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• Samplable signals

• Samplable systems

• The error of numerical integration

• The unstable controller case

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School



Samplable Signals

η

ε

x

 τ ≤ η ⇒ ||x− Sτx||∞ ≤ ε

where Sτx(t) = x(b t
τ
cτ)

What are these good signals that can be sampled with bounded error?
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Samplable Signals

η

ε

x

 τ ≤ η ⇒ ||x− Sτx||∞ ≤ ε

where Sτx(t) = x(b t
τ
cτ)

What are these good signals that can be sampled with bounded error?
These are the uniformly continuous signals
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Sampling Continuous Systems

for computer implementation

general idea: forward fixed-step methods

• matches periodic (so-called Time-triggered) computing

two ways :

• build a (robust) continuous-time controller and then sample it

• sample the environment to be controlled and design a discrete-time
cntroller(sampled-data control systems theory).

In any case one has to choose the sampling period.
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Choosing the Sampling Period
To stay consistent with our metric viewpoint, the problem can be stated as
follow:
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Given any ε, can we find a sampling period T such that

||S(x)− ST (x)||∞ ≤ ε
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Choosing the Sampling Period
The answer seem positive:

T = 0.2
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Given any ε, can we find a sampling period T such that

||S(x)− ST (x)||∞ ≤ ε
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Choosing the Sampling Period
The answer seem positive:

T = 0.1
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Given any ε, can we find a sampling period T such that

||S(x)− ST (x)||∞ ≤ ε
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Choosing the Sampling Period
The answer seem positive:

T = 0.05
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Given any ε, can we find a sampling period T such that

||S(x)− ST (x)||∞ ≤ ε
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Choosing the Sampling Period
The answer seem positive:

T = 0.01
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Given any ε, can we find a sampling period T such that

||S(x)− ST (x)||∞ ≤ ε
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How can we Understand It ?

Problem of numerical analysis

Fundamental property : Finite Expansion Theorem

Under some conditions,for all x, t, T , exists α ∈ [0, 1] such that

x(t + T ) =
k∑
0

T i

i!
x(i)(t) +

T k+1

(k + 1)!
x(k+1)(t + αT )
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How can we Understand It ?

Problem of numerical analysis

Fundamental property : Finite Expansion Theorem

Under some conditions, for all f, u, v, exists α ∈ [0, 1] such that

f(v) =
k∑
0

(v − u)i

i!
f (i)(u) +

(v − u)k+1

(k + 1)!
f (k+1)(αu + (1− α)v)

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School



Example : Euler’s First Order Method

x(t + T ) ≈ x(t) + Tx′(t)

because

|x(t + T )− (x(t) + Tx′(t))| ≤ T 2

2
supt|x′′(t)|

Application

x′ = f(x, u)

yields

x̂(t + T ) = x̂(t) + T.f(x̂(t), u(t))
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Accuracy of Euler’s Method

x̂(t + T ) = x̂(t) + T.f(x̂(t), u(t))

Question : Can we upperbound the error?

e(t) = |x(t)− x̂(t)|

This question is critical when using computers for continuous control
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Error Decomposition
Let us introduce the fictious signal:

ˆ̂x(t + T ) = x(t) + T.f(x(t), u(t))

amounting to assuming that we would know exactly the solution x(t) at the
previous step (i.e., if we wouldn’t have made any previous error)

this allows decomposing the error in two terms:

• integration error ei = |x− ˆ̂x|

• propagated error ep = |ˆ̂x− x̂|

and bounding it thanks to triangular inequality:

e ≤ ei + ep
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Integration Error
We have:

x(t + T )− ˆ̂x(t + T ) = x(t + T )− x(t)− Tx′(t)

and, by finite expansion, exists α ∈ [0, 1] such that:

x(t + T )− x(t)− Tx′(t) =
T 2

2
x′′(t + αT )

Hence the upper bound

ei ≤
T 2

2
sup

t
|x′′(t)|

where x′′ =
∂f

∂x
x′ +

∂f

∂u
u′
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Propagated Error
We have:

x̂(t + T )− ˆ̂x(t + T ) = x̂(t)− x(t) + Tf(x̂(t), u(t))− Tf(x(t), u(t)))

Applying finite expansion to the function x + Tf(x, u)

Exists α ∈ [0, 1] such that:

x̂(t + T )− ˆ̂x(t + T ) = (x̂(t)− x(t))(1 + T
∂f

∂x
(αx̂(t) + (1− α)x(t), u(t)))

Hence

ep(t + T ) ≤ sup
x,u

|1 + T
∂f

∂x
(x, u)|e(t)
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Global Balance
We have:

e ≤ ei + ep

ei ≤
T 2

2
sup

t
|x′′(t)|

ep(t + T ) ≤ sup
x,u

|1 + T
∂f

∂x
(x, u)|e(t)

Hence

e(t + T ) ≤ sup
x,u

|1 + T
∂f

∂x
(x, u)|e(t) +

T 2

2
sup

t
|x′′(t)|
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Analysis

e(t + T ) ≤ sup
x,u

|1 + T
∂f

∂x
(x, u)|e(t) +

T 2

2
sup

t
|x′′(t)|

Since every thing is positive, the worst case is obtained by the equality

e(t + T ) = Ae(t) + B

with

A = sup
x,u

|1 + T
∂f

∂x
(x, u)| B =

T 2

2
sup

t
|x′′(t)|
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The Good Case

e(t + T ) = Ae(t) + B

with

A = sup
x,u

|1 + T
∂f

∂x
(x, u)| B =

T 2

2
sup

t
|x′′(t)|

• B < ∞ and 0 ≤ A < 1

⇒ e converges toward an upper bound

B

1− A
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Detailling the Good Case

A = sup
x,u

|1 + T
∂f

∂x
(x, u)| B =

T 2

2
sup

t
|x′′(t)|

B < ∞ and 0 ≤ A < 1

Two conditions:

1. b =
1

2
sup

t
|x′′(t)| < ∞

2. Exists c, a such that −c ≤ ∂f

∂x
(x, u) ≤ −a < 0

We then can find T0 such that for any T ≤ T0

A = 1− Ta
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Detailling the Good Case
Hence:

e =
bT 2

aT
= T

b

a

hence we can find T small enough to keep this error arbitrarily small.

This is a remarkable result which shows that, on some conditions, one can
perform a sequence of numerical approximations in such a way that the
successive errors introduced at each step don’t accumulate and the overall
error stays bounded
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Looking at the Conditions
the two conditions are:

1. b =
1

2
sup

t
|x′′(t)| < ∞

the system is stable and the input is bounded and smooth

2.
∂f

∂x
(x, u) is everywhere negative and bounded

the system is stable and the input is bounded

Influence of stability:

• outputs stay bounded

• previous approximation errors are forgotten

Only stable systems can be implemented on digital computers ?
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Example
Sine, cosine : unstable Long range simulation

XY Graph
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Unstable controllers
Unfortunately, this framework is seldom directly applicable because most
controllers are not stable. For instance, the integral term of a PID makes it
unstable, because the integral accumulates errors without “forgetting” them:
the integral term obeys the equation

x′ = u

Thus,

∂f

∂x
= 0

and it cannot be upper bounded by a negative constant.
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Question

Why then can we use a computer and accurately approximate in discrete
time an unstable controller?

This is a key question for both understanding how controllers operate and
how to implement them.
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Answer

An unstable controller (like the limit stable PID) can control an unstable
system (like the inverse pendulum) in such a way that the overall behaviour
of the controlled system be stable!
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Example: An unstable control system

T = 0.2
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Example: An unstable control system

T = 0.1
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Example: An unstable control system

T = 0.05
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Example: An unstable control system

T = 0.01
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Example: The unstable controller alone

T = 0.2
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Example: The unstable controller alone

T = 0.1

2.4s+1

s

Sine Wave

Scope

In1

In2

In1In2

sup

Metric
(2.4+T)z−2.4

z−1

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School



Example: The unstable controller alone

T = 0.05

2.4s+1

s

Sine Wave

Scope

In1

In2

In1In2

sup

Metric
(2.4+T)z−2.4

z−1

How can we understand it ?
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Error bounds in the unstable case
We deal with four systems:

The continuous time controller: x′ = f(x, y, u)

The environment it controls: y′ = g(x, y)

The discrete time controller: x̂(t + T ) = x̂(t) + Tf(x̂(t), ŷ(t), u)

The environment it controls: ŷ′ = g(x̂, ŷ)

We also introduce the fictious

ˆ̂x(t + T ) = x(t) + Tf(x(t), y(t), u)

and, for the sake of uniformity,

ˆ̂y
′
= y′ = g(x, y)

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School



Integration error
It behaves as previously:

ˆ̂x(t + T )− x(t + T ) = x(t + T )− x(t)− Tf(x(t), y(t), u(t))

=
T 2

2
x′′(t + αxT )

and

ˆ̂y(t + T )− y(t + T ) = 0
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Propagation error
We have

x̂(t+T )− ˆ̂x(t+T ) = x̂(t)−x(t)+Tf(x̂(t), ŷ(t), u(t))−Tf(x(t), y(t), u(t)))

but the problem is to treat uniformly x and y. For this, we write, thanks to the
finite expansion theorem,

ŷ(t + T )− ˆ̂y(t + T ) = ŷ(t)− y(t) + Tg(x̂(t), ŷ(t))− Tg(x(t), y(t))

+
T 2

2
(ŷ′′(t + αyT )− y′′(t + αyT ))
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Vector Notation
Let us introduce a

X =

 x

y

 , F (X, u) =

 f(x, y, u)

g(x, y)


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Propagated Error

X̂(t + T )−X(t + T ) = X̂(t)−X(t) + TF (X̂(t), u(t))− TF (X(t), u(t))

+
T 2

2
(ŷ′′(t + αyT )− y′′(t + αyT ))

Then the finite extension theorem yields

X̂(t + T )−X(t + T ) = [I + T
∂F

∂X
(αX̂(t) + (I − α)X(t), u(t))](X̂(t)−X(t))

+
T 2

2
(ŷ′′(t + αyT )− y′′(t + αyT ))

where I denotes the identity matrix and α is a diagonal matrix with elements
in ]0, 1[.
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Matrix norm
A vector norm || || extends to a matrix norm by

||A|| = sup
X

||AX||
||X||

When the Euclidian norm is considered, this amounts to the largest matrix
eigen value module.
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Overall Error
Then, we get the same maximum error equation as before

e(t + T ) = Ae(t) + B

by taking

e = ||X̂ −X||

A = sup
X,u

||I + T
∂F

∂X
(X(t), u(t))||

B = sup
t

T 2

2
|x′′(t)|+ |ŷ′′(t)− y′′(t)|
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Stability

The overall system is stable if

sup
X,u

||I + T
∂F

∂X
(X(t), u(t))|| < 1

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School



Conclusion

If the overall system is stable, the error of the Euler method is bounded by

B

1− A

This is an even more remarquable result than the preceeding one because it
shows that, though the computations are locally inaccurate (looking at the
computer in isolation), they are globally accurate when it comes to the
overall behaviour of the system!
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Conclusion

If the overall system is stable, the error of the Euler method is bounded by

B

1− A

This is an even more remarquable result than the preceeding one because it
shows that, though the computations are locally inaccurate (looking at the
computer in isolation), they are globally accurate when it comes to the
overall behaviour of the system!

But all this is based on continuity. What about discontinuous systems?
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