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UPPAAL TISA (Fig. 1) is an extension of
UPPAAL [BDLO4] and it implements the first
efficient on-the-fly algorithm for solving games
based on timed game autornata with respect to
Though

timed games for long have been known to be

reachability  and safety properties.

decidable there has until now been a lack of
efficient and truly on-the-fly algorithms for
their analysis,

The algorithrm we propose [CDFLLOS] is a
symbalic extension of the on-the-fly algorithm

suggested by Liu & Smolka [LE98] far
linear-time  model-checking of  finite-state
systems. Being on-the-fly, the symbolic

algorithm rmay terminate long before having
gxplored the entire state-space. Also  the
individual steps of the algorithm are carried out
efficiently by the use of so-called zones as the
underlying data structure, Qur tool implements
warious optimizations of the basic symbolic
algorithm, as well as methods for obtaining
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Latest News

Yersions 0,10 and 0,11 released.
7 Julp 2007

Versions 0,10 and 0.11 are released today.
Yersion 0,11 contains a new concrete simulator
that allows the user to play strategies from the
GUI, Both versions fix the following bugs:
maximal constants in the formula are now
talcen into account, the command line
simulator is new and works better, delay when
no clock was used, better user feedback,
end-of-game detection fixed, other bugs
involving delays in the strategy, precision
problems in the simulator, and leak in the DBM
library. These new versions have also the
fallowing new features: options to contral the
type of strategy output, better control on the
search ordering (forward and backward),
cooperative strategies, and time optimal
strategies. The manual has been updated ta
reflect these new features,
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Controller Synthesis and Timed Games

Production Cell

it iy Malats Taksns Frass e B sare
WEMAT_ M emARANME  memAVAILA BLE
b
11T WAT_IH W H_IH D W RREN akahs wawP1r ] mkerze | kaweds
EIoH EIoH T AVAILABELE EIoH { x=PRE5S |
/ /
/ /
W=AMAILA BLE ] ]
B4 D akart i
P2
it iy Malats Taksns Frass Taken B sare
WEEMAG_H| eARANME memAVAILY BLE
Lt Lt Lt Lt O
b
(2 AT WAT_IM W H_IH D W RREN akahs kawP1r  f] mkerzs | kawd
EIoH EIoH T AVAILABELE EIoH { x=PRE5S |
/ /
|I |I
| |
AVAILA BLE / /
/ /
B4 L amkertr S| awrze S
P3
GIVEN System moves S v e g Tt e e
P WETMAE Ml mmARANME memAVAILS BLE
@ Lt Lt Lt Lt Lt O
C ller m C, and - v
AT WAR_IH W H_IH D W RREN akahs wawP1r ] mkerze | kaweds
ontroller moves C, and property ¢ = =R e L
/ /
|I |I
| |
FIND strategy s. such that s.[|S F ¢ s ; ;
/ /
C C L amkertr S| awrze S

A Two-Player Game



Dynamic Scheduling = Controller Synthesis
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Reading time is uncontrollable



Untimed and Timed Games

Reachability / Safety Games
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—> Controllable



Untimed Games

Reachability / Safety Games

Strategy:
F: Run(A) > E,
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:. Memoryless strategy:
F:Q~>E,

—> Uncontrollable

—> Controllable



Untimed Games

Reachability / Safety Games

Strategy:
F: Run(A) > E,
:. Memoryless strategy:

F:Q~>E,

—> Uncontrollable

—> Controllable



Untimed Games

»
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Reachability / Safety Games

Strategy:
F: Run(A) > E,
Memoryless strategy:
F:Q~>E,

Winning Run:
States(p) NG = QD
States(p) "B=@

Winning Strategy:
Runs(F) € WinRuns

Loosing (memoryless) strategy

—> Uncontrollable

—> Controllable



Untimed Games

Reachability / Safety Games

Strategy:
F: Run(A) > E,
:. Memoryless strategy:
F:Q~>E,

Winning Run:
States(p) NG = @
States(p) "B=@

Winning Strategy:
Runs(F) € WinRuns

Winning (memoryless) strategy)

—> Uncontrollable

—> Controllable



Untimed Games
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Backwards Fixed-Point Computation

cPred(X)={qeQ | 3q'e X.

9.9}
uPred(X) = {qeQ | 3qe X. q >, q"}

n(X) = cPred(X) \ uPred(X¢) ]

Theorem:
The set of winning states is
obtained as the least fixpoint
of the function:

X - n(X) U Goal

—> Uncontrollable

—> Controllable
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Untimed Games
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Untimed Games

cPred(X)={qeQ | 3q'e X.
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Untimed Games
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Timed Games

Reachability / Safety Games

Strategy:
F:Run(A) > E_U A
Memoryless strategy:
F:Q>E.UA

Winning Run:
States(p) NG = @
States(p) NG =@

Winning Strategy:
Runs(F) € WinRuns

—> Uncontrollable

—> Controllable



Timed Games

Reachability / Safety Games

I=1:
Strategy: | / xle : Ck
F:Run(A) > ECU A x>1
Memoryless strategy: O- ®
F:Q>E.UA -
Winning Run: :;22 ::);

States(p) NG = @
States(p) NG =@

Winning Strategy:
Runs(F) € WinRuns

Winning (memoryless) strategy)

—> Uncontrollable

—> Controllable



Timed Games - State-of-the-Art

| UPPAAL

Timed Automata + Reachability [AD94]
Time Game Automata: Control [MPS95, AMPS98]
Time Optimal Control (reachability) [AM99]

"False" On-the-fly Algorithm [ATO1] [

improved
Il

Priced Timed Automata (reachability) [LBB+O01,
ALTPO1, LRS04, RLO5]

Price Timed Automata (safety) [BBLO4]\ UPPAAL
Price Optimal Control (reachability): Cora

= Acyclic PTA [LTMMO2]
= Bounded length [ABMO4]
= Strong hon-zeno cost-behaviour [BCFLO4]

More to come |l



Timed Games - State-of-the-Art

Definitions
cPred(X) ={qeQ |3qeX.q~>_.q%}
uPred(X) ={qeQ|3qeX. q~>,q%}
Pred,(X,Y) ={qeQ |3 t.q'eX and V s<t.geY¥¢}
n(X) = Pred,[ X U cPred(X) , uPred(X°¢) ] X
Pred,(X.Y) y

Theorem:
The set of winning states is obtained as the least fixpoint
of the function: X = n(X) U Goal



Timed Games - State-of-the-Art
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Timed Games - State-of-the-Art

: i > e
— >
x<1
— > (¥
1 2

We want Forward and On-The-Fly Algorithm
in order to avoid constructing all (backwards) reachable
state-space and to allow for discrete variables (e.g. in UPPAAL)



On-the-fly Algorithms for Timed Games

A

-G

is the set of (concrete) goal states;
— E:{SﬁS",SLS"}

the (finite) set of symbolic transitions (ce
— Waiting C E

is the list of symbolic transitions waiting
— Passed

is the list of the passed symbolic states;
— Wm[S]C S

is the subset of S currently known to be
— Depend[S]|C E

indicates the edges (predecessors) of S wk

information about S is obtained.

Win(S)

are symbolic states, i.e. sets of concrete s|

Initialization:
Passed — {So} where So = {(0,0)}":
Waiting — {(So,a, 5" = Post,,(So)”" }:
Win[So] < So N ({Goal} x R2,);
Depend[So] — 0; -

Main:
while (Waiting # 0) A (so € Win[Sy])) do
= (S, a. §") «— pop(Waiting):
if S’ & Passed then
Passed — Passed U {S’};
Depend[S'] — {(S,a, S")};
Win[S'] — S'n {Goal} x R: (,)
Waiting «— Waiting U {(S",a, S”)|S" = Post, (S")""};
if Win[S'] # 0 then Waiting — Waiting U {e};
else (* reevaluate *)"
Uz,

Win" «— Pred,(Win[S]U
U

if (Win[S] € Win") then
Waiting «— Waiting U Depend[S]; Win[S] — Win";
Depend[S'] — Depend[S’] U {e};
endif

P red. (I'T""z‘-n 1),
K Pred T\ Win[1]))Nn S;

endwhile




On-the-fly Algorithms for Timed Games

- i Initialization:
are symbolic states, i.e. sets of concrete s| . ~
-G ( ) Passed — {So} where Sy = {(£0,0)}":
is the set of (concrete) goal states; X7 s Ry . 7 r D V.
- E={5§55,555} Ix’[—rc.zztz-n-g — {(So,e,5") | S _XP(-DSt&.(S()) h
the (finite) set of symbolic transitions (ce W Z'?l-[S(]] — S() M ({Goal} X R>());

— Waiting C E D )
. 9 = : . . epend|So| «— 0:
is the list of symbolic transitions waiting p [ O] @

— Passed
is the list of the passed symbolic states;
— Win|S|C S
is the subset of S curreg
— Depend
indicates 1

Else (* reevaluate *)
Win" «— Pred,(Win[S]U U ,» Prede (H"z‘n[’T])
U g Pred T\ Win[T])) N S;
if (Win[S] € Win") then
Waiting «— Waiting U Depend[S]; Win[S] — Win";
Depend[S'] — Depend[S’] U {e};
endif

W|n(5) endwhile




UPPAAL Tiga . New Concrete Time Simulator

Editor | Simulator | verifier

[ Drag out :’ Drag ouk

Eo) =0

Enabled Transitions Main. = 0. E:30000

3.33

£

Current binne:

Delay:




UPPAAL Tiga : CTL Control Objectives

. " Reachability properties:
"= control: A[ pUq] unti/
= control: A<> q < control: A[ true U q ]

= Safety properties:
= control: AlpWq] weak unti/
= control: A[]p < control: A[ p W false ]

= Time-optimality :
= control_t*(u,g): AlpUq]
= uis an upper-bound to prune the search, act like an

invariant but on the path = expression on the current
state.

= g is the time to the goal from the current state (a
lower-bound in fact), also used to prune the search.
States with are pruned



A Buggy Brick Sorting Program

B1

B1

pos==9
IN_1:=20

pos==18
IN_1:=100

an’t
pos==9

pos==0
pos=0

start
pos==2000

sensor
pos==18

TaskMAIN

S0

red? [:>.<:]

ALy
blch

®=0
active=true

Yellow removel
TaskPUSH
x==ctime ejectl active=0
wait passive
¥<=ctime _
active== gor¥




Brick Sorting

Generic Plate

removel S2 y>=1
y<=1

pos>= color! pos>=81 pos=>=90
pos>= ¥ pos=>=17
on1 sensor on2 | piston en
pos<=9 pos<=18 pos<=81 1 pos<=90
I
I
ok? ! -
st TP ! remove?
— |
pos=0, turn++ : l,.---).(---.\‘
e | [
I I
start off : :
| eject? |
I I
I I
I I
eje I I
: y=0
I I
\ !

—_— = == —_——— == =

Controller



- S D I ED S WS W S -,

Generic Plate

i
)\u@ 20 m@l@lv® S0-500

o e o o

Brick Sorting

pos>=9

pos=0, turn++

pos<=9
turn==ID
Controller

ok?




Balancing Plates / Timed Automata

z>=R z>=R
| :

whack S

z:=0 7=0

EO -~(Platel.Bang or Plate2.Bang or ...)



Balancing Plates / Time Uncertainty

Plate1 QL@
N
@vf@
St rategy




Production Cell

Plate()

]

Plate{1) Plate(2)

] A _.

®:- é .. e
Plate(3) Plate(4)

' % ' N

*- = . ®




Experimental Results

Plates Basic Basic +inc Basic +inc Basic+lose +inc || Basic+lose +inc
+pruning +pruning +topt
time | mem time mem time mem time mem time mem
5 win || 0.0s 1M 0.0s 1M 0.0s 1M 0.0s 1M 0.04s 1M
lose || 0.0s 1M 0.0s 1M 0.0s 1M 0.0s 1M n/a n/a
3 win || 0.5s 16 0.0s 1M 0.0s 1M 0.1s 1M 0.27s 4M
lose || 1.1s | 45M 0.1s 1 0.0s 1 0.2s 3M n/a n/a
4 win || 33.9s | 1395M 0.2s aM 0.1s 6 0.4s 501 1.88s 13M
lose - - 0.5s 11M 0.4s 10M 0.9s agM n/a n/a
5 win . = 3.0s 31M 1.5s 22M 2.0s 16M 13.35s HaM
lose - - 11.1s | 61M 5.9s 46M 7.0s 41M n/a n/a
5 win = = 89.1s | 179M 38.9s | 121N 12.0s 63M 220.3s | 369M
lose - - 699s | 480M 317s 346M 35.1s | 273M n/a n/a
7 win - - 3256s | 1183M 1181s | 786M 124s 319M 6188s | 2457M
lose - - - - 16791s | 2981M (| 4075s | 2090M n/a n/a




New Experimental Results
Using UPPAAL 4.0 architecture

Model 3 6 12 50 100

Old [c|O0.1s | IM | 12s | 63M | - - - _ _ _
ul 0.2s | 3M [235s |273M]| -

1]2.79s|104M]|18.5s|426M
1]2.32s| 94M |15.6s|340M

|
|
—

New|c]0.05s|3.5M|0.05s| 3.5M [0.14s|5F

1u]0.02s]|3.5M10.04s| 3.5M |0.12s|5"F

|
-y
*7
p—

Tricks (Alexandre):
- UPPAAL pipeline architecture, which implies
* active clock reduction
* PW-list
* UPPAAL optimizations (successor computation,
postponed evaluation, reduced copies..)
* improved DBM library
* improved copy-on-write implementations
* improved subtraction (vital)
* enormously improved merge (between DBMs) (vital)




Climate Control

Syvsten,
Northern Jutland,
DK

With Jan J. Jessen
Jacob |. Rasmussen




Climate Control

get get
Zone I-1 Zone 1+1
give give




Climate Control / Neighbor

get

~l—

Neighboring zone
Zone i-1

give

have, | have, , | get

pr—

Zone i Zone i+1

want, want,

~—

ive
' inlet g

I Neighbor
wants to
receive flow?

temp[id]? temp[id] = false : temp[id] = true,

check hotness_integrity() [~
I
I
iln—

state_changed!

Temperature in
neighbor zone
(lower/higher)

-~
o

1

|

' state_changed!
" nlid] = ¢

- —_—



Climate Control / Controller

=X ] IL I L. I

lool flow balance (const choice £ nl, econst choice t nl, bool in, bhool out)

{

Zone Controller

hool o
hool i

out || [(n[0] == WANT &£& nl0 == HAWVE) || (n[l] == WANT &£& nl == HAVE);
in || [(n[0] ==HAVE & nld == WANT) || (n[l] == HAVE &£& nl == WANT);

== J_:_

c0 : choice_t,
c1 : choice_t,
I - g ke Ly = ,—_1
heat : intbool_t,
in : intbool_t,

out : intbool t
flow_balance(cO,c1,in,out)
c[0] = c0,

c[1] = c1,

heater = heat,

inlet = in,

outlet = out,

temp_derivative = compute_temperature(c0,c1,in,out,heat)
Init

state_changed?




Zone C

state_cH

[

int compute temperature (const choice £ cl, const choice £ cl, const inthool £ in, const inthool £ out,

{

int o,1i,amp;
Sl 2ctive out-flow

o = out +

[0

== HAVE && n[0] == WANT) + (ol == HAVE && n[l] == WANT);

SA2otive in-flow

i = in +

i = i =7

[0
1;

== WANT && n[0] == HAVE) + (ol == WANT && n[l] == HAVE);

S/Multiplier per incoming Flow
awp = (o * PER_OUT CONTRIBUTION) / i;
if (objective) //hesating

{

return
+

+ + + +

}

heat
arp*
axop*
arp*
= (0
(el

[z0 == WANT &£&£ n[0] == HAVE ? (temp[0] ? [l'hottest 2 3 : 1) @ -1) : 0O}
[zl == WANT £& n[l] == HAVE ? (tewp[l] ? [ hottest 2 3 : 1) : -1} : O
[in ? -3 : 0}

== HAVE| //Motivation for participation, even when not neighbor dossn't want, og has air

== HAVE); //Motivation for participation, sven whan not neighbor dossn't want, og has ai

else //cooling

{

return
+

+
+
+
+

[heat 7 -3 : )

axop*

arp*

axop*
[0
[zl

[in ? 5 : 0O}
(z0 == WANT &£& n[0] == HAVE ? ['temp[0] ? [ hottest 2 3 : 1) : -1} : 0O}
[zl == WANT £& n[l] == HAVE ? ('temp[l] ? ('hottest 2 3 : 1) : -1 : 0O}

== HAVE| //Motivation for participation, sven whan not nsighbor deossn't want, og has air

== HAVE); //Motivation for participation, even when not neighbor dessn't want, og has air

outlet = té:-ut,
temp_derivative = compute_temperature(c0,c1,in,out,heat)
Init



Obtaining executable code

SJtrategy for state:
Zone i-1: (Temp. lower/secqual, wants f£low) BDD 289 nOdeS %

Zone i+l: (Temp. lower/secual, no interaction)
Hottest neighbor: i-1
Objectiwe: heat
is:
Want=s flow from i-1
Wants flow from i+l
inlet closed
outlet off Y

heater on SN OW
___________________ e
Gtrategy for state: el

Zone i-1: (Temp. greater, offers flow) e )

@
<
Zone i+l: (Tewmp. greater, offers flow) N

S
©

N ° N
Hottest neighbor: i+l

Objectiwe: cool
i=:

Haz flow for i-1

Has flow for i+l

inlet open Stl’agegy

outlet on

——— e
F———ooube e g -

@@
g 8¢
¢ @
.

heater off
___________________ 1296 cases
Strategy for state:
Zone i-1: (Temp. lower/secual, no interaction)
Zone i+l: (Temp. greater, ho interaction)

Hottest neighbor: i+l
Objective: cool




Obtaining executable code
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Conclusion & Future Work

More Applications - we need you |

Efficient Algorithms for Optimal Infinite
Scheduling

Multipriced Timed Automata

Priced Timed Games
= Optimal strategies undecidable in general [Raskin ao]

= Decidability in setting of 1 clock or strong non-
Zenoness.

Timed Games with Imperfect information.

Distributed and parallel implementations (PC
clusters, GRID, Shared Memory Machines)
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