Validation

of

Real Time and
Embedded Systems

using UPPAAL wm

Kim Guldstrand Larsen
== BRICS c

Basic Research s s

N C omputer S cience CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

LLLoLLI0l0LOLLIOL
LotoLolloLLLoLol

UPPAAL Branches

s)\ O O
m Real Time M

Verification

m Real Time CORA

Scheduling &
Performance Evaluation

_ TIGA
@ Real Time

Controller Synthesis

@ Real Time TRON

Testing

Reading Material

) Reading material - Mozilla Firefox

LEIBLLEMBIELLA

SS

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Filer Rediger W¥is Historik Boomasrker Funkbioner Hijzslp

CEx

@ - - @ g ||_| hittpe Sl s, aau. dif~kglfSoZhouf

[+[B] [C-]

EY

|| Customize Links | | Free Hotmail | | Windows Marketplace | | windows Media |] wWindows

Validation of

Real Time and Embedded Systems
using UPPAAL

Kim Guldstrand Larsen
CISS, Aalborg University, DENMARK

ARTIST? and UNU-IIST School
August 2007, Sozhou, China

Overview

1. Tools

www.cs.aau.dk/—kgl/SoZhou

‘ E Ecziﬁfseorch

in Computer Science

BRICS Machine

Basic Research in Computer Science, 1993-2006

% Tools

Aarhus Other revelvant projects
g =5 BRIGS ARTIST, AMETIST

Computer Science

S

o«

Tools and BRICS

VISUalSTATE
SPIN

PVS HOL

Algorithmic

« Moda)/Logic :CBEBaSQ Tels)

 (Timed) Automata Theor

» Polyhedra Manipulation

UPPAAL

ALF

Semantics

» Concurrency Theory

» Abstract Interpretation
« Compositionality

» Models for real-time
& hybrid systems

= BRICS

Basic Research
in Computer Science

CI1SS: Center for Embedded e
Software Systems

Kim Guldstrand Larsen
kgl@cs.auc.dk
96358893

or

96357220

Aalborg Universitet
Fr. Bajersvej 7B
9220 Aalborg @

o«

Why CISS ?

m 80% of all software iIs
embedded

m Demands for
Increased functionality
with
minimal resources

m Requires multitude of skills

Software construction
Hardware platforms,
Communication
Automation

Testing & Verification

m Goal:
Give a qualitative lift to
current industrial practice

== BRICS

& = Basic Research

in Computer Science

CISS In Numbers

m National Comptetence
Center 2002:

25,5 mil. kr Ministry
6 mil. kr North Jutland
6 mil. kr Aalborg City
12,75 mil. kr Companies
12,75 mil. kr AAU

m 40 projects
m 20 CISS employees

25 CISS associated
researcher at 3 different
research groups at AAU

19 industrial PhDs

‘ i Eo%ﬁ?seorch

in Computer Science

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Focus Areas

Applications

Home automation
Mobile robotter
Intelligente sensorer

&
Ad hoc netveerk N
_ &
Mobiltlf I* N D
Audio/Video O S ¢ &
Konsum elektr S S 32}\ & QOQ
PN

Kontrolsystemer D & T Q&- NG

Automobile S o O N .&@

Methods

(@)
%4
DA
O
\S g
0\0) z
® <,
®
gl 55 BRICS
== == Basic Research

in Computer Science

Focus Areas

Model based development s

Home automation T

; . Intellingent sensor network
IT In automation

- kS
Ad h k >
oc netveer I Q)@QJ
Embedded and RT OS > RT Java Lab &
Audio/Video Q;\\ &S =
Konsum elektr S Q§ ,SZ»*\ & ,;\OQ
Kontrolsystemer \%_\\Q CQ,\ S 2 b‘?’% @f—z’ (@k
' > ce, R N S
Resource Optimal Scheduling & «¢ & & Modeling

©
/ Methods

HW/SW Co-design / Design Space Exploration
57%%

LA

/\60% Embedded Securlty Testing and Verification
"OV co 'O,,
>

= BRICS

Basic Research
in Computer Science

o«

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Danish Network for Intelligent Embedded Systems

4 N)
Application
=
g Stepw. Refinem.
c
O
E SW API/ OS
L HW
network
- 2N /

Funded by
Danish Advanced Technology Foundation

Budget 9 MEuro / 4 years

‘ E Eo%ﬁgseorch

in Computer Science

+=DaNES chal lenges

Danish Network for Intelligent Embedded Systems

: : : Test & Verificaiton
Selfdiagnosic & -repair

W APl / OS
_w)
\/ﬁetwork \

Embedded & Distributed Control

Development Process

Execution Platform

‘ E Eo%ﬁgseorch

in Computer Science

::;9'-’— DaNES chal lenges

Danish Network for Intelligent Embedded Systems
h Test & Verificaiton
., @

Selfdiagnosic & -repair Q) SKOV T E R MA@

Embedded & Distribute

T
1l

Informatik og Matematisk Modellering 1 Pl

ol 55 BRCs
&= == Basic Research

in Computer Science

B oy

10 TECHNOLOGIE

CSS

™
CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Clrtlft European Network of Excellence

Information Society
Technologics

LHIBLLIMeIELEL

o
£§
i
o E
=
e

International
Collaboration

-
[0 ..;.E
‘;r"]ﬂ"lrne iaf Aes

Control for
Embedded Systems

Dissemination

Testing & Verification

ol 5 BRICS coordinator
& = Basic Research

in Computer Science

o«

Verification and Testing

r_‘ # CD_PLAYI

o 5

M O e =
Tl | [PAERE TCO_GAIVE
Lzel i

ot ey
h ®

HOT_FUATIE

~.l000_key/ciose__

(2]
i NO_co
i cdastect edl_no_detect
i »(co_pressenT }

kay (TOISPCAY T T

SOURCE

FLAYING

By IDCATE_tracK_sian
o {PLAY_TRACK

TIME_PASS col_key /|

back_k
[;F..m ekl et nm{k] /
dozromant_track.
citlkey!

e :
ok 1= last_wack] /- [cunem_rock i 4
e ar=t : X
/* Wait for |l I o

Trarstion iak EE S

void 0S_Wait(vord):

[cyrren

/* Operating system visualSTATE process. Mimics a OS process for a
* visualSTATE system. In this implementation this is the mainloop
* interfacing to the visualSTATE basic APl. */

void OS_VS_Process(void);

/* Define completion code variable. */
unsigned char cc;

void HandleError(unsigned char ccArg)

{
printf("Error code %c detected, exiting application.\n", ccArg);
exit(ccArg);

ke

/* In d-241 we only use the OS_Wait call. It is used to simulate a

* system. It purpose is to generate events. How this is done is up to

* you.

*/

void OS_Wait(void)
{

/* lgnore the parameters; just retrieve events from the keyboard and
* put them into the queue. When EVENT_UNDEFINED is read from the

* keyboard, return to the calling process. */
SEM_EVENT_TYPE event;
int num;

R

Basic Research
in Computer Science C O d e

CSS

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Running System

Verification and Testing

o«

Model &

o Diagram Designes - untitled.ver
Fio Edk iew Obects Ootions windaw Helo

|| S| w2 [E] of gia|ele] Blms] ¥ v 7 K]

T ELATER

T ahul_cd_ployer_dowa
TCO_OFRIVE

powetolf_key H

®

i NO_co
i cdastect edl_no_detect
i »(Co_pRESSENT

kay (TOISPCAY T T

SOURCE

FLa
By IDCATE_tracK_sian
v TRACK.

'[%mﬁxfaw+y

dncroment_track.

i TIME_FASS cil_ken /|
citlkey!

4l | L 7

/* Wait for
void 0S Wait(Vord); o

o
- | [[regrrent_rad 1= last_wack) - fcunsr_tiock = lol
crethan_vack incrament_track

/* Operating system visualSTATE process. Mimics a 0S procédss fo
* visualSTATE system. In this implementation this is the mainloop
* interfacing to the visualSTATE basic API. */

void OS_VS_Process(void);

/* Define completion code variable. */
unsigned char cc;

void HandleError(unsigned char ccArg)

{
printf("'Error code %c detected, exiting application.\n", ccArg);
exit(ccArg);

3

/* In d-241 we only use the OS_Wait call. It is used to simulate a
* system. It purpose is to generate events. How this is done is up to
* you.
*/
void 0S_Wait(void)
{
/* Ignore the parameters; just retrieve events from the keyboard and
* put them into the queue. When EVENT_UNDEFINED is read from the
* keyboard, return to the calling process. */
SEM_EVENT_TYPE event;
int num;

Br—:

Basic Research
in Computer Science

Code

CSS

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Req

i

Running System

Verification and Testing

o«

Model &

o Diagram Designes - untitled.ver
Fio Edk iew Obects Ootions windaw Helo

|| S| w2 [E] of gia|ele] Blms] ¥ v 7 K]

T ELATER

T ahul_cd_ployer_dowa
TCO_OFRIVE

powetolf_key H

®

i NO_co
i cdastect edl_no_detect
i »(Co_pRESSENT

kay (TOISPCAY T T

SOURCE

FLa
By IDCATE_tracK_sian
v TRACK.

'[%mﬁxfaw+y

dncroment_track.

col_ke /|

i TIME_FASS

=T
A
4] | L

/* Wait for
void 0S Wait(Vord); o

o
- | [[regrrent_rad 1= last_wack) - fcunsr_tiock = lol
crethan_vack incrament_track

/* Operating system visualSTATE process. Mimics a OS process for a
* visualSTATE system. In this implementation this is the mainloop
* interfacing to the visualSTATE basic API. */

void OS_VS_Process(void);

/* Define completion code variable. */
unsigned char cc;

void HandleError(unsigned char ccArg)
{
printf(""Error code %c detected, exiting application.\n", ccAgg);
exit(ccArg);
3

/* In d-241 we only use the OS_Wait call. It is used to simu
* system. It purpose is to generate events. How this is don
* you.

*/

void 0S_Wait(void)

{

/* Ignore the parameters; just retrieve events from the keyboard and
* put them into the queue. When EVENT_UNDEFINED is read from the

* keyboard, return to the calling process. */

SEM_EVENT_TYPE event;

int num;

Br—:

Basic Research
in Computer Science C O d e

CSS

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Running System

Fi ot : C:SS
Verification and Testing e

Model

—
EEFETN :u m@ Hown

TCO_GRIVE

|

cd_no_detect

— D |Req

SOURCE

calkey |

FLAvING
Aty] IOCATE_WacH_San
i (LAY TRACK

bich_|
et ek Feet_raia
dozromant_track.

ord_ke: i
sl ek ¢ |mnam|m:k Iobt_vsckl |

TIME_PASS col_kew/

i cdfkey/
fepren e

/* Wait for « |lu i =k

void 0S Wait(Void);

/* Operating system visualSTATE process. MlmICS a
* visualSTATE system. In this impleme
* interfacing to the visua

void OS_VS_Process(void);

/* Define completion code
unsigned char cc;

void HandleError(unsigned c

{

printf("Error code %c dete
exit(ccArg);
3

/* In d-241 we only use the 0S® _wsr. It is used to simulate a
* system. It purpose is to generate events. How this is done is up to
* you.
*/
void 0S_Wait(void)
{
/* Ignore the parameters; just retrieve events from the keyboard and
* put them into the queue. When EVENT_UNDEFINED is read from the
* keyboard, return to the calling process. */
SEM_EVENT_TYPE event;
int num;

== Br— Running System
1l'!; E?ggﬁgﬁzrglhnaa (::(:)(:IEB

Why Verification and Testing e

m POTENTIAL.:
30-409% of production time is currently
spend on elaborate, ad-hoc testing
- Errors expensive and difficult to fix

- The potential of existing/improved testing methods and tools is
enormous

- Time-to-market may be shortened considerable by verification and
performance analyses of early designs

m COMMONALITY:
Transversal topic, interacts with all other topics in embedded
systems design:

Modelling and Components (verification, model-based testing)

Hard and adaptive real time
(optimal scheduling & schedulability analysis)

Execution platform (performance analysis, security)
Compilers and timing analysis

(WCET and compact code-generation)
gl 55 BRICS

Basic Research
in Computer Science

Why Verification and Testing e

m IMPORTANCE for EMBEDDED SYSTEMS
- Often safety critical
- Often economical critical
- Hard to patch

r

m CHALLENGES for EMBEDDED SYSTEMS

- Correctness of embedded systems depend crucially on use
of resources (real-time, memory, bandwidth, energy).
Need for verification of and conformance testing with
respect to quantitative models.

- Participation in mobile ad-hoc networks require particular
attention to security aspects.

‘ i Eo%!:ckfseorch

in Computer Science

Test versus Verification

Airbus ControlPanel- .- .

_ oL@

drification

2" sequences of length n

Deadlock identified using
Verification
After sequence of

|
2000

B o
PP 11 73 5 L T4 T3 telegrams / < 1min o5

in Computer Science

|

i

LEAINID

Introducing, Detecting and
Repaliring Errors

Liggesmeyer 98

Analysis Cgl“_*Pm' Programming Dresign Test System Test Crpemtion
sign
50% === 5 kDb
- detected 4
mmduced) y
el‘mtfs En %) ertors (in%) - ;/ costof
iy . ¢ moreeton T kDM
s perermr
S lin DM
N ! - L3 kDb
x
0% i 4 L0 kDM
._,ll
.-l .
0% ~ e . TS kDM
0% - e - DM

L &L
Basic reseurcn

in Computer Science

Time [non-linear)

Introducing, Detecting and

Repaliring Errors

Liggesmeyer 98

snalysis | © E:“?Pmal programming | DesignTest | SystemTest | Opemtion
SgN
50% - 25 kDM
immduced Eﬁmmm“nd o
0% - errots (in %) <\: .
- -+ L3 kDM
200 — T L0 kDM
N g . T3EDM
o _i e - | -

L &L
Basic reseurcn

in Computer Science

Time [non-linear)

Klaus Havelund, NASA

Rotterdam Storm Surge Barrier

‘ == BRICS

Basic Research
in Computer Science

o«

Spectacular software bugs €55
Ariane 5

The first Ariane 5 rocket was
launched in June, 1996. It
used software developed for
the successful Ariane 4. The
rocket carried two computers,
providing a backup in case
one computer failed during
launch. Forty seconds into its
maiden flight, the rocket
veered off course and
exploded. The rocket, along
with $500 million worth of
satellites, was destroyed.

BRICS

Basic Research
in Computer Science

Ariane 5 was a much more
powerful rocket and
generated forces that were
larger than the computer
could handle. Shortly after
launch, it received an input
value that was too large. The
main and backup computers
shut down, causing the rocket
to veer off course.

Spectacular software bugs

U.S.S. Yorktown, U.S. Navy

m In 1998, the USS Yorktown
became the first ship to test
the US Navy's Smart Ship
program. The Navy planned
to use off-the-shelf
computers and software
instead of expensive
U.S.S. Yorktown, courtesy of
U.S. Navy custom-made
machines. A sailor mistakenly
entered a zero for a data
value on a computer. Within
minutes, Yorktown was dead
in the water. It was several
hours before the ship could
move again.

‘ E Eo%!ggseorch

in Computer Science

When the sailor entered the
mistaken number, the
computer tried to divide by
zero, which isn't possible. The
software didn't check to see if
the inputs were valid before
computing and generated an
invalid answer that was used
by another computer. The
error cascaded several
computers and eventually
shut down the ship's engines.

Spectacular software bugs

Moon or Missiles

m The United States established
the Ballistic Missile Early
Warning System (BMEWS)
during the Cold War to detect
a Soviet missile attack. On
October 5, 1960 the BMEWS
radar at Thule, Greenland
detected something. Its
computer control system
decided the signal was made
by hundreds of missiles

Basic Research
in Computer Science

The radar had :
detected the Moon rising over
the horizon. Unfortunately,
the BMEWS computer had not
been programmed to
understand what the moon
looked like as it rose in the
eastern sky, so it interpreted
the huge signal as Soviet
missiles. Luckily for all of us,
the mistake was realized in
time.

Spectacular Software Bugs €55
.... continued

m INTEL Pentium Il floating-point division
470 Mill US $

m Baggage handling system, Denver
1.1 Mill US $/day for 9 months

m Mars Pathfinder

Spectacular software bugs

Therac 25

m The Therac-25 radiation
therapy machine was a
medical device that used
beams of electrons or
photons to kill cancer cells.

Between 1985-1987, at least -

six people got very sick after
Therac-25 treatmentss Four

manufacturer was conflderbt
that their software made it

impossible for the machine to

E-'

harm patients.

in Cornpuler Science

@_.- .
."L S . (73
L"’i ﬂ £ _.._C.c_)_Jjaneter.

IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18-41

m The Therac-25 was withdrawn

from use after it was
determined that it could
deliver fatal overdoses under
certain conditions. The
software would shut down the
machine before delivering an
overdose, but the error

.messages it displayed were

so unhelpful that operators

: Cra couldn't tell what the error
of them died. The 1 =y | <&

was, or how serious it was. In

' some cases, operators

|gnored the message

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

More complex systems

o«

A simple program

Int x=100;

Process INC
oo X<200 --> x:=x+1 X take ?
od

Process DEC

do Question
o x>0 --> x:=x-1
od
Process RESET _
do Possibly
- x=200 --> x:=0
od
Always

(INC || DEC || RESET)

= BRICS

Basic Research
in Computer Science

do Which values may

s/Properties:
E<>(x>100)
E<>(x>200)
A[]1(x<=200)
E<>(x<0)

A1 (x>=0)

Another simple program

Int x=0;

Process P
do
XI=x+1
10 times

CP Il P)

‘ i Ec!zi!gesseorch

in Computer Science

What are the possible final values of x ?

Int x=0;

Process P
int r
do
r:=Xx;
10 times

CP Il P)

r++; X:=r

Atomic stm

Yet another simple program

Int x=1;

Process P
do
X I =X+X
forever

CP Il P)

‘ i Ec!zi!gesseorch

in Computer Science

What are the possible values that x
may posses during execution?

InNt x=1;

Process P
int r
do
r=X; r-:=x+r; X:=r
forever

CP Il P)

Atomic

Model-based
Approach

N C omputer S cience CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Suggested Solution?

Model based

validation, verfication and testing
of software and hardware

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Verification & Validation

Analysis

Implementation

\Testing

Verification & Validation

Analysis

Validation

Design Model «—> Specification
TN Verification & Refusal

Verification & Validation

Analysis

Validation

Design Model «——> Specification

//i'\\ A V . .
- erification & Refusal
g \]\ :\ Model
WA EXTracon ~~ """ "7TTTTTTTTTTT T T s s s s
Y\
/// \
TePon |
\Z-7 Automagic
Code ggneration

Implementation

\Testing

Verification & Validation

Analysis

Validation

T t Verification & Refusal

NI Extraction " N
Yo

(eob
\oT Automqlc _ t generaflion
Code ggneration
Implementation
\Testlng
wEES

How?
Unified Model = State Machine!

a @ Q x Output
Input ports
ports
b @ ®y
Control states
‘E BRICS
== == Basic Research
in Computer Scien

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Tamagotchi

ALIVE

/ Passive Feeding Light \
4 N\

x Health:=
- Heplth-1 A

\ Snack / Clean

N\

Health=0 or Age=2.000

Tikk Discipline DEAD

\

‘ E Ec!zi!gesseorch

in Computer Science

Health:=Health-1; Age:=Age+1

SYNCmaster

Digital Watch

i
L

oD

n

)

" -

0]
-
I Ile SDL EdltOﬁ &=l [=]] (]
e —— B 12| ~| BlE =]
2] -] : Y
i process hMobileSt{1,13
—I —I [Mobile Stakion 7 waitinits P Focess
2] 8] —
nithS (BTS_IDY I /O Models that
IZl - ‘ﬁ&ﬁt _ithe mahile can
e — move fram a..
":"'l p >| waitInit1 |BTS_F‘ID3{BT|S_ID}.- send. | 1873 1o anat..
initkS (BTS_ID, The real behaviour
EETI| [RES] e, IMEI hegins here, before it isl
SDL configuration stuff.
3] i [BT&_PIDs(ETS_ID)- send] (FaLSE] IITHJI:IE:I :
poswer OFF)
Dl -¢- listening
—— "Frompts ..
&0 | IIDuke:I |: Ann]l BTerCE%d': wzer dF?.lring
o) = | e ‘sirmulatian,
. = pin_a]| | p=pin_b
| | | | F\H:-'r_ - _ﬁ - ‘Mo, this rmobile
oy 1 St Lockedk irong P receives from
| | E I n isink stat. BTSreceived, until the
1]] next change of cell’
_I _I e I
WENE [To store the SDL FID of the Base Tx Stations. Mecessary L ‘Dizplay level of the
I:E'l — to send a signal to a given BTS. Y radio signal received
— inith1S (BTS_ID) MEWTYPE ETS_FIDs_t from the ETS”
El El ARRAVETS D1, PIDY, [TallE whers (e
| [ETS_PIDs(BTS_ID):= send.] EMDMEWTYPE; log e VETSreceived .
i DCL (me, BTSreceived, IMEI®, ‘hissing in the
P TO
walthnit3 me Maokile_|D_t, & replaces context parameters *F ETS_PIDs({ETSreceive :TlsaJ LT
IMEI IMEI_t, F replaces context parameters s — 1
nithdS (ETS_ID) B PIN_T, [
status BOOLEARN,
|BTS—PID3{BTS—ID}:= send.l E%I'nsdreerzglfsea BTS_ID_t
ETS_FIDs BTS_FIDs_t;
WwaitInitd
e e e e e e e
F
I~ i =

™ &= &= Basic Research

in Computer Science

— — ____aimulation Uutpul

CSS

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

SPIN CONTROL 3.1.3 -- 16 March 1998 -- File: p123 j line 41 "pan_in" (state 1f)
File.. | Eait.. | Run..| Welp | s DESIGN VERIFICATION Umes:[1E Find: lne 23 A Ez'é:'é: }1?)
Smty‘pe = { msgl, msgl, ackO, ackl };

[printf ("M5C:
Message Sequence Chart

Line 54

ne B3 "never" (state 0)

chan sender =[1] of { byte };

chan receiver=[1] of { byte }; line 63 "pan_in" (stz

B proctype Sender()
{ byte any;
again:

Save in:

:: sender?ackl -> hreak
. sender?any /% lost */

. timeout /* retransmit +/
fi
od;
do
;o receiver Insgl;
if
: sender?ackl -» break
. sender?any /+ lost +/
o timeout /* retransmit */
- fi
od; _
goto again
¥
proctype Receiver()
{ byte any;
again:
do

o receivertmsgl -» senderlackl; break
¢ receivertnagl -» sender!ackl

. receivertany /* lost */

od;

do
:: receivertmsgl -» sender!ackO; breask

-p-v -g -1 -t -30 pan_in

1?1V uuewz|oH pleis ‘NIdS

I [=1E3 i
Swarning: for p.o. reduction to be valid the never claim must bhe stutter-closed ine &
(never claims generated from LTL formulae are stutter-closed)
pan: acceptance cycle (at depth 53}
pan: wrote pan_in. trail
{Spin Wersion 3.1.3 —- 16 March 1998)
Warning: Search not completed
+ Partial Order Reduction
Full statespace search for:
never-clain +
assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid endstates - (disabled by never-claim)
State-wvector 32 byte, depth reached 67, errors: 1
S states, stored (41 visited) . 3]
& states, matched :m;.;.::
47 transitions (= visited+matched) e G
1 atomic steps Pl
hash conflicts: 0 (resolved) 3
(max size 2°19 states)
2,542 memory usage (Mbyte)
Smaller | Larger | Save in: msc.ps | Close | _| Preserve

Save in: |p123.0ut Clear Close | | P ¥

VISUAISTATE s

D

5

Hierarchical state
systems

Flat state systems

Multiple and inter-
related state
machines

Supports UML
notation

Device driver
access

BRICS

Basic Research
in Computer Science

w Baan Visualstate, DTU (CIT project)

;} Beologic vizualS TATE Clazsic Diagram Designer - untitled. ver - [CD_PLAYER]
File Edit Wiew Objects Options Window Help

C

SS

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

o3[3] %]

] 2 ®la(a(e] B(mE| > [v] 71K

’M FPE* CD_PLAYER =] IPropert}' : Mone
= -
cO_FLAYER
= exit/ shut_cd_player_down
Leml | |[FLAYER " CO_DRIVE
[E_ poweerl off_key ' H)
T L
E MOT_PLAYIMG
o stop_kew Ho_CD
F load_key /[open
to é/\-* | od| detect cd_no_detect
[v cdf _na_
— CLOSED OPEM H
+n 'y load_key / close [jﬂ
Q = CO_PRESSENT
plask_keyw NO_CO] ¢
[current_track & last_track]/ # load|key; TDISPLAEY 0TI
play_key [CO_PRESSENT]/ stoplkey / ;
current_track = first_track E
¥ H : SOURCE
PLAYIMNG 1
entry / locate_track_start dlk
do / PLAY_TRACK “% ey !
4 b ook key 4 (TME_PASS cd_key /
[ctirremt_track 1= first_track] /
decrement_track
cod|kev
forward_ke: ¥
[chrrent_tragk |= last_track]/ [current_track |= last_ TIME_LEFT
} ent_track increment_tr b =
N | s
Open the 'Compose Transition' dialog [x=0, =0 zoom=1:1 | L

N
v
7

Rhapsody

e £4 tom G 1o e o 50 ILO(JIX

Dﬂﬂlliﬂll‘l‘lﬁ.ﬂ.ﬂl‘lﬂliﬁﬂlx *’Ibilmw

MoamTROALIHA

ersslvalus = G7500)
tﬂjﬂl st ROOT g npemnisl lishing T

rrbatineiect = 0)
-

;f:_:l-w{:h'l;m:;rg =

th;"!lQﬂIii

ao
_J
FLN

[T I (Mom, 25.0e 15500 [3:20 M

ol 5 BRCs
&= == Basic Research

in Computer Science

Hﬁimulatiun Oukput

;IEIEI eflexGameNormal.scg - ReflexGameMormal #0

ESTEREL

SS

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

_|ol x|
Mame | Yalue I Tuoe nat Code Coveradge Help
FingBel . %K|ﬂm|q|@qq|1un||Madu|e j|@$!f}"{f9 ‘
TILT
Gamelwver Eﬂ | Ebfres | | Friar | | @)
Go -
Display n integer Reflexl ameM ormal
3 armet ormal. B emaininghd e integer - ﬂ
.ﬁ.III Jutputs | Locals | Traps | Yariables | Watch |
On_off/ On_off?
Al
Hame I Value I Tuoe] [(:;%11::I?ntigigér:mghleasures:mtegel,
Loin /Display(0), call InitRND Generator()()
On_off
Ready Game Over =%
Stop sustain GameOwver
k5
Al |Inputs | SEMSOrs | Return Signals | Coin/
| GAME)
— Commands Current Session
:] Reset| I keep Inputs ’iﬁ] K| 1 hswesMEASURE_NUMBER)
—Playback Session
I EI EI ¥ Reset on Loading
|
as| sw| @] 2| 3t opees v PAUSE_LENGTH MS/
— Dump contral Displap[?MEAN/MEASURE_NUMBER)
- ningMeasures » 0]/
Wavefaorm
Output File | 2] tart. |)
Configuration File I EI Edit | Stap | g Llj
o Caverage o .
Qutput Fle | = Start. |
[Compack Coverage Files stop |

= UPPAAL2K ME s c s s

File Templates View Queries Options Processes Wariables

rSystem Editor rSimuIatur |/Veriﬁer |

| Drag out ‘: 0 43'{03’&“ - |
i RegNew(ear?
Enabled Transitions SysTimer:=0
meceuﬂ/ﬂlq:]::;;:r
(GearControltrans17, Clutch.transt) : FromGear=0 ceTi ah
v T==
(GearCantroltrans18, Engine transg) : ReyZeroTorgue! Ope:::“l!utc]\!
i _\GCTi.mer:=l] CCTimers=flo Clutchlz Open?
C
C CheckTorque < CheckCluich? ClutchOpen
GCTimer==255 i GCTimer==200
CCTimer=250 & CTimer=150,
TorqueZero? GCTimer==100
ReglNeu!
: © Regeucear C)i:opennmr CCTimers=0
‘ off H Next H Reset ‘ : RegNeu! _
3 CCTimer:=0 GCTimer-200, C:CTimer-200, (
Simulation Trace Ch\ GCTimer==250 = GCTu'ner==25l]r, -U
— : CheckCearNeu e NeuFrror
(Gear, Gearr, Initial, Meutral, Closed) : CCTimer==250 -U
(GearControltrans24, Interface trans11) Cearleu? >
{Initiate, chkGeartR, Initial, Meutral, Closed] & :} GCTimer-150,
i GCTi =200
(GearControl trans27) : ToGear== ReqSyncSpeed Tnesy |>
" B ToGear-0
(ReqSyncSpeed, chkGearhR, Initial, Meutral ' |
3 RegSpeed! .
GearContral frans32, Engine frans3 : imer CCimer==150
(GearControltrans32, Engine frans4) : _\GCTuner:-l] OpenCluich! &L Clutchls Open?
CheckEyncSpeed, chkGearhR, FindSpeed| & C =
l: sk . : .CheckSym:S])eed GCTimer:=0"CheckCluich rt) CluichOpen ReqSetGear?
GCTimer==155 GO Timer==200
CCTimer=150 liplezzme=l]
SpeedSet? Regfet! I
C GCTimer:=0
RegfetCear Eegfet!
i RegSet!
ik L CCTimer:=0 GClimer=300, QCTimer-300,
- CCTimer*SSllﬁcc]‘mr::gsn ES GCTimer:=0
Trace File: 'éheckCearSeﬂ vcsreﬂ?.rmr CheckCearSei? ToGear==0
Prev Replay GCTimer==350 GCTimer==350
; GearSet? Close Clutch! CearSet? Close Clutch!
Load | Save | Random = Clutchlz Closed? o GCTimer:=0 @ O Timerict
— ReqTorqueC: “heckCluichClosed ClutchCloge ’
: U : GCTimer==200
, GCTimer=150,
Fast \ ReqToryue! CCTimer==200 CCTimer-150, |
B Pl ol LAY T x

Basic Research
in Computer Science

* Problem * -
> M2
N

‘State Explosion’ CiSS

All combinations = exponential in no. of Comp(\?\

Train Simulator VVS
VISualSTATE

1421 machines

11102 transitions
2981 inputs BUGS ’7
2667 outputs

3204 local states
Declare state sp.: 10™M476

7

‘ E Ec!si!gfseorch

in Computer Science

Modelling and Analysis

Software Model A

No!
Debugging Information

p—

Requirement F ves,

Prototypes
Executable Code
Test sequences

Tools: UPPAAL, visualSTATE,
ESTEREL, SPIN, Statemate, FormalCheck,
VeriSoft, Java Pathfinder,...

‘ == BRICS

Basic Research
in Computer Science

Modelling and Analysis
BRICS

Software Model A

No!

S%é?n (
4 Debugging Information

/CS\

=

. A
Requirement F /QOr/t/) Yes;ototypes
409/0 ‘Cs Executable Code

Test sequences

Tools: UPPAAL, visualSTATE,
ESTEREL, SPIN, Statemate, FormalCheck,
VeriSoft, Java Pathfinder,...

Most fundamentae
model in Computer Science:
Kleene og Moore

Finite State Machines

e L anguage versus behaviour
e Determinism versus non-determinism
e Composition and operations
e Variants of state machines
Moore, Mealy, 10 automater,

‘ i Ec!zi!gesseorch

in Computer Science

o«

State Machines

Model of Computation

e Set of states

e A start state

e An input-alfabet

e A transition function, mapping
Input symbols and state to
next state

e One ore more accept states.

e Computation starts from start
state with a given input
string
(read from left to right)

/-

input string
BRICS

Basic Research
in Computer Science

Modulo 3 counter

INnc inc dec inc inc dec inc @

INnc inc dec inc dec inc dec inc
©

State Machines

inputstreng

\

Variants INnc inc dec Iinc inc dec Iinc

Machines may have Inc
actions/output associated with
state— Moore Machines.

01212021
outputstreng/

‘ i Eo%ﬁgseorch

in Computer Science

o«

State Machines

Variants

Machines may have
actions/output associated with
med transitions — Mealy
Maskiner.

Transitions unconditional of af
input (nul-transitions).

Several transitions for given
for input and state
(non-determinisme).

BRICS

Basic Research
in Computer Science

inputstreng

\

INnc inc dec inc inc dec inc

inc/1

outputstreng /

1212021

State Machines

Variants
Symbols of alphabet patitioned

In input- and output-actions
(10-automata)

interaction

O!

o! O!

A

INncC? inc? 2!

2!

dec? 1!

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Bankbox Code

To open a bank box
the code most contain at least 2 O

To open a bank box
the code most end with® O @

To open a bank box
the code most end with® O ©
or with © O

To open a bank box
the code most end with a palindrom

@ o ed. Q0O
© B 000®0
© G 000®0

‘ == BRICS

Basic Research
in Computer Science

Fundamental Results

m Every FSM may be determinized accepting the
same language (potential explosion in size).

m For each FSM there exist a language-equivalent
minimal deterministic FSM.

m FSM’s are closed under N and U

m FSM’s may be described as regular expressions
(and vise versa)

Interacting State Machines

N C omputer S cience CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Home-Banking?

Int accountA, accountB; //Shared global variables
//Two concurrent bank costumers

Thread costumerl (O { Thread costumer2 () {
int a,b; //local tmp copy int a,b;
a=accountA; a=accountA;
b=accountB; b=accountB;
a=a-10;b=b+10; a=a-20; b=b+20;
accountA=a; accountA=a;
accountB=b; accountB=b;

¥ ks

m Are the accounts in balance after the
transactions?

‘ i Ec!zi!gesseorch

in Computer Science

o«

Home Banking

pc1

@ Feacs

. =EEEEILH'I'L'.-"3'-.<6

br=accountb

a=a-10,
br=b+10

accountd =3

accountB:=b

O—=0-

O-

readb

computing

witeA,

writeb

finished

pc2

C)

A =accounti

b =accountb

a=a-20,
b =b+20

accountd, =3

accountB:=h

O—"~0-—0-

O-

reacs,

readb

computing

witeA,

writeb

finished

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Al]l (pcl.finished and pc2.finished) imply (accountA+accountB==200)7

== BRICS
&= == Boasic Research
in Computer Science

o«

Home Banking

Int accountA, accountB; //Shared global variables

Semaphore A,B;

//Protected by sem A,B

//Two concurrent bank costumers

Thread costumerl () {
int a,b; //local tmp copy

wait(A);
wait(B);
a=accountA;
b=accountB;
a=a-10;b=b+10;
accountA=a;
accountB=b;
signhal(A);
signhal(B);

}

BRICS

Basic Research
in Computer Science

Thread costumer2 () {
int a,b;

wait(B);
wait(A);
a=accountA;
b=accountB;
a=a-20; b=b+20;
accountA=a;
accountB=b;
signal(B);
signal (A);

Semaphore FSM Model

Binary Semaphore Counting Semaphore

Gt count |G

....... CIUSEd

Composition

10 Automater (2-vejs synkronisering)

h! h?

Composition

10 Automater

&

h?

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

LEIBLLEMBIELLA

SS

CENTER FOR INDLEJREDE SOFTWARE SYSTEMER

Semaphore Solution?

WN B

mc1
wait_Al requestA,
requestb
wait Bl
critical_section
. =ACCOoUntA,
. =accountB
a=a-10,
bi=b+10
accounts =a
accountB:=h
releases,
signal _Al
releaseB
sighnal_B!
finished

mc2

wait_Bl

wAit Al

A =accounts,

b =accountB

a=a-20,
b =h+20

accounthd =3

accountB: =h

signal_EBl

signal_Al

requests

FECUEStA

critical_section

released

releases

finished

mc1 mc2 hsem1 hsem?2

[requestﬂx] [requestEl] [Dpen] [Dpen]

uwait_A

1.
2.
3.

mait_B

requesta closed
| |

Consistency? (Balance)
Race conditions?
Deadlock?

A[] (mcl.finished and mc2.finished) imply (accountA+accountB::20®3
E<> mcl.critical _section and mc2.critical _section v
A[] not (mcl.finished and mc2.finished) imply not deadlock -

