
Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Specification and Validation of Non-Functional
Constraints

Johan Lindqvist1, Dragos Truscan1, Johan Lilius1, Ivan
Porres1 and Timo O. Eriksson2

1Turku Center for Computer Science, Abo Akademi University, Turku,
FINLAND

2Nokia Research Center, Helsinki, FINLAND

Artist workshop on Foundations of Component-Based
Design

October 4, 2007 1/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Changes in the Environment of Mobile Device
Manufacturing

2. New requirements for platforms and
architectures

Although digital convergence means industry level
convergence in features and technologies it introduces
new level of divergence and system level complexity.
Furthermore, in many companies this has also impact
to product portfolio by increasing the number of
different products. In foreseeable future mobile phone
manufacturers have transformed themselves to be
mobile device manufacturers with tens if not hundreds
of different products. This kind of diversification is
introducing new set of requirements for architectures
and platforms. Some of the key requirements are:

Modularity
Flexibility
Scalability

Efficient horizontal business model brings some
new important requirements. To enable re-use and
third party development we need to solve the issue of
verification. It should be possible to verify and
validate the module independently of the rest of the
system. In practice this means that vendor can be
responsible of the whole functionality of the module
up to the full verification and validation.

Communication and applied interfaces need to be
specified in a manner that neither party should need to
know internals of the other communicating party. This
black-box requirement is the essential one. With
black-box requirement we end up to the requirement
of loose coupling which supports well the sound

design principle of separating the communication
function and the actual processing.

One important driver for horizontal mode of
development is the opportunity for open innovation.
Freedom to do out-of-box innovations in subsystem
level R&D is one source of increased efficiency.
Architecture lending itself well for utilization of
heterogeneous technologies can exploit the latest
innovations in the industry. This feature will also
extend the life time of the architecture by embedding
the inherent capability for renewal.

Mobility, portability and scalability are setting up one
very special requirement for architecture and
especially to its realizations. It is good to remind here
that speaking about true modularity implies the
modularity in different level of abstractions too.
Subsystems and their interfaces seen on functional and
logical level need to exist also in the level of physical
architecture and reflect modularity there. However,
here we are not saying anything about level of
integration. On the contrary it is of vital importance
that in portable devices we have freedom to select the
right integration level. In our toolbox we need to have
option to pack modules into separate boxes, to multiple
ICs, chips stacked into one package or into one die
with all the benefits of the SoC level integration.
Furthermore, this should happen without breaking the
architecture and still maintaining the model of
communication.

In addition to requirements mentioned above there will
be couple of common set of requirements applicable
for the most of mobile devices. Due to the increasing

•Modem platform
•Wireless standards
•Application platform
•Peripherals
•Value domain SW/HW
•Core applications
•Operating Systems
•Integration/assembly

N
okia

M
otorola, Sam

sung

Sony-Ericsson, LG

2000 2010

Nokia Docomo Ericsson

Linux Microsoft Symbian

Qualcomm Nokia TI Intel Samsung

Intel STm TI

Microsoft Nokia

Epson Samsung Toshiba

Flextronics Huawei Nokia Motorola Samsung

Sony Philips STm Microsoft Nokia Real
Qualcomm

ATI

Tron

Qualcomm
Philips
ARM

Googl
Palm
IBM

Matsushita

SUN

Qualcomm

Apple

Renesas

Figure 2. Mobile industry shift from vertical to horizontal mode. (Company names in diagram are examples and
are for illustration only).

!"#$%%&'()*+#,+-.%+/-.+01"#2'$"#+3#(,%"%($%+#(+4')'-56+78*-%2+4%*')(+9474:;<=+

;>?</@>A<;/>BC;<+DA;E;;+F+A;;<!!"""#

!"#$%%&'()*+#,+-.%+/-.+01"#2'$"#+3#(,%"%($%+#(+4')'-56+78*-%2+4%*')(+9474:;<=+

;>?</@>A<;/>BC;<+DA;E;;+F+A;;<!!"""#

From [Suo06]

October 4, 2007 1/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

What does this imply for Design Methods?

importance and the amount of digital content the
communication and storage solutions will be in key
role defining the winning architecture for mobile
devices. Currently data processing units are in central
role defining the architecture while in coming years
there will be significant shift from processor centric
architecture thinking towards content and
communication centric architectures.

One important requirement has been the low power
consumption and the constraints set by heat
dissipation – that is a requirement which remains and
will be even more challenging source for requirements
in the future. Also the overall security and trust
regarding both the content and the platform are
important issues to be taken care.

Mitigating complexity by increasing modularity is
usually revealing new challenges in system level. To
cope with those system level issues we need to take
care that appropriate system level tool and
methodology framework is properly set up.

In the following list we have collected all mentioned
requirements into one table (Table 1.)

Table 1 List of high level requirements for the
future mobile device architectures

1. Suitability for Horizontal R&D mode
2. Modularity
3. Flexibility
4. Scalability
5. Independent V&V for subsystems
5. Black-box approach for modularity
7. Loose coupling of subsystems
8. Applicability to heterogeneous technologies
9. Matching modularity in all abstraction levels

10. Freedom to select the level of integration
11. Interconnect centric architecture
12. Open and standard interfaces
13. Low power design
14. Heat dissipation limited designs
15. Platform and Content Security
16. Appropriate system engineering framework

3. Service oriented modular device
architecture

Based on above set of requirements we have
extracted couple of key foundations for new mobile
device architecture. Intention of opening this new
system level architecture is to jointly with academia
and industry create open mobile device architecture
enabling new level modularity and speeding up open
innovation in industry. Open architecture means here
open core system solutions like interconnect and key
concepts like way of specifying services still leaving
lots of space for competition in implementations and
new technologies and of course in defining new
innovative services. The proposed draft for the
architecture is called Network on Terminal
Architecture – NoT A.

We are emphasizing that primary meaning of
modularity is not based on HW level modularity. The
concept of modularity need to be visible already on
system level. This implies that both functional and
logical architecture need to express matching
modularity.

3.1. Functional Architecture

On functional level the basic entities are the nodes
providing services and the “application” nodes
consuming provided services. Architecture it self
consist of set of services or service nodes (SN) and set
of use case driven application nodes (AN).
Furthermore, we need a concept for communication
solution which we call as interconnect. In Figure 3. we
are depicting the proposed architecture in functional
level.

Figure 3 Functional description of service based
architecture.

!"#$%%&'()*+#,+-.%+/-.+01"#2'$"#+3#(,%"%($%+#(+4')'-56+78*-%2+4%*')(+9474:;<=+

;>?</@>A<;/>BC;<+DA;E;;+F+A;;<!!"""#

!"#$%%&'()*+#,+-.%+/-.+01"#2'$"#+3#(,%"%($%+#(+4')'-56+78*-%2+4%*')(+9474:;<=+

;>?</@>A<;/>BC;<+DA;E;;+F+A;;<!!"""#

From [Suo06]

Emphasis on modular
construction

Possibilities for reuse

Need to deal with
non-functional constraints

Support for distributed
design

Cost-effective: low NRE

Fast time-to-market

October 4, 2007 2/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Vision of new Eco-System

X

Y

UsersProduct integrators

Mobile application
developers

Mobile SW
developers

Subsystem
providers

LCD

uP

Technology
providers

Innovators &
Open source
community

Certification

Service
business
models

Brokering

System
design

Application
development
tools

Service
creation

October 4, 2007 3/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

NoTA

NoTA (Network on Terminal Architeture) is Nokia’s attempt at
addressing the challenge.
Consists of 2 parts:

A device architecture

Service based,
Network centric,
Loosely coupled,
Follows GALS principles

A design method

SOA-based
Identification of Services
Definition of
Subsystems
Definition of Tests

For subsystem
testing
For integration
testing

October 4, 2007 4/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

NoTA Logical Architecture

A Method for Mobile

Terminal Platform

Architecture Development

Klaus Kronlöf, Samu Kontinen, Ian

Oliver and Timo Eriksson

Nokia Research Center

P.O.Box 407, FI-00045 NOKIA GROUP,

Finland

Abstract
We introduce a novel architecture, called the

Network-on-Terminal Architecture (NoTA), for mobile

terminal platforms. This paper concentrates on the

platform development and validation flow adopted for

NoTA. Platform requirements are expressed as use cases

that are modelled using UML2 with Telelogic's Tau G2

tool. Models are executable so that use case behaviour

can be animated. Use cases are used as test cases in the

platform architecture development for which use case

information is transferred as execution traces. We use

CoFluent Studio tool for platform architecture

specification and performance analysis. The use case

execution trace is fed into a functional model that

represents the computation load. NoTA is service

oriented and thus the functional model consists of

platform services. The computation and communication

resources are modelled with a separate platform

architecture model. The tool allows exploring different

configurations and allocations of the functional and

platform models quickly and provides extensive

performance information, including power consumption.

1 Motivation

Digital convergence and mobile device industry

horizontalisation are creating pressure for companies to

renew their competences as well as the device

architecture. Current CPU centric highly integrated one-

for-all-platforms have come to the end of the road.

Future mobile device architectures are system-wise

modular and service based. Network On Terminal

Architecture (NoTA) is such an architecture.

The development of mobile terminal platforms

should start from end-user needs. In our company we

have traditionally expressed them as use cases. For

NoTA we have developed a more rigorous model-based

method of presenting use cases and using them to guide

platform architecture development. The method also

utilizes the service oriented nature of NoTA to form an

intermediate functional model between abstract use cases

and the platform architecture solution.

In the method we use commercial tools and standard

modeling languages as much as possible. The innovation

is in integrating them to support use case driven

development of service oriented platform architectures.

2 Introduction to NoTA

NoTA is an interconnect centric modular service-based

architecture for today’s and future mobile device

platforms. NoTA claims to provide superior performance

and to make effective horizontalisation possible via

eased integration. The development method associated

with NoTA ensures that designs are stepwise verifiable

against end-user requirements. The method is also

flexible and scaleable with reuse on different levels.

NoTA allows the use of novel technologies and open

innovation, and shortens the R&D cycle.

A NoTA platform consists of loosely connected

services running on top of heterogeneous sub-systems. In

NoTA based systems all service and data communication

is routed via the network stack as shown in Figure 1; this

approach is similar to that taken formerly by CORBA

[OMG95] and lately in a more sophisticated form by

Web Services [Erl05]. NoTA takes these principles and

specialises them for use in a highly embedded system.

The NoTA method includes a platform development

flow that ensures that services, sub-systems and the

interconnect topology are matched to end-user

requirements. It also provides formal reusable

specifications for the platform entities.

Figure 1: NoTA logical architecture consisting of three

types of foundation elements called Application Nodes,

Service Nodes and Interconnect

From: [KKE06]
October 4, 2007 5/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

NoTA Device Architecture

NoTA defines two main level of protocols for the

interconnect, called H_IN and L_IN. H_IN is a high

level protocol stack providing communication

functionality for platform services and applications.

L_IN is the low level protocol that provides the physical

connection between subsystems.

A NoTA subsystem implements a set of services. It is

an architectural concept that does not necessarily align

with chip boundaries. So, we may have several

subsystems on a chip and a subsystem may extend

outside the boundaries of a chip, as illustrated in Figure

2.

Figure 2: Example of physical implementation of NoTA

based platform

3 NoTA Platform Architecture

Development Method

The industrial practice in platform architecture

development is quite informal and heavily relies on

system architect’s experience. This is feasible when

changes in successive generations of the architecture are

relatively small, but is problematic when dealing with

truly novel architectural concepts that call for systematic

exploration of quite different alternatives. Furthermore,

platform requirements are typically expressed in

technical terms that are not properly connected to end-

user needs. The NoTA platform architecture

development method aims at overcoming these pitfalls of

industrial practice.

NoTA based systems are engineered in a systematic

requirements driven manner. It is characterised by the

following principles.

Separation of concerns: We want to be able to

develop different aspects of the system independently

from each other in order to manage complexity and to

facilitate reuse. In the NoTA method we separate the

domains of:

! end-user requirements

! platform functionality, i.e., services provided by

the platform

! platform architecture, i.e., definition of subsystems

and communication infrastructure [Bas03]

! implementation of subsystems (SW and HW) and

interconnect protocols (SW and HW).

Each of the domains has their own self-contained

models. Eventually, in the final system, these domains

are of course related to each other, but we want to be

able to postpone fixing these relations until the time we

actually define the system instance (that can be a product

or a product platform).

Model-based engineering: In the NoTA method the

artefacts developed in different phases of the process are

models with well-defined semantics. We want to avoid

misunderstandings and the consequent errors caused by

ambiguousness and hidden meanings of informal

documentation. We also want to be able to use analysis,

verification, transformation, code generation and

synthesis tools that operate on models.

Reuse of models: We believe that the possibility to

effectively reuse models in different contexts gives a big

improvement of design productivity compared to

conventional methodologies. In the NoTA method

different kinds of models are stored in repositories from

where they can be retrieved and used to compose new

system configurations. We have put special emphasis on

modelling techniques that enable easy composition of

models.

Early validation and verification: One motivation

of model-based engineering is early validation and

verification of specifications and designs. In the NoTA

method the validation and verification starts already at

end-user requirements phase with executable use case

models. Later on, its focus is on the correctness of

platform specification and performance analysis at both

specification and implementation phases. In the NoTA

method, the validation and verification is not limited to

logical correctness, but covers also non-functional

aspects, such as real-time performance and energy

consumption.

4 Requirements Modelling

In NoTA we have taken a use case driven approach to

requirements modelling. Generally speaking, a use case

captures a contract between the stakeholders of a system

about its behaviour [Coc00]. It describes the system’s

behaviour under various conditions as it responds to a

request from one of its stakeholders, called the primary

actor. The primary actor initiates an interaction with the

system to accomplish some goal.

The classical use case approaches [Coc00]

concentrate on specifying system functionality by means

of action sequences. We have developed these

approaches further because we feel that it is essential to

Example NoTA device architecture from: [KKE06]
October 4, 2007 6/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Specification method

SIS

Build
Sub-system

Library

Specify
Use Cases
(Scenarios)

Identify
Services

Specify
Service

Interaction

Define
Service
Protocol

Partition
Services

Select
DOA Data
Handling

MIME
DOA

Library

Service
Library

Subsystem
Library

Requirements

Interface
Specification

(WSDL)

Data Comm.
Specification
(DOA_FSM)

Behavior
Specification

(FSM)

Subsystem
Specification

Build
System

Testing
Specifications

System
Specification

Document
Generation

HTML

Build
Service
Library

Use Case
Library

The NoTA Design flow

October 4, 2007 7/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Specification method (cont’d)

Sub-System Specification:

Implements a number of services
Use cases are given as requirements: these can be use by
the manufacturer to optimize the hardware

Testing amounts to:

Generate runs of the system based on the use cases, and
the SIS specification
Observe behavior and measure energy at hardware interface
Report results

October 4, 2007 8/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Specifying energy and timing constraints

“Take a jpeg image with resolution
1024*768 and store it on the file
server as temp.jpg. From the
time the image is requested to the
time it is available on the file
server no more than 300ms should
have elapsed. The image should
be captured (but not necessarily
encoded or stored) within 100 ms
from the time of the request. With
one fully charged Li-Ion battery (1
Ah, 3.3 V) the user must be able
to take 200 VGA-sized still
images, including 20 % overhead
for additional tasks.”

The informal requirement
gives budget

For a SIS concrete values
can be obtained from
experience or through
negotiations with 3rd
parties

Not every piece of
functionality needs to have
energy and timing
constraints

Energy and timing
constraints can constrain
several services

October 4, 2007 9/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Energy Properties

Power constraints associated to states

Mean power, Peak power

Important to understand how power is used over time
Mean power requires tests to be run several times
Statistical measures of variation can also be included

Energy and timing constraints associated to transitions

{wakeup, shutdown} {energy, time} for services

October 4, 2007 10/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Use Case: Take Single Picture

DOATransfer:DOAEnc:JPEGEncoderSC:StillCapture FS:FileServerApp:Application

sd: UC1.Take single picture.Interaction_1.1

 .OpenFile_req("temp.jpg")

 .OpenFile_cnf(0,handleFS)

 .Capture_req(1024,80,handleFS)

 .Encode_req(1024,80,handleSC,handleFS)

 .CaptureReady_ind(0)

 .Encode_cnf(0,handleFS)

 .Capture_cnf(0,handleFS)

 .Receive(handleFS,DOA_FileServer_any_in)

 .Send(handleFS,DOA_JPEGEncoder_jpg_out,size < 500000 and size > 1000)

 .Receive(handleSC,DOA_JPEGEncoder_bmp_in)

 .Send(handleSC,DOA_StillCapture_bmp_out,size = 2359350)

<300ms

<100ms

<47J

<1J

<90ms

<290ms

<200ms

<40ms

<30ms

<10ms

<130ms

<10J

<8J
<16J

IDLE

CAPTURE1

STORING

IDLE

ENCODING

IDLE

IDLE

IDLE

OPENING

IDLE

<12J

Figure 6. Interaction diagram for use case UC1. Take single picture

confirming that a photo has been taken and transferred to the
Enc::JPEGEncoder, and then with a Capture cnf mes-
sage to announce that the JPEG encoded photo has been
stored on the FileServer.

As shown earlier, energy and timing requirements may be
associated with each use case. When the use case spans sev-
eral subsystems, these requirements must be decomposed to
formulate verifiable deadlines and energy budgets for the use
case portions executed by the individual subsystems. Such a
decomposition is shown in Figure 6. To explore the possibil-
ities to verify these decomposed constraints in practice, we
have set up an experimental energy consumption test bench.

The data transfers between services are modeled as input
and output streams over the DOA Interconnect, accompanied
by parameters describing the transferred data.

4 Tool Support

As previously mentioned, in our subsystem specification
approach we employ both a graphical and a textual specifica-
tion format. The definitions of the two formats are indepen-
dent, yet they are equivalent. The graphical representation
format has been defined using a metamodel and implemented
in the Coral modeling tool [4], whereas the XML-based rep-
resentation has been defined using an XML Schema.

Figure 7 shows a caption of Coral editing the FSM of the
StillCapture service. We find that especially the protocol
state machines and the interaction sequences modeling use
cases are far easier to construct and understand using this
graphical view of the specifications.

The subsystem, service interface and use case specifica-
tions are primarily exchanged between the system designer
and vendors as XML files. Although most aspects of these
specifications may be successfully edited and validated using
any schema-conscious XML editor, we employ Coral to au-
tomatically generate the XML-based specification from the
existing graphical representations. For instance, the follow-
ing XML code specifies the Imaging subsystem shown in
Figure 2.

Figure 7. StillCapture FSM in Coral

<?xml version="1.0" ?> <Subsystem xmlns="http://mde.abo.fi/NoTASpec/0.1/System/Subsystem"
name="Imaging">
<documentation>
This is the imaging subsystem, containing services related to image capture, encoding,
editing etc.

</documentation>
<usecase>UC1 - Take single picture</usecase>
<usecase>UC2 - Take picture series</usecase>
<service name="StillCapture" specification="StillCapture">
<documentation>
Captures pictures using a camera and encodes them as bmp, no compression, 1280*960.
May use encoder services to supply other file formats and image sizes.

</documentation>
<sequence>Seq1.1 - Take single picture</sequence>
<sequence>Seq2.1 - Take picture series</sequence>

</service>
<service name="JPEGEncoder" specification="JPEGEncoder">
<documentation>Encodes JPEG images from raw or bmp input. Compression and image width
should be given, w/h ratio will be preserved.</documentation>
<sequence>Seq1.1 - Take single picture</sequence>

</service>
</Subsystem>

The XML-code for specifying the StillCapture service im-
plemented by the Imaging subsystem is shown below. As one
may notice, the last part of the code specifies the StillCapture
FSM corresponding to the one in Figure 4.
<?xml version="1.0" ?> <SIS xmlns="http://mde.abo.fi/NoTASpec/0.1" name="StillCapture">
<documentation>
Captures pictures using a camera and encodes them as bmp, no compression, 1280*960.
May use encoder services to supply other file formats and image sizes.

</documentation>
<implementation>StillCapture</implementation>

5

October 4, 2007 11/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Still Capture SIS

ments. The textual specification language is defined by ex-
tending the Web Service Description Language (WSDL), the
most popular standard defining Web services, and also the
standard that enables service-oriented principles to be real-
ized in practice in Web services. WSDL is defined as an
XML Schema [7], and thus service descriptions built us-
ing WSDL have the form of XML documents adhering to
the WSDL XSD (XML Schema Definition) [8]. Neverthe-
less, although the two representations of the NoTA subsys-
tem specification are defined using different techniques, they
are basically equivalent. This enables us to translate graph-
ical representations into textual ones and vice-versa at any
time without losing information.

In the following, we will briefly present the different as-
pects of NoTA subsystem specifications using the graphical
specification language. The main focus of this presentation
is on how the language can be used to specify NoTA sub-
systems and their services, rather then how the language has
been defined. We defer for Section 4 the exemplification of
the textual specification form.

We exemplify the approach with excerpts from a mobile
terminal device case study. As a result of the service iden-
tification process several services have been identified, as
follows: StillCapture for capturing still images in bitmap
(BMP) format, JPEGEncoder for encoding bitmap images
into JPEG format, APlayer for playing MP3 encoded data
streams, and a FileServer service for storing the resulting
image files or for providing MP3 data streams. A possible
partitioning of these services into subsystems is shown in
Figure 2.

<< component , subsystem >>
ImagingSubsystem

encoder : JPEGEncodersc : StillCapture

<< component , subsystem >>
FileServerSubsystem

FS : FileServer

<< component , subsystem >>
AudioSubsystem

player : APlayer

dd: MobileTerminalSystem

Figure 2. Possible partitioning of the mobile
terminal system under study

3.1 Service List Specification

The interface for communicating with a service node is
defined by the SIS, which is a central concept in the spec-
ification and testing of NoTA-based systems. The SIS of a
NoTA service consists of two main parts: a control interface
and a data interface.

3.1.1 Control Interface

The control interface depicts the part of the SIS that allows
the invocation of different functionalities of a service. The
control perspective is specified by two artifacts: Interface
Specification – a list of input/output messages and their asso-
ciated parameters that the service can send and receive, and
Behavior Specification – a protocol state machine depicting
the externally observable states of the service along with the
messages that can be received or sent by the service in each
state. In addition, the behavior specification depicts the mes-
sages sent by a service to invoke (use) functionality provided
by other services.

As an example, we show in Figure 3 the interface specifi-
cation of a StillCapture service, while in Figure 4 we present
the behavior specification of the same service.

NoTA_FileServer_R01_01 AudioPlayer

JPEGEncoder

StillCapture

 « » « »

 « »

 « »

service

+ Create_req () :
+ Create_cnf () :
+ Delete_req () :
+ Delete_cnf () :
+ Rename_req (,) :
+ Rename_cnf () :
+ IsDir_req () :
+ IsDir_cnf (,) :
+ ListDir_req () :
+ ListDir_cnf (,) :
+ ReadFile_req (, ,) :
+ ReadFile_cnf (,) :
+ WriteFile_req (, ,) :
+ WriteFile_cnf () :
+ GetFileSize_req () :
+ GetFileSize_cnf (,) :
+ SetFileSize_req (,) :
+ SetFileSize_cnf () :
+ GetTimestamp_req () :
+ GetTimestamp_cnf (,) :
+ SetTimestamp_req () :
+ SetTimestamp_cnf () :
+ CreateHandle_req (, , ,) :
+ CreateHandle_cnf (,) :
+ DeleteHandle_req () :
+ DeleteHandle_cnf () :
+ GetVolumeInfo_req () :
+ GetVolumeInfo_cnf (, , , ,) :
+ SetVolumeLabel_req (,) :
+ SetVolumeLabel_cnf () :
+ VolumeMountEvent_req () :
+ VolumeMountEvent_cnf () :
+ VolumeMountEvent_ind (, , , ,) :

service

+ Play_req () :
+ Play_cnf () :
+ EndOfStream_ind () :

service

+ Encode_req (, , ,) :
+ Encode_cnf (,) :

service

+ Capture_req (, ,) :
+ CaptureReady_ind () :
+ Capture_cnf (,) :

uri :
status :
uri :
status :

oldUri : newUri :
status :

uri :
status : isdir :

uri :
status : dirlist :

uri : offset : length :
status : data :
uri : offset : data :
status :

uri :
status : size :
uri : size :
status :

uri :
status : tstamp :
uri :
status :
uri : offset : length : write :
status : handle :
handle :
status :

uri :
status : volId : label : total : free :

uri : label :
status :

enable :
status :
status : mounted : volID : label : device :

handle :
status :

width : compression : inputHandle : outputHandle :
status : handle :

width : compression : handle :
status :

status : handle :

bdata
status_t

bdata
status_t

bdata bdata
status_t

bdata
status_t boolean

bdata
status_t dirlist_t

bdata offset_t uns32
status_t bdata

bdata offset_t bdata
status_t

bdata
status_t offset_t

bdata offset_t
status_t
bdata

status_t tstamp_t
bdata

status_t
bdata offset_t uns32 boolean

status_t handle_t
handle_t

status_t
bdata

status_t bdata bdata offset_t offset_t
bdata bdata

status_t
boolean

status_t
status_t boolean bdata bdata bdata

handle_t
int

int int handle_t handle_t
int handle_t

int int handle_t
int

int handle_t

Figure 3. Interface specification of the StillCap-
ture service

Figure 4. Protocol state machine of the Still-
Capture service

3.1.2 Data Interface

The data interface specifies the types of data, namely MIME
types [5], a service supports for communicating with other
services using the DOA protocol. Thus, each service is ac-
companied by a Data Handling specification – that is, a set
of data handling patterns – specifying how the service is
expected to communicate using each data type. Each pat-
tern describes properties like bandwidth, latency, power con-
sumption of the communication. Different patterns mirror
the different requirements posed by different types of data
communication. For instance, the performance requirements
for streaming audio/mp3 data to a player may vary greatly
in terms of packet size, average bandwidth, etc. as compared
to saving an image/jpeg on a file system.

3

ments. The textual specification language is defined by ex-
tending the Web Service Description Language (WSDL), the
most popular standard defining Web services, and also the
standard that enables service-oriented principles to be real-
ized in practice in Web services. WSDL is defined as an
XML Schema [7], and thus service descriptions built us-
ing WSDL have the form of XML documents adhering to
the WSDL XSD (XML Schema Definition) [8]. Neverthe-
less, although the two representations of the NoTA subsys-
tem specification are defined using different techniques, they
are basically equivalent. This enables us to translate graph-
ical representations into textual ones and vice-versa at any
time without losing information.

In the following, we will briefly present the different as-
pects of NoTA subsystem specifications using the graphical
specification language. The main focus of this presentation
is on how the language can be used to specify NoTA sub-
systems and their services, rather then how the language has
been defined. We defer for Section 4 the exemplification of
the textual specification form.

We exemplify the approach with excerpts from a mobile
terminal device case study. As a result of the service iden-
tification process several services have been identified, as
follows: StillCapture for capturing still images in bitmap
(BMP) format, JPEGEncoder for encoding bitmap images
into JPEG format, APlayer for playing MP3 encoded data
streams, and a FileServer service for storing the resulting
image files or for providing MP3 data streams. A possible
partitioning of these services into subsystems is shown in
Figure 2.

<< component , subsystem >>
ImagingSubsystem

encoder : JPEGEncodersc : StillCapture

<< component , subsystem >>
FileServerSubsystem

FS : FileServer

<< component , subsystem >>
AudioSubsystem

player : APlayer

dd: MobileTerminalSystem

Figure 2. Possible partitioning of the mobile
terminal system under study

3.1 Service List Specification

The interface for communicating with a service node is
defined by the SIS, which is a central concept in the spec-
ification and testing of NoTA-based systems. The SIS of a
NoTA service consists of two main parts: a control interface
and a data interface.

3.1.1 Control Interface

The control interface depicts the part of the SIS that allows
the invocation of different functionalities of a service. The
control perspective is specified by two artifacts: Interface
Specification – a list of input/output messages and their asso-
ciated parameters that the service can send and receive, and
Behavior Specification – a protocol state machine depicting
the externally observable states of the service along with the
messages that can be received or sent by the service in each
state. In addition, the behavior specification depicts the mes-
sages sent by a service to invoke (use) functionality provided
by other services.

As an example, we show in Figure 3 the interface specifi-
cation of a StillCapture service, while in Figure 4 we present
the behavior specification of the same service.

NoTA_FileServer_R01_01 AudioPlayer

JPEGEncoder

StillCapture

 « » « »

 « »

 « »

service

+ Create_req () :
+ Create_cnf () :
+ Delete_req () :
+ Delete_cnf () :
+ Rename_req (,) :
+ Rename_cnf () :
+ IsDir_req () :
+ IsDir_cnf (,) :
+ ListDir_req () :
+ ListDir_cnf (,) :
+ ReadFile_req (, ,) :
+ ReadFile_cnf (,) :
+ WriteFile_req (, ,) :
+ WriteFile_cnf () :
+ GetFileSize_req () :
+ GetFileSize_cnf (,) :
+ SetFileSize_req (,) :
+ SetFileSize_cnf () :
+ GetTimestamp_req () :
+ GetTimestamp_cnf (,) :
+ SetTimestamp_req () :
+ SetTimestamp_cnf () :
+ CreateHandle_req (, , ,) :
+ CreateHandle_cnf (,) :
+ DeleteHandle_req () :
+ DeleteHandle_cnf () :
+ GetVolumeInfo_req () :
+ GetVolumeInfo_cnf (, , , ,) :
+ SetVolumeLabel_req (,) :
+ SetVolumeLabel_cnf () :
+ VolumeMountEvent_req () :
+ VolumeMountEvent_cnf () :
+ VolumeMountEvent_ind (, , , ,) :

service

+ Play_req () :
+ Play_cnf () :
+ EndOfStream_ind () :

service

+ Encode_req (, , ,) :
+ Encode_cnf (,) :

service

+ Capture_req (, ,) :
+ CaptureReady_ind () :
+ Capture_cnf (,) :

uri :
status :
uri :
status :

oldUri : newUri :
status :

uri :
status : isdir :

uri :
status : dirlist :

uri : offset : length :
status : data :
uri : offset : data :
status :

uri :
status : size :
uri : size :
status :

uri :
status : tstamp :
uri :
status :
uri : offset : length : write :
status : handle :
handle :
status :

uri :
status : volId : label : total : free :

uri : label :
status :

enable :
status :
status : mounted : volID : label : device :

handle :
status :

width : compression : inputHandle : outputHandle :
status : handle :

width : compression : handle :
status :

status : handle :

bdata
status_t

bdata
status_t

bdata bdata
status_t

bdata
status_t boolean

bdata
status_t dirlist_t

bdata offset_t uns32
status_t bdata

bdata offset_t bdata
status_t

bdata
status_t offset_t

bdata offset_t
status_t
bdata

status_t tstamp_t
bdata

status_t
bdata offset_t uns32 boolean

status_t handle_t
handle_t

status_t
bdata

status_t bdata bdata offset_t offset_t
bdata bdata

status_t
boolean

status_t
status_t boolean bdata bdata bdata

handle_t
int

int int handle_t handle_t
int handle_t

int int handle_t
int

int handle_t

Figure 3. Interface specification of the StillCap-
ture service

Figure 4. Protocol state machine of the Still-
Capture service

3.1.2 Data Interface

The data interface specifies the types of data, namely MIME
types [5], a service supports for communicating with other
services using the DOA protocol. Thus, each service is ac-
companied by a Data Handling specification – that is, a set
of data handling patterns – specifying how the service is
expected to communicate using each data type. Each pat-
tern describes properties like bandwidth, latency, power con-
sumption of the communication. Different patterns mirror
the different requirements posed by different types of data
communication. For instance, the performance requirements
for streaming audio/mp3 data to a player may vary greatly
in terms of packet size, average bandwidth, etc. as compared
to saving an image/jpeg on a file system.

3

October 4, 2007 12/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Audio DOA

A generic data handling model is used to represent all the
data handling patterns. The handling model, also referred
to as DOA FSM, specifies a given data handling pattern as a
state machine with two states: Idle and Active. The trans-
fer of data only takes place during the Active state with a
specified bandwidth. If for a given amount of time (timeout)
no data has been transferred, the state of the DOA FSM is
changed back to Idle in order to save energy. The DOA FSM
also models the power consumption/energy and delay of a
given data handling pattern, by specifying the power con-
sumed in each state, and the energy and delay implied by
changing the state of the FSM. Future work will attempt to
extend this model to contain other performance characteris-
tics, like peak and average energy for transitions. An exam-
ple DOA FSM of the APlayer service for the audio/mp3
MIME type is given in Figure 5.

Figure 5. DOA state machine for the audio/mp3
MIME type

The DOA FSMs can be employed to estimate the proper-
ties (e.g., timing and energy consumption) of a data transfer
between two services. One of the services will be the source
and the other one the sink, and each of them may use a differ-
ent DOA FSM. By computing the cross-product of the source
and sink DOA FSMs one obtains a state machine modeling
the characteristics of a given data transfer.

3.2 Use Case Specification

In our approach we regard as the Requirements a collec-
tion of documents written in natural language, associated
standards and specifications, as well as user stories. Start-
ing from these requirements one identifies the usage scenar-
ios (or use cases) and their interaction with the external en-
vironment of the system under design. This step produces
a Use Case Model in which each use case is accompanied
by a textual description (including both functional and non-
functional requirements).

A Use Case Library is used to provide support for reuse.
The pre-defined use case specifications stored in this library
allow, once a use case is added to the Use Case Model, to pro-
vide already built service interactions, service and subsystem

specifications which implement that particular use case.
In the case of the FileServer system, we have extracted

four usage scenarios that have to be supported by the system:
UC1. Take single picture, UC2. Take picture series, UC3.
Play MP3 file and UC4. Browse file system. Each scenario
is accompanied by a description of its functionality and a
number of non-functional requirements. For instance, the
description of the UC1. Take single picture is as follows:

Take a jpeg image with resolution 1024*768 and
store it on the file server as ”temp.jpg”. From the
time the image is requested to the time it is avail-
able on the file server no more than 300ms should
have elapsed. The image should be captured (but
not necessarily encoded or stored) within 100 ms
from the time of the request. With one fully
charged Li-Ion battery (1 Ah, 3.3 V) the user must
be able to take 200 VGA-sized still images, includ-
ing 20 % overhead for additional tasks.

Based on the services identified at the previous step and
on the textual description of each scenario, we analyze the
interaction between the services belonging to the same sce-
nario. The interaction is depicted both in terms of asyn-
chronous messages passed between the environment and ser-
vices, as well as among services, and in terms of data trans-
fers between services. A message may have an input or an
output direction with respect to a service and may be accom-
panied by a list of parameters.

The ordering of messages received or sent by a service is
depicted by their location on a service lifeline. In addition, a
lifeline may contain several zones, depicting the sequencing
of observable states of a service in time. Using zones allows
us to specify in what state of a service a given message can
be sent or received. In addition, it enables one to specify
what the next state of a service should be after a message is
received or sent. For simplicity reasons, we use the conven-
tion that a message is received or sent only at the end of (or
at the beginning of the next) zone. Figures 6 presents the in-
teraction diagram corresponding to the use case UC1. Take
single picture.

As one may have noticed, in the previous figure, the Ap-
plication represents the external user of the system. In real-
life, it is the Application that represents the interface between
the human user and the system.

Although the messages used in the interaction are asyn-
chronous in nature, some of the messages will have as-
sociated a return message, which depicts an output mes-
sage sent by a service in order to confirm or return the sta-
tus of a service functionality invoked by a previously re-
ceived message. Typically, the initiating messages are de-
noted using the MessageName req format, whereas re-
turn messages are denoted using the MessageName cnf
format. Exceptions from this rule are allowed when there
are more than one return messages for a given request mes-
sage. For instance, as result of receiving a request message
Capture req (see Figure 6), the SC::StillCapture
lifeline responds first with a CaptureReady indmessage

4

Services are asynchronous

Data transfer is stream
based (Direct Object
Access protocol)

Each data type has a state
machine with extensions
for non functional
constraints

Data handling patterns
can be described through
cross-product of source
and sink

October 4, 2007 13/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Generation of tests

Tests could be generated automatically from the model

Not used in practice because

we don’t have good automatic test-selection algorithms for
energy
we want to use the test to communicate an energy
consumption requirement

Test cases are now defined manually

Test traversals: to test single services
As use cases: for integration testing

October 4, 2007 14/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Test Traversal

init_state_2
Measurement window: 0.0 s

mean_power_deviation < 0.05 W
mean_power < 0.175 W

peak_power < 0.6 W

FileServer
energy < 0.775 J

init_state
Measurement window: 0.2 s

peak_power < 0.6 W
mean_power < 0.175 W

mean_power_deviation < 0.05 W

coral.jpg-read
Measurement window: 4.0 s
in: ReadFile_req(bdat2 uri = /coral.jpg, unsigned offset, unsigned length)
out: ReadFile_cnf(unsigned status = 0, bdat2 data)
peak_power < 1.0 W
energy < 0.53 J
block_size = 10000.0 Bytes
frequency = 4.0 Hz

October 4, 2007 15/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Test setup

Standard shunt-resistor circuit ([FN01, JPEW02, FFB+00])

!!"#

"
$%&

'
(

"
!

"

I

+

Us

U

The scope measures Us . Uemf is a high-quality power
supply. Now because U = Uemf − Us we have that

P = UI = (Uemf − Us)(Us/Rs)

October 4, 2007 16/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Test setup (cont’d)

Challenge: synchronization of measurement values with
model.

October 4, 2007 17/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Result presentation

The measurements are mapped back onto the test
represented as a “traversal path”.

October 4, 2007 18/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Conclusions

We have developed a specification method together with a
testing setup

Partial specifications needed to leave freedom for
implementation

The approach allows for “quick” validation of energy and
timing constraints

It is being introduced into the production process at Nokia

October 4, 2007 19/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Future Work

Now we have concentrated on tests a vehicle for
communication

How would you apply automated test generation methods?

Proper evaluation: how cost-effective is the approach?

Was it easier to communicate? Where the products better?

Abstract models of services to be used for partial
verification.

Generalise the approach: the NoTA L IN and H IN
protocols act as “adapters”. By replacing them we can use
the approach for non-NoTa systems.

October 4, 2007 20/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Keith I. Farkas, Jason Flinn, Godmar Back, Dirk Grunwald,
and Jennifer M. Anderson.
Quantifying the energy consumption of a pocket computer
and a java virtual machine.
SIGMETRICS Perform. Eval. Rev., 28(1):252–263, 2000.

Laura Marie Feeney and Martin Nilsson.
Investigating the energy consumption of a wireless network
interface in an ad hoc networking environment.
In IEEE INFOCOM, 2001.

Brian Burns Jean-Pierre Ebert and Adam Wolisz.
A trace-based approach for determining the energy
consumption of a WLAN network interface.
In Proc. of European Wireless, pages 230–236, February
2002.

October 4, 2007 20/20

Specification
and Validation

of Non-
Functional
Constraints

Johan
Lindqvist,

Dragos
Truscan,

Johan Lilius,
Ivan Porres

and Timo O.
Eriksson

Introduction

Specification
Method

Testing
Method

Conclusions

Ian Oliver Klaus Kronlof, Samu Kontinen and Timo
Eriksson.
A Method for Mobile Terminal Platform Architecture
Development.
In Proceedings of Forum on Design Languages 2006,
Darmstadt, Germany, 2006.

Risto Suoranta.
New Directions in Mobile Device Architectures.
In Proceedings of the 9th Euromicro Conference on Digital
System Design (DSD’06), 2006.

October 4, 2007 20/20

	Introduction
	Specification Method
	Testing Method
	Conclusions

