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“Theorem”

• (Compositionality) The time and space a 
software process needs to execute is 
determined by the process, not the system 
and not other software processes.

• (Predictability) The system can tell how 
much time and space is available without 
looking at any existing software processes.
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“Corollary”

• (Memory) The time a software process 
takes to allocate and free a memory object 
is determined by the size of the object.

• (I/O) The time a software process takes to 
read input data and write output data is 
determined by the size of the data.
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“Reality”

• A software process determines functional 
and non-functional behavior, for example:

• 1ms/100ms CPU time ( ≠ 10ms/s )

• 4MB/2s memory allocation rate

• 1KB/10ms network bandwidth

• 10J/100ms energy consumption
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Goals

• malloc(n) takes at most TIME(n)

• free(n) takes at most TIME(n)

• access takes small constant time

• small and predictable memory 
fragmentation bound
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The Problem

• Fragmentation
‣ Compaction
• References
‣ Abstract

Space
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Example:

•There are three objects
•Object A starts at address 20
•Object A needs 40 bytes
•B starts at 100, needs 20 bytes
•C starts at 160, needs 30 bytes
•A contains a reference to B
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Abstract Space Concrete Space
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Keep It Compact?



Does Not Work!



Trade-Off Speed for
Memory Fragmentation

Keep Speed and
Memory Fragmentation 
Bounded and Predictable



Partition Memory into Pages
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Partition Pages into Blocks
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Results I

• malloc(n) takes O(1)

• free(n) takes O(n)

• access takes one indirection

• memory fragmentation bounded in k and 
predictable in constant time
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Program Analysis

Definition:
Let k count deallocations in a given size-
class for which no subsequent allocation 
was done (“k-band mutator”).

Proposition:
Each deallocation that happens when
k < max_number_of_non_full_pages
takes constant time.
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Results II

• if mutator stays within k-bands:

• malloc(n) takes O(1)

• free(n) takes O(1)

• access takes one indirection

• memory fragmentation bounded in k and 
predictable in constant time





Two Implementations!

1. Concrete Space = Physical Memory

2. Concrete Space = Virtual Memory
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Two Implementations!
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Results III

• malloc(n) takes O(n)

• free(n) takes O(n)

• access takes two indirections

• memory fragmentation bounded in k and 
predictable in constant time
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Quad-Rotor Helicopter
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Oops
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Flight Control
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Free Flight
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