulse
Generator

acceleration intake

Ignition

noise

intake

speed

angle

Engine

actual speed

desired speed

acceleration

Control

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Characteristics of the model

Based on several idealisations:

• The engine model is more or less accurate

• Computations are exact

• Computations take no time (synchronous abstraction)

Implementation approximations

• Bounds on computation errors.

• Deadlines on executions

Domain dependent

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Preemptive scheduling

If the deadline associated with event-triggered computations is smaller than
the execution time of time-triggered tasks, preemptive scheduling is
mandatory:

Control

Ignition

Mixed

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

A Solution : Deadline Monotonic Scheduling

Schedulability test: formula of response times Rj =
∑

i=1,j−1

⌈
Rj

Ti

⌉
Ci + Cj

• thread priorities in decreasing order

• Ti minimum inter-arrival time of thread i

• Ci: worst case execution times of thread i

•
⌈

Rj

Ti

⌉
:number of times j can be preempted by i while executing

•
⌈

Rj

Ti

⌉
Ci: maximum time during which j can be preempted by i while

executing

• The sum is taken on every thread with higher priority

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

A Solution : Deadline Monotonic Scheduling

Schedulability test: formula of response times Rj =
∑

i=1,j−1

⌈
Rj

Ti

⌉
Ci + Cj

Rj can be computed iteratively by

Rj,0 = 0

Rj,n+1 =
∑

i=1,j−1

⌈
Rj,n

Ti

⌉
Ci + Cj

until convergence

If Dj is the dead-line of thread j, (Dj ≤ Tj), it suffices to verify for every j :

Rj < Dj

This schedulability test generalises Rate Monotonic Scheduling

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Inter-task communication

Communication integrity, several approaches:

• Blocking approaches based on semaphores

Priority inversion (pathfinder !!)

priority inheritance, priority ceiling protocols

• Lock-free methods

• Loop-free, wait-free methods

Burns et Chen (triple buffer)

provide easier schedulability analysis ?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Bug of the Mars Pathfinder

semaphores

+ RTOS

priority inversion

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Semaphores
High and Low share a critical section

High wants to execute when Low is in critical section

High is stalled until Low gets out of the critical section

No Problem: the schedulability test can account for that

S HL

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Priority Inversion
Medium doesn’t share this critical section

Medium occurs when Low is in critical section

Medium preempts Low

High is stalled

Priority Inversion

S H ML

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

What about semantics?
. . . and model-based development?

Preemption alters the ordering of computations

– In many cases it does not matter (robustness, continuity,
faithfulness. . .)

– In some cases it can (discontinuities, critical races, . . .)

Can we propose executions that be functionally equivalent to the model?

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Proposed solution
Ensures communication integrity and provides executions that are
functionally equivalent to the model:

Based on:

1. Syntactic checks: communications from low to high priority tasks
should go through a unit delay on the low task trigger

2. Double buffer protocols where distinction is made between the
occurrence of triggering events and the task executions

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Why Is a Unit Delay Needed?
from Low to High:

Ideal model communication without unit delay:

L L

HH

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Why Is a Unit Delay Needed?
from Low to High:

Implemented communication without unit delay:

L L

HH

sometimes impossible

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Why Is a Unit Delay Needed?
from Low to High:

Ideal model with unit delay:

L L

HH

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Why Is a Unit Delay Needed?
from Low to High:

Implemented communication with unit delay:

L L

HH

always possible

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Double buffer protocol
• From low to high

– two buffers (“current” et “previous”) managed by Pl, toggled when
el takes place

– when eh occurs, Ph stores the address of “previous”

– Pl writes to “current” et Ph reads into “previous”

• Bit toggling is assumed to take no time

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

JAVA Implementation

public class LowToHigh extends Buffer{

public LowToHigh(int ori, int dest,

Data odd1, Data even1){

super(ori, dest, odd1, even1);

}

public void togglewrite(){

current = !current;

}

public void toggleread(){

previous = !current;

}

}

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Low Priority to High Priority

ei(n)

Low

High

current

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Low Priority to High Priority

previous

ei(n)

Low

High

current

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Low Priority to High Priority

ej(m)

current

previous

ei(n)

Low

High

current

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Low Priority to High Priority

ej(m)

current

previous

ei(n)

Low

High

current

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Low Priority to High Priority

ej(m)

current

previous

ei(n)

Low

High

current

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Low Priority to High Priority

ei(n + 1)

previous

ej(m)

current

previous

ei(n)

Low

High

current

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Low Priority to High Priority

ei(n + 1)

previous

ej(m)

current

previous

ei(n)

Low

High

current

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Low Priority to High Priority

ej(m + 1)

current

ei(n + 1)

previous

ej(m)

current

previous

ei(n)

Low

High

current

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Low Priority to High Priority

previous

ei(n + 2)

ej(m + 1)

current

ei(n + 1)

previous

ej(m)

current

previous

ei(n)

Low

High

current

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Low Priority to High Priority

previous

ei(n + 2)

ej(m + 1)

current

ei(n + 1)

previous

ej(m)

current

previous

ei(n)

Low

High

current

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Double buffer protocol
• From high to low

– double buffer (”current” et ”next”) managed by Pl

– on el ”current” is set to ”next”

– on eh ”next” is toggled if ”current” equals ”next”

– Ph writes to ”next” and Pl reads into ”current”

• Bit toggling is assumed to take no time

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

JAVA Implementation

public class HighToLow extends Buffer{

public HighToLow(int ori, int dest,

Data odd1, Data even1){

super(ori, dest, odd1, even1);

}

public void togglewrite(){

if(current == next) next = !next;

}

public void toggleread(){

current = next;

}

}

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

High Priority to Low Priority

ei(n)

Low

High

next

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

High Priority to Low Priority

ej(m)

current

ei(n)

Low

High

next

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

High Priority to Low Priority

next

ei(n + 1)

ej(m)

current

ei(n)

Low

High

next

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

High Priority to Low Priority

next

ei(n + 1)

ej(m)

current

ei(n)

Low

High

next

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

High Priority to Low Priority

next

ei(n + 1)

ej(m)

current

ei(n)

Low

High

next

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

High Priority to Low Priority

next

ei(n + 2)

next

ei(n + 1)

ej(m)

current

ei(n)

Low

High

next

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

High Priority to Low Priority

ej(m + 1)

current

next

ei(n + 2)

next

ei(n + 1)

ej(m)

current

ei(n)

Low

High

next

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

High Priority to Low Priority

ej(m + 1)

current

next

ei(n + 2)

next

ei(n + 1)

ej(m)

current

ei(n)

Low

High

next

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Other Results
• Proof by Model-Checking

• Generalisation to EDF
Works the same.

• Optimisation in the multi-periodic case

n+1 is the number of buffers needed for a high priority task to
communicate with n lower priority readers.

(instead of 2n)

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Proof by Model-Cheking
Model-checking with Lustre and Lesar

Principles:

• uninterpreted values and functions :
boolean n-vectors
2n > max{ number of values present in the system at a given time }

• synchronous modelling of asynchronous systems
events are input boolean flows constrained by assertions.

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

High to Low
node htlverif(val: boolˆn; s1, sb1, se1, s2, sb2, se2: bool)

returns(prop: bool);

var ideal1, ideal2: boolˆn;

let

assert priority(s1, sb1, se1, s2, sb2, se2);

ideal1 = if s1 then val

else (init -> pre ideal1);

ideal2 = if s2 then ideal1

else (init -> pre ideal2);

prop = if sb2

then vecteq(ideal2, hightolowbuf(s1, s2, se1, ideal1))

else true;

tel

lesar verif.lus htlverif -v -diag -states 100000

DONE => 22489 states 88105 transitions

TRUE PROPERTY

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Low to High Buffer
node lowtohighbuf(fromev, toev, fromact: bool; fromval: boolˆn)

returns (toval: boolˆn);

var even, odd: boolˆn;

bitfrom, bitto: bool;

let

bitfrom = false -> if fromev then not pre bitfrom

else pre bitfrom;

bitto = false -> if toev then not bitfrom

else pre bitto;

even = if fromact and bitfrom then fromval

else (init -> pre even);

odd = if fromact and not bitfrom then fromval

else (init -> pre odd);

toval = if bitto then even

else odd;

tel

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Priority
-- s event occurrence

-- sb begin execution

-- se end of execution

node cyclic(s, sb, se: bool) returns (prop: bool);

let

prop = after(s, sb) and

after(sb, se) and

after(se, forgetfirst(s));

tel

-- s1 has higher priority than s2

node priority (s1, sb1, se1, s2, sb2, se2: bool)

returns (prop: bool);

let

prop = cyclic(s1, sb1, se1) and

cyclic(s2, sb2, se2) and

neverbetween(s1, se1, sb2) and

neverbetween(s1, se1, se2);

tel

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Conclusion

• A simple protocol that gets preemptive implementations closer to
(synchronous) models.

Based on:

– syntactic restrictions (unit delayed communications)

– use of triggering events in buffer selection

• Several optimisations have been provided

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

Industrial Perspectives

There seems to be a clear industrial interest :

• Esterel-Technologies is currently prototyping the approach in the “Scade
Drive” tool-box.

• Real-Time Workshop (Matlab) announces the same results (but
unpublished)

• Parades (Roma) is currently exploring the same ways

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School

	Multi-Thread Code Generation
	Single Thread Code Generation
	Multi-Periodic Systems
	Multi-Periodic Systems
	Multi-Periodic Systems
	Event and time-triggered systems
	Characteristics of the model
	Preemptive scheduling
	A Solution : Deadline Monotonic Scheduling
	A Solution : Deadline Monotonic Scheduling
	Inter-task communication
	Bug of the Mars Pathfinder
	Semaphores
	Priority Inversion
	What about semantics?
	Proposed solution
	Why Is a Unit Delay Needed?
	Why Is a Unit Delay Needed?
	Why Is a Unit Delay Needed?
	Why Is a Unit Delay Needed?
	Double buffer protocol
	JAVA Implementation
	Low Priority to High Priority
	Low Priority to High Priority
	Low Priority to High Priority
	Low Priority to High Priority
	Low Priority to High Priority
	Low Priority to High Priority
	Low Priority to High Priority
	Low Priority to High Priority
	Low Priority to High Priority
	Low Priority to High Priority
	Double buffer protocol
	JAVA Implementation
	High Priority to Low Priority
	High Priority to Low Priority
	High Priority to Low Priority
	High Priority to Low Priority
	High Priority to Low Priority
	High Priority to Low Priority
	High Priority to Low Priority
	High Priority to Low Priority
	Other Results
	Proof by Model-Cheking
	High to Low
	Low to High Buffer
	Priority
	Conclusion
	Industrial Perspectives

