Hybrid Systems

Paul Caspi *Verimag/CNRS*

- Why?
- Problems
- A proposal

• The implemention of continous control systems on computers has found a mature theory (previous lecture)

Sampling theory, numerical analysis, stability

 \Rightarrow Periodic and multi-periodic sampling, Simulink, synchronous languages, time-triggered systems, ...)

• There is also a mature theory of discrete-event control:

⇒ Stateflow, synchronous languages, event-triggered systems

- But most complex control systems are mixed continuous and discrete-event ones:
 - continuous control
 - modes
 - alarms,
 - fault-tolerance

How to deal with these mixed cases ?

How to deal with these mixed cases ? _

Two possible answers:

- Extend the discrete event approach to the continuous case?
 - variable step solvers ???
 - complex scheduling ???
- Extend the sampling approach to the discrete event case ? This is by now the most popular approach But it raises the question of a satisfactory theory for sampling discrete event systems

Practitioners rely on "in-house" recipes which lack of theoretical background

 \Rightarrow "in-house" continous education, no textbooks, few research

Sampling Problems _____

Sampling discrete-event systems raise questions of asynchrony

- Sampling inputs is not deterministic
- Holding outputs is not deterministic
- \Rightarrow Possible races

Usual design and simulation tools like Simulink/Stateflow don't allow the designer to investigate it

Races

A race takes place when two discrete signals can vary either at the same time or not according to several hasards

A race becomes critical if different states can be reached according to which signal wins the race

Sampling Tuples _____

A possible sampling

Sampling Tuples _____

Another possible sampling

Possible race

_Artist2/UNU-IIST School

Holding Outputs _____

Example : Mutual exclusion

```
always not (y and z)
```

A non robust solution :

Asynchronous Recipes ____

Insert delays

Insert causality chains forbidding races

• z waits for y to go down before rising and conversely

Other Motivations _____

• Model-based development in control

What is a model in control ? What is a refinement ?

• Fault-tolerance problems

Fault-tolerance Problems _

Understand voting methods used in industry (AIRBUS, and many more...)

- Threshold voting
- Delay voting
- Mixed threshold-delay voting

Airbus Architecture (continued)

fault detection redondancy

fault masking redondancy

Redundant computers have their own clocks

Threshold Voting _

 \Rightarrow Based on $||.||_{\infty}$ norm.

This technique allows software diversity and alleviates Byzantine problems

_Artist2/UNU-IIST School

Delay voting _

\Rightarrow Based on uniform bounded variability and bounded delays

_Artist2/UNU-IIST School

What is Lacking?

An approximation, sampling and voting theory for discrete-event and hybrid systems

Sampling Continuous Signals

A signal x is samplable if it is uniformly continuous

 $\forall \epsilon > 0, \exists \eta_x > 0, \forall t, t', |t - t'| \le \eta_x \Rightarrow |x(t) - x(t')| \le \epsilon$

Retiming _

Time distorsion :

- $r:T \to T$
- r non decreasing

Examples:

- bounded retiming: $||r id||_{\infty} \leq \delta$
- bijective retiming => continuous

• T periodic sampling:
$$r(t) = \left\lfloor \frac{t}{T} \right\rfloor T$$

• time delay : $r(t) = t - \delta$

Sampling Continuous Signals

A signal x is samplable if it is uniformly continuous

$$\forall \epsilon > 0, \exists \eta_x > 0, \forall t, t', |t - t'| \le \eta_x \Rightarrow |x(t) - x(t')| \le \epsilon$$

which can be restated as:

 $\exists \eta_x > 0, \forall \epsilon > 0, \forall retiming r, ||r - id||_{\infty} \le \eta_x(\epsilon) \Rightarrow ||x - x \circ r||_{\infty} \le \epsilon$

A First Attempt

Samplable boolean signals are bounded variability signals :

There exists a minimal stable time $T_x > 0$ associated with signal x.

These signals are also those uniformly continuous with respect to the Skorokhod distance(Caspi Benveniste 02)

Allows a natural extension to hybrid signals

Skorokhod distance

Based on bijective retiming :

$$d_{S}(x,y) = \inf_{r \in BR} ||r - id||_{\infty} + ||x \circ r - y||_{\infty}$$

Boolean example : the worst shift between corresponding edges

Problem : combinational boolean functions are not UC: too fine topology

Same problem with the Tube distance of Henzinger et al.

A new approach

Topology based on a family of open balls:

$$B(x;T,\epsilon) = \{ y \mid \sup_{t} \int_{t}^{t+T} \frac{|x-y|}{T} < \epsilon \}$$

Properties:

- Defines indeed a topology
- Generalises the $|| ||_{\infty}$ distance

$$\lim_{T \to 0} \sup_{t} \int_{t}^{t+T} \frac{|x-y|}{T} = ||x-y||_{\infty}$$

It is a topology ____

It suffices to show that any point of a ball is the center of another ball which is a subset of the former.

Let
$$x' \in B(x; T, \epsilon)$$
. It yields: $\sup_{t} \int_{t}^{t+T} \frac{|x' - x|}{T} = d < \epsilon$

Let us take

$$T' = T$$
 $\epsilon' = (\epsilon - d)$

Let $x'' \in B(x'; T', \epsilon')$ and let us show that x'' belongs to $B(x; T, \epsilon)$: for any t,

$$\int_{t}^{t+T} |x'' - x| \le \int_{t}^{t+T} |x'' - x'| + \int_{t}^{t+T} |x' - x|$$

$$\int_t^{t+T} |x'' - x| < \epsilon' T + dT$$

It is a topology ____

It suffices to show that any point of a ball is the center of another ball which is a subset of the former.

Let
$$x' \in B(x; T, \epsilon)$$
. It yields: $\sup_{t} \int_{t}^{t+T} \frac{|x' - x|}{T} = d < \epsilon$

Let us take

$$T' = T$$
 $\epsilon' = (\epsilon - d)$

Let $x'' \in B(x'; T', \epsilon')$ and let us show that x'' belongs to $B(x; T, \epsilon)$: for any t,

$$\int_t^{t+T} |x'' - x| < \epsilon' T + dT$$

$$\int_t^{t+T} |x'' - x| < (\epsilon - d)T + dT$$

It is a topology ____

It suffices to show that any point of a ball is the center of another ball which is a subset of the former.

Let
$$x' \in B(x; T, \epsilon)$$
. It yields: $\sup_{t} \int_{t}^{t+T} \frac{|x' - x|}{T} = d < \epsilon$

Let us take

$$T' = T$$
 $\epsilon' = (\epsilon - d)$

Let $x'' \in B(x'; T', \epsilon')$ and let us show that x'' belongs to $B(x; T, \epsilon)$: for any t,

$$\int_t^{t+T} |x'' - x| < (\epsilon - d)T + dT$$

$$\int_t^{t+T} |x'' - x| < \epsilon T$$

Interest _____

Filters short transients

x and y are neighbours when h gets small, which is the case neither with Skorokhod nor with Tube

Uniformly continuous signals _

Signal x is UC if there exists a positive function $\eta_x(T,\epsilon)$ such that

- for all $\epsilon, T > 0$,
- for all r with $||r id||_{\infty} \leq \eta_x(T, \epsilon)$

 $x \circ r$ belongs to $\overline{B}(x; T, \epsilon)$

Examples :

- Uniformly continuous signals in the usual sense
- Uniform bounded variability boolean signals

Uniformly continuous signals _____

Fundamental property

Let x UC with $\eta_x(T, \epsilon)$

For any ϵ, T , there exists in any time interval of duration T a sub-interval of duration $\eta_x(T, \epsilon)$ such that for all t, t' in this sub-interval,

 $|x(t) - x(t')| \le 2\epsilon$

We can see the deviation with respect to usual UC

Allows designing UC checkers and voters (Airbus)

Uniformly continuous signals _____

Fundamental property

Let x UC with $\eta_x(T,\epsilon)$

For any ϵ, T , there exists in any time interval of duration T a sub-interval of duration $\eta_x(T, \epsilon)$ such that for all t, t' in this sub-interval,

 $|x(t) - x(t')| \le 2\epsilon$

Compare with ordinary UC:

Let x ordinary UC with $\eta_x(\epsilon)$

For any ϵ , in any time interval of duration $\eta_x(\epsilon)$, for all t, t' in this interval,

 $|x(t) - x(t')| \le \epsilon$

Proof

Let us divide an arbitrary interval I of duration T into n equal sub-intervals $I_i, i = 1, n$ of duration h.

Proof _

Let us divide an arbitrary interval I of duration T into n equal sub-intervals $I_i, i = 1, n$ of duration h.

Let:
$$x_i^M = \sup_{t \in I_i} x(t)$$
 $x_i^m = \inf_{t \in I_i} x(t)$ $e_i = x_i^M - x_i^m$

It is easy to design two retimings r^M et r^m such that for all $t \in I_i$,

$$x \circ r^M(t) = x_i^M$$
, $x \circ r^m(t) = x_i^m$

We have moreover:

$$\sup_{t} |r^{M}(t) - t| \le \eta_{x}(T, \epsilon) \quad , \quad \sup_{t} |r^{m}(t) - t| \le \eta_{x}(T, \epsilon)$$

Thus,

$$\int_{I} \frac{|x - x \circ r^{M}|}{T} \le \epsilon \quad , \quad \int_{I} \frac{|x - x \circ r^{m}|}{T} \le \epsilon$$

China, August2007

Proof _

Let us divide an arbitrary interval I of duration T into n equal sub-intervals $I_i, i = 1, n$ of duration h.

Let:
$$x_i^M = \sup_{t \in I_i} x(t)$$
 $x_i^m = \inf_{t \in I_i} x(t)$ $e_i = x_i^M - x_i^m$

It is easy to design two retimings r^M et r^m such that for all $t \in I_i$,

$$x \circ r^{M}(t) = x_{i}^{M} \quad , \quad x \circ r^{m}(t) = x_{i}^{m}$$
$$\int_{I} \frac{|x - x \circ r^{M}|}{T} \leq \epsilon \quad , \quad \int_{I} \frac{|x - x \circ r^{m}|}{T} \leq \epsilon$$

By triangular inequality, we get:

$$\int_{I} \frac{|x \circ r^{M} - x \circ r^{m}|}{T} \leq 2\epsilon$$

Proof _

Let us divide an arbitrary interval I of duration T into n equal sub-intervals $I_i, i = 1, n$ of duration h.

Let:
$$x_i^M = \sup_{t \in I_i} x(t)$$
 $x_i^m = \inf_{t \in I_i} x(t)$ $e_i = x_i^M - x_i^m$

It is easy to design two retimings r^M et r^m such that for all $t \in I_i$,

$$x \circ r^{M}(t) = x_{i}^{M} , \quad x \circ r^{m}(t) = x_{i}^{m}$$
$$\int_{I} \frac{|x \circ r^{M} - x \circ r^{m}|}{T} \leq 2\epsilon$$

Finally,

$$\sum_{1}^{n} \frac{h}{T} e_i \leq 2\epsilon$$

Proof

Let us divide an arbitrary interval I of duration T into n equal sub-intervals $I_i, i = 1, n$ of duration h.

Let:
$$x_i^M = \sup_{t \in I_i} x(t)$$
 $x_i^m = \inf_{t \in I_i} x(t)$ $e_i = x_i^M - x_i^m$

It is easy to design two retimings r^M et r^m such that for all $t \in I_i$,

$$x \circ r^M(t) = x_i^M$$
, $x \circ r^m(t) = x_i^m$

Finally,

$$\sum_{1}^{n} \frac{h}{T} e_i \leq 2\epsilon$$

If all e_i were larger than 2ϵ , this would be also true for their mean value. Thus, at least one e_i is smaller than or equal to 2ϵ .

Mixed threshold delay voters _

If x and x' are UC and if

 $x' \in \bar{B}(x;T,\epsilon)$

then, there exists T' such that, in any time interval of duration T there exists a sub-interval of duration T' such that for all t, t' in this sub-interval,

 $|x(t) - x(t')| \le 3\epsilon$

Corollary :

If the sampling period is smaller than T', two fault-free replicas cannot differ of more than 3ϵ for longer than T - T'

This is exactly the principle of Airbus 2/2 voters

Mixed threshold delay voters _

Uniformly continuous systems _

System S is UC if there exists a positive function $\eta_S(T,\epsilon)$ such that

- for all $T, \epsilon > 0$,
- for all x, x' with x' in $\overline{B}(x; \eta_S(T, \epsilon))$

S(x') belongs to $\bar{B}(S(x);T,\epsilon)$

Examples:

- LTI asymptotically stable systems
- Combinational boolean systems

LTI assymptotically stable systems _

An asymptotically stable LTI system S is such that there exists a an impulse response h_S with:

$$S(x)(t) = \int_{-\infty}^{\infty} h_S(u) x(t-u) \quad , \quad \int_{-\infty}^{\infty} |h_S| = K_S < \infty$$

Thus, for any x, x', T, t,

$$\int_{t}^{t+T} |S(x'(v) - S(x)(v)|/T)| = \int_{t}^{t+T} |\int_{-\infty}^{\infty} h_{S}(u)[x'(v-u) - x(v-u)]|/T$$

$$\leq \int_{t}^{t+T} \int_{-\infty}^{\infty} |h_{S}(u)| |x'(v-u) - x(v-u)|/T$$

$$\leq \int_{-\infty}^{\infty} |h_{S}(u)| \int_{t}^{t+T} |x'(v-u) - x(v-u)|/T$$

LTI assymptotically stable systems ____

Thus, for any x, x', T, t,

$$\int_{t}^{t+T} |S(x'(v) - S(x)(v)|/T)$$

$$\leq \int_{-\infty}^{\infty} |h_{S}(u)| \int_{t}^{t+T} |x'(v-u) - x(v-u)|/T$$

$$\leq \int_{-\infty}^{\infty} |h_{S}(u)| \sup_{t} \int_{t}^{t+T} |x'(v-u) - x(v-u)|/T$$

$$\leq K_{S} \sup_{t} \int_{t}^{t+T} |x'(v-u) - x(v-u)|/T$$

It suffices then to choose:

$$\eta_S(T,\epsilon) = T, \frac{\epsilon}{K_S}$$

to get the announced result.

China, August2007 __

Boolean Combinational Systems

Let us show the proof for a boolean function f with two inputs. It suffices to take:

$$\eta_f(T,\epsilon) = (T,T), (\epsilon/2,\epsilon/2)$$

Let us first remark that if $\epsilon \geq 1$ the property is obvious.

Let us assume $\epsilon < 1$ and $x'_1 \in \overline{B}(x_1; T, \epsilon/2), x'_2 \in \overline{B}(x_2; T, \epsilon/2)$. This amounts to saying that in any interval of duration T, x'_1 differs from x_1 for some fraction of time $\epsilon/2 < 0.5$ and similarly for x_2, x'_2 . It is then clear that the couple x'_1, x'_2 differs from couple x_1, x_2 for a fraction of time at most equal to ϵ . This is also the case for $f(x'_1, x'_2)$ and $f(x_1, x_2)$.

Conclusion _

- A theory that matches some current practices
- Generalisates usual theory
- May unify several points of view (continuous control, discrete event control, computing)

Perspectives

- A numerical analysis framework : compute and combine error functions
- Stability of discrete event and hybrid closed loop systems ? needs contracting operators : Airbus confirmation functions?