
ARTIST2 Workshop on Foundations and Applications of
Component-Based Design, Salzburg, September 2007

Tiptoe: A Compositional
Real-Time Operating System

Christoph Kirsch
Universität Salzburg

tiptoe.cs.uni-salzburg.at

• Silviu Craciunas* (Benchmarking)

• Hannes Payer (Memory Management)

• Ana Sokolova* (Theoretical Foundation)

• Horst Stadler (I/O Subsystem)

• Robert Staudinger* (Kernel)

*Supported by Austrian Science Fund Project P18913-N15

http://tiptoe.cs.uni-salzburg.at/
http://tiptoe.cs.uni-salzburg.at/

© C. Kirsch 2007

Process A

Operating System

Memory

Process B

I/OCPU

© C. Kirsch 2007

“Theorem”

• (Compositionality) The time and space a
software process needs to execute is
determined by the process, not the system
and not other software processes.

• (Predictability) The system can tell how
much time and space is available without
looking at any existing software processes.

© C. Kirsch 2007

“Corollary”

• (Memory) The time a software process
takes to allocate and free a memory object
is determined by the size of the object.

• (I/O) The time a software process takes to
read input data and write output data is
determined by the size of the data.

© C. Kirsch 2007

“Reality”

• A software process determines functional
and non-functional behavior, for example:

• 1ms/100ms CPU time (≠ 10ms/s)

• 4MB/2s memory allocation rate

• 1KB/10ms network bandwidth

• 10J/100ms energy consumption

Outline

1. Memory Management

2. Concurrency Management

3. I/O Management

© C. Kirsch 2007

Toe A

Tip

Memory

Toe B

I/OCPU

Outline

1. Memory Management

2. Concurrency Management

3. I/O Management

© C. Kirsch 2007

Tiptoe System

I/O Host Computer

Network AD/DADisk

OR
P2P Ethernet
Connection

Serial
Connection

Outline

1. Memory Management

2. Concurrency Management

3. I/O Management

© C. Kirsch 2007

Goals

• malloc(n) takes at most TIME(n)

• free(n) takes at most TIME(n)

• access takes small constant time

• small and predictable memory
fragmentation bound

© C. Kirsch 2007

The Problem

• Fragmentation
‣ Compaction
• References
‣ Abstract

Space

© C. Kirsch 2007

Memory

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

C

B

A

Example:

•There are three objects
•Object A starts at address 20
•Object A needs 40 bytes
•B starts at 100, needs 20 bytes
•C starts at 160, needs 30 bytes
•A contains a reference to B

©
 C

. K
ir

sc
h

20
07

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Abstract Space Concrete Space

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

100

160

20

C

B

A

A

C

B

Keep It Compact?

Does Not Work!

Trade-Off Speed for
Memory Fragmentation

Keep Speed and
Memory Fragmentation
Bounded and Predictable

Partition Memory into Pages

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

Partition Pages into Blocks

©
 C

. K
ir

sc
h

20
07

Objects < 32 Objects < 64Objects < 48

2

1

0

1

0

3

2

1

0

Size-Class Compact

©
 C

. K
ir

sc
h

20
07

Objects < 32 Objects < 64Objects < 48

just move ‘last’ object

2

1

0

1

0

3

2

1

0

“Compact-Fit”
(Bounded Compaction)

© C. Kirsch 2007

Results I

• malloc(n) takes O(1)

• free(n) takes O(n)

• access takes one indirection

• memory fragmentation bounded in k and
predictable in constant time

©
 C

. K
ir

sc
h

20
07

Objects < 32 Objects < 64Objects < 48

2

1

0

1

0

3

2

1

0

Partial Compaction

© C. Kirsch 2007

Program Analysis

Definition:
Let k count deallocations in a given size-
class for which no subsequent allocation
was done (“k-band mutator”).

Proposition:
Each deallocation that happens when
k < max_number_of_non_full_pages
takes constant time.

© C. Kirsch 2007

Results II

• if mutator stays within k-bands:

• malloc(n) takes O(1)

• free(n) takes O(1)

• access takes one indirection

• memory fragmentation bounded in k and
predictable in constant time

Two Implementations!

1. Concrete Space = Physical Memory

2. Concrete Space = Virtual Memory

©
 C

. K
ir

sc
h

20
07

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Abstract Space Physical Memory

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

100

160

20

C

B

A

A

C

B

Two Implementations!

1. Concrete Space = Physical Memory

2. Concrete Space = Virtual Memory

©
 C

. K
ir

sc
h

20
07

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Abstract Space Physical Memory

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

100

160

20A

C

B

Virtual Space

C

B

A

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

© C. Kirsch 2007

Results III

• malloc(n) takes O(n)

• free(n) takes O(n)

• access takes two indirections

• memory fragmentation bounded in k and
predictable in constant time

The JAviator
javiator.cs.uni-salzburg.at

© C. Kirsch 2007

Quad-Rotor Helicopter

© C. Kirsch 2007

Oops

© C. Kirsch 2007

Flight Control

© C. Kirsch 2007

Free Flight

Thank you

