
Validation
of

Real Time and
Embedded Systems

Kim Guldstrand Larsen
using UPPAAL

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

UPPAAL Branches

� Real Time
Verification

� Real Time
Scheduling &
Performance Evaluation

� Real Time
Controller Synthesis

� Real Time
Testing

CLASSICCLASSICCLASSIC

TIGATIGATIGA

CORACORACORA

TRONTRONTRON

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Reading Material

www.cs.aau.dk/~kgl/SoZhou

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

BRICS Machine
Basic Research in Computer Science, 1993-2006

33+45+40 Millkr

100

100

Aalborg Aarhus

Tools

Other revelvant projects
ARTIST, AMETIST

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Tools and BRICS

Logic
• Temporal Logic
• Modal Logic
• MSOL
•
•

Algorithmic
• (Timed) Automata Theory
• Graph Theory
• BDDs
• Polyhedra Manipulation
•
•

Semantics
• Concurrency Theory
• Abstract Interpretation
• Compositionality
• Models for real-time

& hybrid systems
•
•

HOL TLP

Applications

PVS ALF
SPIN

visualSTATE UPPAAL

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

CISS: Center for Embedded

Software Systems

Kim Guldstrand Larsen
kgl@cs.auc.dk
96358893

or CISS
www.ciss.dk
info@ciss.dk
96357220

Aalborg Universitet
Fr. Bajersvej 7B
9220 Aalborg Ø

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Why CISS ?

� 80% of all software is
embedded

� Demands for
increased functionality

with
minimal resources

� Requires multitude of skills
− Software construction
− Hardware platforms,
− Communication
− Automation
− Testing & Verification

� Goal:
Give a qualitative lift to
current industrial practice

!!!!!

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

CISS in Numbers
� National Comptetence

Center 2002:

25,5 mil. kr Ministry
6 mil. kr North Jutland
6 mil. kr Aalborg City

12,75 mil. kr Companies
12,75 mil. kr AAU

� 40 projects
� 20 CISS employees
� 25 CISS associated

researcher at 3 different
research groups at AAU

� 19 industrial PhDs

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Focus Areas
Applications

Tech
nology

Tools

Modeling

MethodsProtokoller

Design- og
Prog.sprog

Operativ
system

HW
 platform

GPSOpen source

Home automation
Mobile robotter

Intelligente sensorer
Ad hoc netværk

Mobiltlf
Audio/Video

Konsum elektr
Kontrolsystemer

Automobile
X-by wire

Al
go

rit
m

ik

SW
-u

dv
ikl

ing
Re

so
uc

e
(P

ow
er

) M
an

ge
m

en
t

Re
lia

bil
ity

Te
st

&
Va

lid
er

ing
Hy

br
ide

sy
ste

m
er

Ko
m

m
un

ika
tio

ns
te

or
i

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Focus Areas
Applications

Tech
nology

Tools

Modeling

MethodsProtokoller

Design- og
Prog.sprog

Operativ
system

HW
 platform

GPSOpen source

Home automation
Mobile robotter

Intelligente sensorer
Ad hoc netværk

Mobiltlf
Audio/Video

Konsum elektr
Kontrolsystemer

Automobile
X-by wire

Al
go

rit
m

ik

SW
-u

dv
ikl

ing
Re

so
uc

e
(P

ow
er

) M
an

ge
m

en
t

Re
lia

bil
ity

Te
st

&
Va

lid
er

ing
Hy

br
ide

sy
ste

m
er

Ko
m

m
un

ika
tio

ns
te

or
i

Model based development

Intellingent sensor network
IT in automation

Embedded and RT OS

RT

RT Java Lab

Resource Optimal Scheduling

Testing and Verification

HW/SW Co-design / Design Space Exploration

Embedded Security

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

network

HW

SW API / OS

Application

Stepw. Refinem.
E

nv
iro

nm
en

t

Funded by
Danish Advanced Technology Foundation

Budget 9 MEuro / 4 years

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Challenges

network

HW

SW API / OS

Application

Stepw. Refinem.
E

nv
iro

nm
en

t

Selfdiagnosic & -repair
Test & Verificaiton

Execution Platform

Development Process

Embedded & Distributed Control

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Challenges

network

HW

SW API / OS

Application

Stepw. Refinem.
E

nv
iro

nm
en

t

Selfdiagnosic & -repair
Test & Verificaiton

Execution Platform

Development Process

Embedded & Distributed Control

Model Driven

and

Component Based

Development

Model Driven

and

Component Based

Development

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

European Network of Excellence

Testing & Verification
coordinator

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Verification and Testing

Model

/* Wait for events */
void OS_Wait(void);

/* Operating system visualSTATE process. Mimics a OS process for a
* visualSTATE system. In this implementation this is the mainloop
* interfacing to the visualSTATE basic API. */
void OS_VS_Process(void);

/* Define completion code variable. */
unsigned char cc;

void HandleError(unsigned char ccArg)
{
printf("Error code %c detected, exiting application.\n", ccArg);
exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a
* system. It purpose is to generate events. How this is done is up to
* you.
*/
void OS_Wait(void)
{
/* Ignore the parameters; just retrieve events from the keyboard and
* put them into the queue. When EVENT_UNDEFINED is read from the
* keyboard, return to the calling process. */
SEM_EVENT_TYPE event;
int num;

/* Wait for events */
void OS_Wait(void);

/* Operating system visualSTATE process. Mimics a OS process for a
* visualSTATE system. In this implementation this is the mainloop
* interfacing to the visualSTATE basic API. */
void OS_VS_Process(void);

/* Define completion code variable. */
unsigned char cc;

void HandleError(unsigned char ccArg)
{
printf("Error code %c detected, exiting application.\n", ccArg);
exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a
* system. It purpose is to generate events. How this is done is up to
* you.
*/
void OS_Wait(void)
{
/* Ignore the parameters; just retrieve events from the keyboard and
* put them into the queue. When EVENT_UNDEFINED is read from the
* keyboard, return to the calling process. */
SEM_EVENT_TYPE event;
int num;

Code
Running System

Req

ΦΦΦΦ

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Model

/* Wait for events */
void OS_Wait(void);

/* Operating system visualSTATE process. Mimics a OS process for a
* visualSTATE system. In this implementation this is the mainloop
* interfacing to the visualSTATE basic API. */
void OS_VS_Process(void);

/* Define completion code variable. */
unsigned char cc;

void HandleError(unsigned char ccArg)
{
printf("Error code %c detected, exiting application.\n", ccArg);
exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a
* system. It purpose is to generate events. How this is done is up to
* you.
*/
void OS_Wait(void)
{
/* Ignore the parameters; just retrieve events from the keyboard and
* put them into the queue. When EVENT_UNDEFINED is read from the
* keyboard, return to the calling process. */
SEM_EVENT_TYPE event;
int num;

/* Wait for events */
void OS_Wait(void);

/* Operating system visualSTATE process. Mimics a OS process for a
* visualSTATE system. In this implementation this is the mainloop
* interfacing to the visualSTATE basic API. */
void OS_VS_Process(void);

/* Define completion code variable. */
unsigned char cc;

void HandleError(unsigned char ccArg)
{
printf("Error code %c detected, exiting application.\n", ccArg);
exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a
* system. It purpose is to generate events. How this is done is up to
* you.
*/
void OS_Wait(void)
{
/* Ignore the parameters; just retrieve events from the keyboard and
* put them into the queue. When EVENT_UNDEFINED is read from the
* keyboard, return to the calling process. */
SEM_EVENT_TYPE event;
int num;

Code
Running System

Req

ΦΦΦΦ

Verification and Testing

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Model

/* Wait for events */
void OS_Wait(void);

/* Operating system visualSTATE process. Mimics a OS process for a
* visualSTATE system. In this implementation this is the mainloop
* interfacing to the visualSTATE basic API. */
void OS_VS_Process(void);

/* Define completion code variable. */
unsigned char cc;

void HandleError(unsigned char ccArg)
{
printf("Error code %c detected, exiting application.\n", ccArg);
exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a
* system. It purpose is to generate events. How this is done is up to
* you.
*/
void OS_Wait(void)
{
/* Ignore the parameters; just retrieve events from the keyboard and
* put them into the queue. When EVENT_UNDEFINED is read from the
* keyboard, return to the calling process. */
SEM_EVENT_TYPE event;
int num;

/* Wait for events */
void OS_Wait(void);

/* Operating system visualSTATE process. Mimics a OS process for a
* visualSTATE system. In this implementation this is the mainloop
* interfacing to the visualSTATE basic API. */
void OS_VS_Process(void);

/* Define completion code variable. */
unsigned char cc;

void HandleError(unsigned char ccArg)
{
printf("Error code %c detected, exiting application.\n", ccArg);
exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a
* system. It purpose is to generate events. How this is done is up to
* you.
*/
void OS_Wait(void)
{
/* Ignore the parameters; just retrieve events from the keyboard and
* put them into the queue. When EVENT_UNDEFINED is read from the
* keyboard, return to the calling process. */
SEM_EVENT_TYPE event;
int num;

Code
Running System

Req

ΦΦΦΦ

Verification and Testing

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Model

/* Wait for events */
void OS_Wait(void);

/* Operating system visualSTATE process. Mimics a OS process for a
* visualSTATE system. In this implementation this is the mainloop
* interfacing to the visualSTATE basic API. */
void OS_VS_Process(void);

/* Define completion code variable. */
unsigned char cc;

void HandleError(unsigned char ccArg)
{
printf("Error code %c detected, exiting application.\n", ccArg);
exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a
* system. It purpose is to generate events. How this is done is up to
* you.
*/
void OS_Wait(void)
{
/* Ignore the parameters; just retrieve events from the keyboard and
* put them into the queue. When EVENT_UNDEFINED is read from the
* keyboard, return to the calling process. */
SEM_EVENT_TYPE event;
int num;

/* Wait for events */
void OS_Wait(void);

/* Operating system visualSTATE process. Mimics a OS process for a
* visualSTATE system. In this implementation this is the mainloop
* interfacing to the visualSTATE basic API. */
void OS_VS_Process(void);

/* Define completion code variable. */
unsigned char cc;

void HandleError(unsigned char ccArg)
{
printf("Error code %c detected, exiting application.\n", ccArg);
exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a
* system. It purpose is to generate events. How this is done is up to
* you.
*/
void OS_Wait(void)
{
/* Ignore the parameters; just retrieve events from the keyboard and
* put them into the queue. When EVENT_UNDEFINED is read from the
* keyboard, return to the calling process. */
SEM_EVENT_TYPE event;
int num;

Code
Running System

Req

ΦΦΦΦ

• Verification
Code/Model wrt Req

• Testing
System wrt Model/Req

• Verification
Code/Model wrt Req

• Testing
System wrt Model/Req

Verification and Testing

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

� POTENTIAL:
30-40% of production time is currently
spend on elaborate, ad-hoc testing
− Errors expensive and difficult to fix
− The potential of existing/improved testing methods and tools is

enormous
− Time-to-market may be shortened considerable by verification and

performance analyses of early designs

� COMMONALITY:
Transversal topic, interacts with all other topics in embedded
systems design:
− Modelling and Components (verification, model-based testing)
− Hard and adaptive real time

(optimal scheduling & schedulability analysis)
− Execution platform (performance analysis, security)
− Compilers and timing analysis

(WCET and compact code-generation)

Why Verification and Testing

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

� IMPORTANCE for EMBEDDED SYSTEMS
− Often safety critical
− Often economical critical
− Hard to patch

� CHALLENGES for EMBEDDED SYSTEMS
− Correctness of embedded systems depend crucially on use

of resources (real-time, memory, bandwidth, energy).
Need for verification of and conformance testing with
respect to quantitative models.

− Participation in mobile ad-hoc networks require particular
attention to security aspects.

Why Verification and Testing

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Test versus Verification

Airbus Control Panel

T1 T3 T5 T1 … T4 T3

E F E E G H … H A

A

A

A A

A

A A

B

B B

B BBB

2n sequences of length n

TEST Verification

Deadlock identified using
Verification

After sequence of
2000

telegrams / < 1min.
UPPAAL

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Introducing, Detecting and
Repairing Errors Liggesmeyer 98

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Introducing, Detecting and
Repairing Errors Liggesmeyer 98

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

A very complex system

Klaus Havelund, NASA

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Rotterdam Storm Surge Barrier

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Spectacular software bugs
Ariane 5

� The first Ariane 5 rocket was
launched in June, 1996. It
used software developed for
the successful Ariane 4. The
rocket carried two computers,
providing a backup in case
one computer failed during
launch. Forty seconds into its
maiden flight, the rocket
veered off course and
exploded. The rocket, along
with $500 million worth of
satellites, was destroyed.

� Ariane 5 was a much more
powerful rocket and
generated forces that were
larger than the computer
could handle. Shortly after
launch, it received an input
value that was too large. The
main and backup computers
shut down, causing the rocket
to veer off course.

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Spectacular software bugs
U.S.S. Yorktown, U.S. Navy

� When the sailor entered the
mistaken number, the
computer tried to divide by
zero, which isn't possible. The
software didn't check to see if
the inputs were valid before
computing and generated an
invalid answer that was used
by another computer. The
error cascaded several
computers and eventually
shut down the ship's engines.

� In 1998, the USS Yorktown
became the first ship to test
the US Navy's Smart Ship
program. The Navy planned
to use off-the-shelf
computers and software
instead of expensive
U.S.S. Yorktown, courtesy of
U.S. Navy custom-made
machines. A sailor mistakenly
entered a zero for a data
value on a computer. Within
minutes, Yorktown was dead
in the water. It was several
hours before the ship could
move again.

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Spectacular software bugs
Moon or Missiles

� The United States established
the Ballistic Missile Early
Warning System (BMEWS)
during the Cold War to detect
a Soviet missile attack. On
October 5, 1960 the BMEWS
radar at Thule, Greenland
detected something. Its
computer control system
decided the signal was made
by hundreds of missiles
coming toward the US.

� The radar had actually
detected the Moon rising over
the horizon. Unfortunately,
the BMEWS computer had not
been programmed to
understand what the moon
looked like as it rose in the
eastern sky, so it interpreted
the huge signal as Soviet
missiles. Luckily for all of us,
the mistake was realized in
time.

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Spectacular Software Bugs
…. continued

� INTEL Pentium II floating-point division
470 Mill US $

� Baggage handling system, Denver
1.1 Mill US $/day for 9 months

� Mars Pathfinder
� …….

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Spectacular software bugs
Therac 25

� The Therac-25 was withdrawn
from use after it was
determined that it could
deliver fatal overdoses under
certain conditions. The
software would shut down the
machine before delivering an
overdose, but the error
messages it displayed were
so unhelpful that operators
couldn't tell what the error
was, or how serious it was. In
some cases, operators
ignored the message
completely.

� The Therac-25 radiation
therapy machine was a
medical device that used
beams of electrons or
photons to kill cancer cells.
Between 1985-1987, at least
six people got very sick after
Therac-25 treatments. Four
of them died. The
manufacturer was confident
that their software made it
impossible for the machine to
harm patients. “Malfunction 54”

““Malfunction 54

Malfunction 54””
“H-tilt”““HH--tilttilt””

IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18-41IEEE ComputerIEEE Computer, Vol. 26, No. 7, July 1993, pp. 18, Vol. 26, No. 7, July 1993, pp. 18--4141

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

More complex systems

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

A simple program

int x=100;

Process INC
do
:: x<200 --> x:=x+1
od

Process DEC
do
:: x>0 --> x:=x-1
od

Process RESET
do
:: x=200 --> x:=0
od

(INC || DEC || RESET)

int x=100;

Process INC
do
:: x<200 --> x:=x+1
od

Process DEC
do
:: x>0 --> x:=x-1
od

Process RESET
do
:: x=200 --> x:=0
od

(INC || DEC || RESET)

Which values may
x take ?

Questions/Properties:
E<>(x>100)
E<>(x>200)
A[](x<=200)
E<>(x<0)
A[](x>=0)Possibly

Always

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Another simple program

int x=0;

Process P
do

x:=x+1
10 times

(P || P)

int x=0;

Process P
do

x:=x+1
10 times

(P || P)

What are the possible final values of x ?

int x=0;

Process P
int r

do
r:=x; r++; x:=r

10 times

(P || P)

int x=0;

Process P
int r

do
r:=x; r++; x:=r

10 times

(P || P)
Atomic stm.

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Yet another simple program

int x=1;

Process P
do

x:=x+x
forever

(P || P)

int x=1;

Process P
do

x:=x+x
forever

(P || P)

What are the possible values that x
may posses during execution?

int x=1;

Process P
int r

do
r:=x; r:=x+r; x:=r

forever

(P || P)

int x=1;

Process P
int r

do
r:=x; r:=x+r; x:=r

forever

(P || P)
Atomic stm.

Model-based
Approach

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Suggested Solution?

Model based
validation, verfication and testing

of software and hardware

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Verification & Validation

Design Model Specification

Analysis

Implementation

Testing

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Verification & Validation

Design Model Specification
Verification & Refusal

Analysis
Validation

Implementation

Testing

UML

SDL

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Verification & Validation

Design Model Specification
Verification & Refusal

Analysis
Validation

Implementation

Testing

UML

SDL

Model
Extraction

Automatic
Code generation

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Verification & Validation

Design Model Specification
Verification & Refusal

Analysis
Validation

Implementation

Testing

UML

Automatic
Code generation

Automatic
Test generation

SDL

Model
Extraction

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

How?
Unified Model = State Machine!

a

b

x

y
a?

b?

x!

y!b?

Control states

Input
ports

Output
ports

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Tamagotchi
A C

B

Health=0 or Age=2.000

Passive Feeding Light

Clean

PlayDisciplineMedicine

Care

Tick

Health:=Health-1; Age:=Age+1

A
A

A

A

AA

A

A

Meal

Snack

B

B

ALIVE

DEAD

Health:=
Health-1

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

SYNCmaster

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Digital Watch

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

The SDL EditorThe SDL EditorThe SDL Editor
Process
level

Process
level

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

SPIN
, G

erald H
olzm

ann A
T&

T

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

visualSTATE

� Hierarchical state
systems

� Flat state systems
� Multiple and inter-

related state
machines

� Supports UML
notation

� Device driver
access

VVS
w Baan Visualstate, DTU (CIT project)

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Rhapsody

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

ESTEREL

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

U
PPA

A
L

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

‘State Explosion’
Problem

All combinations = exponential in no. of components
Provably theoretical

intractable

a

cb

1 2

43

1,a 4,a

3,a 4,a

1,b 2,b

3,b 4,b

1,c 2,c

3,c 4,c

M1 M2

M1 x M2

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Train Simulator

1421 machines
11102 transitions
2981 inputs
2667 outputs
3204 local states
Declare state sp.: 10^476

BUGS ?

VVS
visualSTATE

Our techniuqes has reduced verific
ation

time with several orders of magnitude

(ex 14 days to 6 sec)

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Modelling and Analysis

Software Model A

Requirement F Yes,
Prototypes
Executable Code
Test sequences

No!
Debugging Information

Tools: UPPAAL, visualSTATE,
ESTEREL, SPIN, Statemate, FormalCheck,
VeriSoft, Java Pathfinder,…

TOOLTOOL

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Modelling and Analysis

Software Model A

Requirement F Yes,
Prototypes
Executable Code
Test sequences

No!
Debugging Information

TOOLTOOL

BRICSBRICS

Semantics

Logic

Algorithmics

Tools: UPPAAL, visualSTATE,
ESTEREL, SPIN, Statemate, FormalCheck,
VeriSoft, Java Pathfinder,…

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Finite State Machines

• Language versus behaviour
• Determinism versus non-determinism
• Composition and operations
• Variants of state machines

Moore, Mealy, IO automater, UML ….

Most fundamentae
model in Computer Science:

Kleene og Moore

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

State Machines

Model of Computation
• Set of states
• A start state
• An input-alfabet
• A transition function, mapping

input symbols and state to
next state

• One ore more accept states.
• Computation starts from start

state with a given input
string
(read from left to right)

Modulo 3 counter

inc inc dec inc inc dec inc

inc inc dec inc dec inc dec inc
input string

/

inc

inc

inc

dec

dec

dec

☺

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

State Machines

Variants

Machines may have
actions/output associated with
state– Moore Machines.

inc inc dec inc inc dec inc

0 1 2 1 2 0 2 1

inputstreng

outputstreng

0
1

2

inc

inc

inc

dec

dec

dec

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

State Machines

Variants

Machines may have
actions/output associated with
med transitions – Mealy
Maskiner.

Transitions unconditional of af
input (nul-transitions).

Several transitions for given
for input and state
(non-determinisme).

inc inc dec inc inc dec inc

1 2 1 2 0 2 1

inputstreng

outputstreng

inc/0

inc/1

inc/2

dec/1

dec/0

dec/2

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

State Machines

Variants

Symbols of alphabet patitioned
in input- and output-actions

(IO-automata)

0! 0! 0! inc? inc? 2! 2! dec? 1!

interaction

inc?

inc?

inc?

dec?

dec?

dec?

0! 1!

2!

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Bankbox Code

O
B
G

?

To open a bank box
the code most contain at least 2

To open a bank box
the code most end with

To open a bank box
the code most end with a palindrom
e.g:.

……..

To open a bank box
the code most end with

or with

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Fundamental Results

� Every FSM may be determinized accepting the
same language (potential explosion in size).

� For each FSM there exist a language-equivalent
minimal deterministic FSM.

� FSM’s are closed under ∩ and ∪

� FSM’s may be described as regular expressions
(and vise versa)

Interacting State Machines

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Home-Banking?

� Are the accounts in balance after the
transactions?

int accountA, accountB; //Shared global variables
//Two concurrent bank costumers

Thread costumer1 () {
int a,b; //local tmp copy

a=accountA;
b=accountB;
a=a-10;b=b+10;
accountA=a;
accountB=b;

}

Thread costumer2 () {
int a,b;

a=accountA;
b=accountB;
a=a-20; b=b+20;
accountA=a;
accountB=b;

}

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Home Banking

A[] (pc1.finished and pc2.finished) imply (accountA+accountB==200)?

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Home Banking

int accountA, accountB; //Shared global variables
Semaphore A,B; //Protected by sem A,B
//Two concurrent bank costumers

Thread costumer1 () {
int a,b; //local tmp copy

wait(A);
wait(B);
a=accountA;
b=accountB;
a=a-10;b=b+10;
accountA=a;
accountB=b;
signal(A);
signal(B);

}

Thread costumer2 () {
int a,b;

wait(B);
wait(A);
a=accountA;
b=accountB;
a=a-20; b=b+20;
accountA=a;
accountB=b;
signal(B);
signal(A);

}

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Semaphore FSM Model

Binary Semaphore Counting Semaphore

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Composition
IO Automater (2-vejs synkronisering)

A

B

X

Y

h! h?

AX

BY

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Composition
IO Automater

A

B

X

Y

h! h?

AX

BY
C

k!

CX

k!

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Semaphore Solution?

1. A[] (mc1.finished and mc2.finished) imply (accountA+accountB==200)
2. E<> mc1.critical_section and mc2.critical_section
3. A[] not (mc1.finished and mc2.finished) imply not deadlock ÷

1. Consistency? (Balance)
2. Race conditions?
3. Deadlock?

