

Trader: An Industry-as-Laboratory Experiment in System Dependability

Ed Brinksma
Embedded Systems Institute

Second International Workshop on Foundations of Component-based Design

Embedded Systems Week, Salzburg, September 30th, 2007

TRADER System Dependability

Period: Sept. 2004 - Aug. 2009 20 fte/yr, 7 PhDs, 1 Postdoc, 10 Partners

Goal

Develop methods and tools to optimize dependability of high-volume products.

Issues

- Minimize product failures.
- Increase user satisfaction (user-centric design approach)

Dependability threats in TV domain

Increasing complexity

- □ Functions/content increases rapidly
 - Play music, view photos, search teletext, Electronic Programming Guide, child lock, sleep timer, Picture-in-Picture, TV ratings, emergency alerts, many image processing options and user settings,

. . .

- External information sources multiply
 - Connected planet strategy, downloadable applications
- → Increase of SW (1KB in 1980 64MB in 2007) Increase of third party content (EPG, codec's)

Decreasing time-to-market

- □ Fixed shipping gates to occupy reserved shelf space
- → Faults in delivered products are a fact-of-life

Business impact

- Not satisfying the high reliability expectations
 - Many returned products
 - Damages brand image
 - Reduces market share

- □ Cost of non-quality (CoNQ)
 - 2-3% turnover (compare to research expenditures: 2.3%)
 Rudy Provoost (CEO Philips Consumer Electronics)

Challenge:

- Prevent product faults causing customer complaints constraints:
 - Low costs per item
 - Short time to market

Example

- □ Took TV that was on market for half a year
 - Installed latest upgrades
- □ Found 20 failures in 20 hours playing with TV
- □ 8 public upgrades in few months

User sees problem immediately, but TV seems unaware of it

Embedded Systems

Trader – Proposed Outcome

- Methods and techniques that
 - can expose, at development time, product weaknesses that could lead to erroneous behavior
 - give the system awareness that its customer-perceived behaviour is or is likely to become erroneous
 - provide the system with a strategy to correct itself in line with customer expectations
- □ Supported by
 - Proof of concepts & publications that show the "how"
 - Knowledge transfer to CIP and industry

Embedded Systems

Trader – Proposed Outcome

- Methods and techniques that
 - can expose, at development time, product weaknesses that could lead to erroneous behavior
 - give the system awareness that its customer-perceived behavior is or is likely to become erroneous
 - provide the system with a strategy to correct itself in line with customer expectations
- □ Supported by
 - Proof of concepts & publications that show the "how"
 - Knowledge transfer to CIP and industry

Awareness Inside

User preceived reliability

Aim is to capture User Perceived Failure Severity (UPFS)

User perception

Example experiment

- □ Teletext experiment (29 subjects)
 - You have to pick up your wife/husband from Schiphol
 - Use Teletext to find arrival time for flight
- □ Failure was injected to hide part of this txt page

Conclusions from experiment

- □ Takes time/help to recognize there is a problem
- □ User did not recognize this problem as a TV problem

Recent experiment: compare failures of

- motorized swivel (ranked as unimportant) and
- image quality (ranked as important)

Adapted UPFS model

Awareness Inside

Case study: Teletext Lock-up

TV prepared with teletext faults

- □ Certain key sequences lead to failures (e.g. frozen or black screen)
- □ Each sub-system seems to work fine
- □ Synchronization is lost, but system is unaware (problem is not detected by current mechanisms)

diagnosis based on spectra

Case study: teletext lock-up

- □ Assume given: error detection [done by UTwente]
 Detection based on:
 - Explicit (high-level) behavioral information
 - Modeling the states of sub-systems
 - Check for consistency between states at run-time
- □ Aim of the diagnosis:
 - find block in C code that introduces the inconsistency

Fault diagnosis for teletext lock-up

1. Add observations to C code to record which blocks are executed

Exp: ≈ 60 000 blocks


```
Bool mgkey rkeyntf OnUp (KeySource source, KeySystem system, KeyCommand command)
 hook log (20345);
 if ((1) && Enabled) {
   Bool translated=0;
   hook log (20346);
   hook_EndTransaction ();
                                                 start a new spectrum
   if (!translated) {

    Transaction: time between

     hook log (20349);
     Translate (source, system, &command);
                                                    two key presses

    Instrumentation using Front

   if (command >= 1000 && command <= 1009) {
     hook_log (20350);

    Small Koala component for

     seq[0] = seq[1];
                                                    caching / downloading spectra
     seq[1] = seq[2];
     seq[2] = seq[3];
     seq[3] = command - 1000;
     if (!triggered) {
                                                log use of the block in
       hook_log (20351);
                                                the current spectrum
       if (seq[0] == 1 && seq[1] == 2) {
         hook log (20353);
         triggered = 1;
         switch (seq[3]) {
           case 1:
             hook_log (20354);
                                                planted inconsistency
             tmode = 6;
             break:
                                                     Fault in block 20354
           case 2:
             hook log (20355);
```


Fault diagnosis for teletext lock-up

Add observations to C code to record which blocks are executed

Exp: ≈ 60 000 blocks

- 2. For a sequence of key presses (scenario), collect for each block whether it has been executed or not between the presses; leads to vector (spectrum) for each block Exp: 2 scenarios with 24 and 27 key presses, where 13 451 and 13 796 blocks were executed
- 3. Record for each key press whether it leads to error or not Exp: 2 error vectors of length 24 and 27

Fault Diagnosis

Spectra for *m* runs/transactions and n blocks block 1 block n

1: block executed

0: block not exec.

Row: the blocks that are executed between

 $e_i=1$: error in transaction i

executed between

 $e_i=0$: no error in transaction i

2 keys presses (transaction)

Fault diagnosis for teletext lock-up

 Add observations to C code to record which blocks are executed

Exp: ≈ 60 000 blocks

- 2. For a sequence of key presses (scenario), collect for each block whether it has been executed or not between the presses; leads to vector (spectrum) for each block Exp: 2 scenarios with 24 and 27 key presses, where 13 451 and 13 796 blocks were executed
- 3. Record for each key press whether it leads to error or not Exp: 2 error vectors of length 24 and 27
- 4. Compute simularity between error vector and spectra

Fault Diagnosis

Compare every column vector with the error vector.

block j

error vector

X ₁₁	X ₁₂	***	X _{1n}
X ₂₁	X ₂₂	•••	X _{2n}

X_{m1}	X _{m2}	***	X _{mn}

e₁ **e**₂ ... **e**_m

Column *j*: the transactions in which block *j* was executed

similarity s_i

E.g. Jaccard similarity coefficient

Fault diagnosis for teletext lock-up

 Add observations to C code to record which blocks are executed

Exp: ≈ 60 000 blocks

- 2. For a sequence of key presses (scenario), collect for each block whether it has been executed or not between the presses; leads to vector (spectrum) for each block Exp: 2 scenarios with 24 and 27 key presses, where 13 451 and 13 796 blocks were executed
- 3. Record for each key press whether it leads to error or not Exp: 2 error vectors of length 24 and 27
- 4. Compute simularity between error vector and spectra
- 5. Rank blocks according to their simularity

Diagnosis

Scenario 1: Block ranking:

```
20353 (1/1) 20354 (1/1) 58890 (1/4) 3134 (1/5) 3664 (1/6) 3135 (1/6)
58889 (1/7) 59839 (1/8) 29569 (1/9) 1256 (1/9)15755 (1/10) 20351 (1/10)
15781 (1/11) 15777 (1/11) 15778 (1/11) 15779 (1/11) 15782 (1/11)
15823 (1/11) 20432 (1/11) 15727 (1/11) ...
```

Block 20354 is right at the top of the diagnosis

... but it shares the first position with block 20353

Scenario 2: Block ranking:

```
20354 (1/1) 20353 (1/2) 3134 (1/5) 50466 (1/11) 20432 (1/11)
15755 (1/11) 58208 (1/12) 58207 (1/12) 59816 (1/12) 50439 (1/12)
50436 (1/12) 14817 (1/12) 50432 (1/12) 50437 (1/12) 50288 (1/12)
50428 (1/12) 14814 (1/12) 14816 (1/12) 50422 (1/12) ...
```

Block 20354 is diagnosed correctly

Current this approach is tried at NXP to support debugging

Awareness Inside

Model behaviour

Model user perceived behaviour mainly by executable state diagrams with hierarchy and concurrency to deal with complexity

Current tool support: Matlab/Simulink, mainly using Stateflow toolbox

Approach is rather tool-independent; diagrams similar to state machines in UML-tools

Modeling TV Behaviour in Stateflow

Using the behavioural model (1)

improve@development:

- □ to obtain concise, visual specification;
 currently spec is distributed over many documents
- □ to enable early detection of faults
 (e.g. ambiguities, omissions, inconsistencies, interference between features)
- □ to get quick feedback on product variations
- □ to generate test cases, e.g., to test implementations
- **→** Transfer to NXP in preparation

Using the behavioural model (2)

improve@run-time

Experiment with awareness concept:

- □ Linux-based awareness framework in which System Under Observation (SUO) and SPEC can be inserted easily and we can try different error detection strategies
- Open source media player MPlayer as first case study, followed by experiments in TV domain
- Model awareness concepts in Stateflow

Awareness in Stateflow

Design of Framework in Linux

Concluding remarks

- □ System level feedback is a powerful generic concept for the design of dependable systems
 - paradigm shift:
 systems shall be correct ⇒ errors must be contained
- High-level system models become a component of the system itself
 - system features emerge from interaction basic system and model components
 - further experimentation needed to determine trade-off between model complexity and effectiveness
- □ Effective compositional instrumentation using aspect-oriented programming
- Industry-as-laboratory very useful research instrument for system engineering

Thank you for your attention!

