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Why?
• The implemention of continous control systems on computers has found

a mature theory (previous lecture)

Sampling theory, numerical analysis, stability

⇒ Periodic and multi-periodic sampling, Simulink, synchronous
languages, time-triggered systems, . . . )
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Why?
• There is also a mature theory of discrete-event control:

⇒ Stateflow, synchronous languages, event-triggered systems

• But most complex control systems are mixed continuous and
discrete-event ones:

– continuous control

– modes

– alarms,

– fault-tolerance

How to deal with these mixed cases ?
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How to deal with these mixed cases ?
Two possible answers:

• Extend the discrete event approach to the continuous case?

– variable step solvers ???

– complex scheduling ???

• Extend the sampling approach to the discrete event case ?

This is by now the most popular approach

But it raises the question of a satisfactory theory for sampling discrete
event systems

Practitioners rely on “in-house” recipes which lack of theoretical
background

⇒ “in-house” continous education, no textbooks, few research

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School



Sampling Problems
Sampling discrete-event systems raise questions of asynchrony

• Sampling inputs is not deterministic

• Holding outputs is not deterministic

⇒ Possible races

Usual design and simulation tools like Simulink/Stateflow don’t allow the
designer to investigate it
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Races
A race takes place when two discrete signals can vary either at the same time
or not according to several hasards

A race becomes critical if different states can be reached according to which
signal wins the race

A critical race A race
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Sampling Tuples
A possible sampling

b

a
X X ′ X ′′
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Sampling Tuples
Another possible sampling

b

a
X X ′′

Possible race
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Holding Outputs

Example : Mutual exclusion

always not (y and z)

A non robust solution :

z
-

y
-
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Asynchronous Recipes
Insert delays

Insert causality chains forbidding races

• z waits for y to go down before rising and conversely

z
-

y
-
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Other Motivations

• Model-based development in control

What is a model in control ?

What is a refinement ?

• Fault-tolerance problems
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Fault-tolerance Problems
Understand voting methods used in industry (AIRBUS, and many more...)

• Threshold voting

• Delay voting

• Mixed threshold-delay voting
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Airbus Architecture (continued)
fault detection redondancy fault masking redondancy

Redundant computers have their own clocks
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Threshold Voting

alarm

x1

x2

⇒ Based on ||.||∞ norm.

This technique allows software diversity and alleviates Byzantine problems
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Delay voting

alarm

δ

x1

x2

v

⇒ Based on uniform bounded variability and bounded delays
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What is Lacking?

An approximation, sampling and voting theory for
discrete-event and hybrid systems

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School



Sampling Continuous Signals

A signal x is samplable if it is uniformly continuous

ε

ηx(ε)

x x′

∀ε > 0,∃ηx > 0,∀t, t′, |t− t′| ≤ ηx ⇒ |x(t)− x(t′)| ≤ ε
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Retiming
Time distorsion :

• r : T → T

• r non decreasing

Examples:

• bounded retiming: ||r − id||∞ ≤ δ

• bijective retiming => continuous

• T periodic sampling: r(t) =
⌊

t

T

⌋
T

• time delay : r(t) = t− δ
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Sampling Continuous Signals

A signal x is samplable if it is uniformly continuous

ε

ηx(ε)

x x′

∀ε > 0,∃ηx > 0,∀t, t′, |t− t′| ≤ ηx ⇒ |x(t)− x(t′)| ≤ ε

which can be restated as:

∃ηx > 0,∀ε > 0,∀ retiming r, ||r − id||∞ ≤ ηx(ε) ⇒ ||x− x ◦ r||∞ ≤ ε
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A First Attempt
Samplable boolean signals are bounded variability signals :

There exists a minimal stable time Tx > 0 associated with signal x.

x -�
∆ ≥ Tx

-�
∆′ ≥ Tx

These signals are also those uniformly continuous with respect to the
Skorokhod distance(Caspi Benveniste 02)

Allows a natural extension to hybrid signals
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Skorokhod distance
Based on bijective retiming :

dS(x, y) = inf
r∈BR

||r − id||∞ + ||x◦r − y||∞

Boolean example : the worst shift between corresponding edges

-�

Problem : combinational boolean functions are not UC: too fine topology

Same problem with the Tube distance of Henzinger et al.
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A new approach
Topology based on a family of open balls:

B(x; T, ε) = { y | sup
t

∫ t+T

t

|x− y|
T

< ε }

Properties:

• Defines indeed a topology

• Generalises the || ||∞ distance

lim
T→0

sup
t

∫ t+T

t

|x− y|
T

= ||x− y||∞
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It is a topology
It suffices to show that any point of a ball is the center of another ball which
is a subset of the former.

Let x′ ∈ B(x; T, ε). It yields: sup
t

∫ t+T

t

|x′ − x|
T

= d < ε

Let us take

T ′ = T ε′ = (ε− d)

Let x′′ ∈ B(x′; T ′, ε′) and let us show that x′′ belongs to B(x; T, ε): for any t,

∫ t+T

t
|x′′ − x| ≤

∫ t+T

t
|x′′ − x′|+

∫ t+T

t
|x′ − x|

∫ t+T

t
|x′′ − x| < ε′T + dT
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It is a topology
It suffices to show that any point of a ball is the center of another ball which
is a subset of the former.

Let x′ ∈ B(x; T, ε). It yields: sup
t

∫ t+T

t

|x′ − x|
T

= d < ε

Let us take

T ′ = T ε′ = (ε− d)

Let x′′ ∈ B(x′; T ′, ε′) and let us show that x′′ belongs to B(x; T, ε): for any t,

∫ t+T

t
|x′′ − x| < ε′T + dT

∫ t+T

t
|x′′ − x| < (ε− d)T + dT
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It is a topology
It suffices to show that any point of a ball is the center of another ball which
is a subset of the former.

Let x′ ∈ B(x; T, ε). It yields: sup
t

∫ t+T

t

|x′ − x|
T

= d < ε

Let us take

T ′ = T ε′ = (ε− d)

Let x′′ ∈ B(x′; T ′, ε′) and let us show that x′′ belongs to B(x; T, ε): for any t,

∫ t+T

t
|x′′ − x| < (ε− d)T + dT

∫ t+T

t
|x′′ − x| < εT
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Interest

Filters short transients

-�

x

y h

x and y are neighbours when h gets small, which is the case neither with
Skorokhod nor with Tube
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Uniformly continuous signals
Signal x is UC if there exists a positive function ηx(T, ε) such that

• for all ε, T > 0,

• for all r with ||r − id||∞ ≤ ηx(T, ε)

x ◦ r belongs to B̄(x; T, ε)

Examples :

• Uniformly continuous signals in the usual sense

• Uniform bounded variability boolean signals
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Uniformly continuous signals
Fundamental property

Let x UC with ηx(T, ε)

For any ε, T , there exists in any time interval of duration T a sub-interval of
duration ηx(T, ε) such that for all t, t′ in this sub-interval,

|x(t)− x(t′)| ≤ 2ε

We can see the deviation with respect to usual UC

Allows designing UC checkers and voters (Airbus)
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Uniformly continuous signals
Fundamental property

Let x UC with ηx(T, ε)

For any ε, T , there exists in any time interval of duration T a sub-interval of
duration ηx(T, ε) such that for all t, t′ in this sub-interval,

|x(t)− x(t′)| ≤ 2ε

Compare with ordinary UC:

Let x ordinary UC with ηx(ε)

For any ε, in any time interval of duration ηx(ε), for all t, t′ in this interval,

|x(t)− x(t′)| ≤ ε
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Proof
Let us divide an arbitrary interval I of duration T into n equal sub-intervals
Ii, i = 1, n of duration h.

T

h′

h

h′ h′

h

h
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Proof
Let us divide an arbitrary interval I of duration T into n equal sub-intervals
Ii, i = 1, n of duration h.

Let: xM
i = supt∈Ii

x(t) xm
i = inft∈Ii

x(t) ei = xM
i − xm

i

It is easy to design two retimings rM et rm such that forall t ∈ Ii,

x ◦ rM(t) = xM
i , x ◦ rm(t) = xm

i

We have moreover:

sup
t
|rM(t)− t| ≤ ηx(T, ε) , sup

t
|rm(t)− t| ≤ ηx(T, ε)

Thus, ∫
I

|x− x ◦ rM |
T

≤ ε ,
∫

I

|x− x ◦ rm|
T

≤ ε
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Proof
Let us divide an arbitrary interval I of duration T into n equal sub-intervals
Ii, i = 1, n of duration h.

Let: xM
i = supt∈Ii

x(t) xm
i = inft∈Ii

x(t) ei = xM
i − xm

i

It is easy to design two retimings rM et rm such that forall t ∈ Ii,

x ◦ rM(t) = xM
i , x ◦ rm(t) = xm

i

∫
I

|x− x ◦ rM |
T

≤ ε ,
∫

I

|x− x ◦ rm|
T

≤ ε

By triangular inequality, we get:∫
I

|x ◦ rM − x ◦ rm|
T

≤ 2ε
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Proof
Let us divide an arbitrary interval I of duration T into n equal sub-intervals
Ii, i = 1, n of duration h.

Let: xM
i = supt∈Ii

x(t) xm
i = inft∈Ii

x(t) ei = xM
i − xm

i

It is easy to design two retimings rM et rm such that forall t ∈ Ii,

x ◦ rM(t) = xM
i , x ◦ rm(t) = xm

i

∫
I

|x ◦ rM − x ◦ rm|
T

≤ 2ε

Finally,
n∑
1

h

T
ei ≤ 2ε
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Proof
Let us divide an arbitrary interval I of duration T into n equal sub-intervals
Ii, i = 1, n of duration h.

Let: xM
i = supt∈Ii

x(t) xm
i = inft∈Ii

x(t) ei = xM
i − xm

i

It is easy to design two retimings rM et rm such that forall t ∈ Ii,

x ◦ rM(t) = xM
i , x ◦ rm(t) = xm

i

Finally,

n∑
1

h

T
ei ≤ 2ε

If all ei were larger than 2ε, this would be also true for their mean value.
Thus, at least one ei is smaller than or equal to 2ε.
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Mixed threshold delay voters
If x and x′ are UC and if

x′ ∈ B̄(x; T, ε)

then, there exists T ′ such that, in any time interval of duration T there exists
a sub-interval of duration T ′ such that for all t, t′ in this sub-interval,

|x(t)− x(t′)| ≤ 3ε

Corollary :

If the sampling period is smaller than T ′, two fault-free replicas cannot differ
of more than 3ε for longer than T − T ′

This is exactly the principle of Airbus 2/2 voters

China, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST SchoolChina, August2007 Artist2/UNU-IIST School



Mixed threshold delay voters

x2

alarm

v

x1

τ τ

ε
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Uniformly continuous systems
System S is UC if there exists a positive function ηS(T, ε) such that

• for all T, ε > 0,

• for all x, x′ with x′ in B̄(x; ηS(T, ε))

S(x′) belongs to B̄(S(x); T, ε)

Examples:

• LTI asymptotically stable systems

• Combinational boolean systems
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LTI assymptotically stable systems
An asymptotically stable LTI system S is such that there exists a an impulse
response hS with:

S(x)(t) =
∫ ∞

−∞
hS(u)x(t− u) ,

∫ ∞

−∞
|hS| = KS < ∞

Thus, for any x, x′, T, t,∫ t+T

t
|S(x′(v)− S(x)(v)|/T

=
∫ t+T

t
|
∫ ∞

−∞
hS(u)[x′(v − u)− x(v − u)]|/T

≤
∫ t+T

t

∫ ∞

−∞
|hS(u)||x′(v − u)− x(v − u)|/T

≤
∫ ∞

−∞
|hS(u)|

∫ t+T

t
|x′(v − u)− x(v − u)|/T
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LTI assymptotically stable systems
Thus, for any x, x′, T, t,∫ t+T

t
|S(x′(v)− S(x)(v)|/T

≤
∫ ∞

−∞
|hS(u)|

∫ t+T

t
|x′(v − u)− x(v − u)|/T

≤
∫ ∞

−∞
|hS(u)| sup

t

∫ t+T

t
|x′(v − u)− x(v − u)|/T

≤ KS sup
t

∫ t+T

t
|x′(v − u)− x(v − u)|/T

It suffices then to choose:

ηS(T, ε) = T,
ε

KS

to get the announced result.
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Boolean Combinational Systems
Let us show the proof for a boolean function f with two inputs. It suffices to
take:

ηf (T, ε) = (T, T ), (ε/2, ε/2)

Let us first remark that if ε ≥ 1 the property is obvious.

Let us assume ε < 1 and x′1 ∈ B̄(x1; T, ε/2), x′2 ∈ B̄(x2; T, ε/2). This
amounts to saying that in any interval of duration T , x′1 differs from x1 for
some fraction of time ε/2 < 0.5 and similarly for x2, x

′
2. It is then clear that

the couple x′1, x
′
2 differs from couple x1, x2 for a fraction of time at most

equal to ε. This is also the case for f(x′1, x
′
2) and f(x1, x2).
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Conclusion

• A theory that matches some current practices

• Generalisates usual theory

• May unify several points of view (continuous control, discrete event
control, computing)

Perspectives

• A numerical analysis framework : compute and combine error functions

• Stability of discrete event and hybrid closed loop systems ?

needs contracting operators : Airbus confirmation functions?
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