Integrated Modular Avionics (IMA)
Requirements and Development

Kevin Driscoll
November 13, 2007

What is Architecture versus Design?

Architecture is to Design
as
Constitution is to Law

=>» a set of general rules, principles, and constraints
used as guidance for making design decisions

Design has three orthogonal (independent) aspects.

IMA Requirements and Development

The Three Orthogonal Aspects of Design

Systems
Protocols
Application Functions
Algorithms
Register Transfer Level (RTL)
Electronic Device Transfer Functions

Toward the
center is
lower level

IMA Requirements and Development

Processors
ALUs, Memory

Logic Functions, Bit Storage

|C Mask Rectangles
Transistor Areas

Cells, Gates

Capacitors, ICs, Resisters
Boards, Backplanes

Boxes, Cables
Derived from

Gajski and Kuhn;
and Driscoll

2

Key features of a federated
architecture

* Function has guaranteed access to the processor
* Deterministic and guaranteed access to I/O

— Controlled Latency and Jitter
* Critical functional separation

— Low-criticality functions cannot corrupt critical
functions (loosely coupled separate LRUS)

IMA Requirements and Development

Drawbacks with a federated
architecture

* All functions that share a processor must certify to the highest
criticality level of those functions

— Encourages many processors with lower utilization
* Inefficiencies in use of resources

— Modern processors and memory devices have far more
capability than a single critical function usually needs
(However, we are reaching the “Hubble Radius”.)

— Multiple power supplies, networks, /O systems
— Size, weigh, and of individual “boxes” (LRUs)
* Proliferation of part types

— Each subsystem tends to design a point solution optimized
for its performance and I/O needs

* Increased weight, power, and wiring

IMA Requirements and Development

Why Integrate

* Goal: An architecture that provides all of the benefits of a
federated approach, and solves the problems

— Partitioned software ensuring that only the critical software is
developed and validated to critical requirements

Approach lowers risk by reducing the amount of critical
software

— Resources are shared

Better approach for future growth - spare capacity can be
used for function extensions, or for new applications of
any criticality level

— Hardware part types are reduced

IMA Requirements and Development 5

Requirements Beyond Designers’
Experience

* A typical design engineer has << 10,000 (10%) hours of real
hands-on hardware experience over an entire career

* Typical safety critical avionics requirements are equivalent to
1,000,000 (10°) to 10,000,000,000 (10'°) hours MTBF
(100 to 1,000,000 times smaller than human experience)

* When a designer feels that something can’t happen,
that means a probability << 104/ hour.

* This is so far from the requirements as to be useless.

* [t is not safe to rely on our intuition for reasoning
about unfathomably small probabilities.

How Systems Fail

* Assumed importance order
1. Exhaustion of resources (triplex versus quad)
2. Single point of failure
unknown failure mode
forgotten failure mode
underestimated probability of occurrence
3. Chain or domino effect (fault containment)

°* Real occurrence frequency order
1. Chain or domino effect (fault containment)
2. Single point of failure
3. Exhaustion of resources

IMA Requirements and Development 7

Determinism

* Determinism is the characteristic of a system which
allows the correct prediction of its future behavior
given its current state and knowledge of future
changes to its environment (inputs).

* Non-determinism means that a system’s future
behavior cannot be correctly predicted. (An
unpredictable system cannot be called “safe.”)

* How precisely must the behavior be specified?

* Characteristics of behavior:
—\Value
—Ordinal timing
—Cardinal timing

IMA Requirements and Development 8

Dangers of mixed criticality

* What could a non-critical function do to a critical one?
— Erroneously write data into wrong areas
— Steal time / Interrupt the processor
— Crash the processor
How do we deal with “Halt and Smoke™?

How do we handle thermal slow down??
o Missed deadlines
o Jitter (analysis explosion)

How do we handle thermally increased errors???
— Corrupt I/O

Falsely send output data appearing to come from the
critical function

Corrupt input data before the critical function uses it
— Hog internal communications paths (e.g. backplane)

IMA Requirements and Development

IMA Partitioning Requirements
Systems Integration Challenge

Integrating multiple functions onto shared hardware opens up the
potential that a failure in one function can lead to failures in others
- Such failure paths would force all co-resident software to be
certified to the highest integrity level
ARINC 651 specifies a requirement called robust partitioning
» No failure in a function (or in hardware unique to a single
function) can cause another function to fail
Motivations for Robust Partitioning
« Can support mixed levels of criticality on shared hardware
Lower certification cost
Lower maintenance cost
 Fault containment
Reduce cascading failures
Partitioning is required in two ‘dimensions’
- Space partitioning - protection of program, data, and dedicated
I/O and registers
- Time partitioning - protection of the processor and
communications bandwidth assigned to a function

IMA Requirements and Development 10

Space Partitioning

What constitutes space partitioning?
* Any persistent storage location (eg. data memory) must only be
writeable by one function
* Any temporary storage location (eg. processor registers) used by a
function must be saved when control is transferred

Typical ways to support space partitioning
* Memory management units (write protection, separate virtual
memory spaces)
* High-integrity operating system

Space partitioning 'holes’
* 1/O device registers
- I/O device must either dedicated to one function, or time
partitioned
* Backplane data bus
- If bus can remotely address memory, software failure can lead
to corruption of another function's resources

IMA Requirements and Development 11

Time Partitioning

What constitutes time partitioning?
A function's access to a prescribed set of hardware
resources for a prescribed period of time is guaranteed
The order of execution between communicating functions
IS consistent each execution cycle

Typical ways to support time partitioning
Deterministic scheduling (processor and communications)

Time partitioning 'holes’
Arbitration for resources

- Cannot guarantee that the order of events will be the same
- Failed function stops arbitrating, or always arbitrates and can affect
the timing of other functions

Implementing deterministic scheduling across loosely
coupled multiple processors

IMA Requirements and Development 12

Virtual LRU Resource Partitioning Solution

\
MEMORY
t Commor_I
PROCESSOR PrOCESS"\g
Resource
t Key implementation concepts
INPUT * Memory Management Unit
OUTPUT * Table Driven communications
{} J » Time Partitioned Access to Shared Resources
* High integrity Operating System
ROBUST PARTITIONING
SYSTEM
ll - :> e o o
A4 ll =)
MEMORY MEMORY MEMORY
PROCESSOR PROCESSOR PROCESSOR \";'i"‘_t'f‘iapl'e
t t t Computers
INPUT INPUT INPUT
OUTPUT OUTPUT OUTPUT
Flt Controls Air Data Utilities J
Shared I/0 Resources

IMA Requirements and Development

13

Integrated Modular Avionics Requirements

Robust Partitioning
 No failure in a function can cause another function to fail
Reliability
» Aggressive no-maintenance policy requiring high dispatch
probability forces high-reliability on all components
Fault Tolerance
* No single failure can cause loss of critical or essential
avionics functions
 Dispatch with failed components to meet dispatch
probability requirements
Flexibility
« Must support many module types of differing capability
« Must allow for addition/modification of cabinet functions
without forcing recertification of unmodified functions
Easy to Debug and Certify
« Control of hardware/software integration
* Predictable behavior over all possible operating conditions

IMA Requirements and Development 14

Boeing 777 Avionics
. * A hybrid bet full
Architecture inteérgtedeaxvde?un”? i

federated architecture
* A number of formerly
federated functions

integrated into AIMS

Actuator
Somont Auto- ®we’| * Remaining units are
cor | @ssigned to one of three
Cori gl] [ors] [road [uee .| federated subsystems
A " [ruaer veas” - Fly-by-wire (triple
===] e T ARINC 629 bus
Primery e — connection)
ol RS S5 - System (triple ARINC
i [Y 11 629 bus connection)
Conirols Righ] J Power - OLAN (ARINC 636,
f e AL IREE FDDI ring connection)
R Eloptonic - ¢ AIMS acts as a gateway
SAARU FDD! Avionics LA T —— among these federated
3 s |seen| SUbsystems and other I/O
FDDL Cabin LAN ¢ * Units replicated for safety
Fly-By-Wire Mcib aystem and deferred maintenance
Systems

IMA Requirements and Development 15

To Display
Units

AIMS Function Mapping

To Display To Avionics
Units LAN (ARINC 636)
» Data Comm.
* Flight Management » Data Gateway
Displays * Displays » Data Gateway * Central Maint.
Data Gateway » Data Gateway * Airplane Monitoring* * Flight Data Acq.
Processor Processor Processor Processor Spares
w/ Graphics w/ Graphics w/ FDDI

BIU BIU BIU BIU
Al M5 SAFEbus (ARI NC 659)
BIU | BIU | BIU | BIU BIU

/0 110 110 110 Spares

S

Airplane-wide 1/0
(ARINC 629, ARINC 429, Analog, Discrete)

* Left cabinet only

IMA Requirements and Development 16

The Key Implementation Concepts

* SAFEbus® backplane

* Dual lock-step processor modules

* All modules synchronized to SAFEbus
* Memory management

* Operating system

* |/O architecture

IMA Requirements and Development 17

Apparent Progress Versus Effort

100%

80%

60%]

e TateYole

40%7

20% 7

|

|

Sync

Async

1 | 1 1 | | 1 1
20% 40% 60% 80% 100% 120% 140% 160%

EFFORT

IMA Requirements and Development 18

SAFEbus

* Space partitioning
— Shared RAM protected by Host

MMU and BIU memory map in
CCSL) Table Memory that is writable only

|I\/Inéer:qrcr)nrgdule IIVInéﬁg(r)nrgdule . by “grpync_l” IEEE-1149 bus
Static RAM Static RAM * Time partitioning
— — — Enforced _by c;ommands in Table
Memory BIUy Memory — Synchronlzatlop protocol
FEPROM EEPROM * Fault effects containment
— Fail passive for BIU pair and
related component failures
Clock — Four bus sets (Ax, Ay, Bx, By)
Correct all single bus failures
5 =\ Detect all double bus fa_ilures
Correct some double failures
- X I= — Each bus set has separate power
Ff Selfchecking BsPair Al W Y | — BIU is independently monitored
E Self-checking Bz Pair BY)\((E
= =

IMA Requirements and Development 19

What Does Dual Redundancy Provide?

Example: communication integrity
* Availability ~

— Readiness for correct service Message'

— If miscompare,
arbitrarily select one

— The “Availability OR” sender receiver

~

Message”

° Integrity ~
— Absence of improper system Message
alterations
— If miscompare,
reject both sender receiver
— The “Integrity AND” &

Message”

Simple replication gives you availability or integrity but not both!

IMA Requirements and Development 20

Lock-Step Processor Architecture

— * Space partitioning
L - ﬂ — Protected system page
\H W W \H tables
[h et] ﬂ Constructed at build time
Word O [avreen| Word 2 4MF£S; Word 1 am Fiash Word 3 | au fiash — Validated MMU
* Time partitionin
NI R 57 %Y%A@V RIS — Ngn-user m%skable
a1 1 = I SAFEDbus interrupt drives OS
e schedule
T — No other interrupts allowed
VA <]/ ¢ Fault effects containment
NV VA — Lock-step checking of all
v/ YAVA memory accesses (I and D)
[mcro]| [wersse |2 weisse | [mosso] — EDC on all memory R/W
W i L — Monitored clock, power
e ::3?';3'3 — Power up BIT, CBIT
N4 NS

IMA Requirements and Development 21

Memory Management

* Memory Management Unit

Functional Dataflow View

e — Build-time tools define
Extgm - = memory requirements of all
Spatial View par’[itionS

Memory

FIDO CME Writes to memory
Partition Partitiori allocated to different
partitions are not
allowed

FCS
Partition

Temporal View Reads are
allowed

System page tables for
Writes are only eaCh partltlon

| dlove o Statically checked

oy o Integrity checked at
run-time

Read access to IMM and

static constants

— SPT set is switched on
partition context switch

Protected function

— MMU enforces R/W
permission on every memory
access

Adr nnnn

IMA Requirements and Development 22

System Scheduling

* Space partitioning
— Manages MMU and page tables
* Time partitioning

1l B — Responds to SAFEbus time
CPM interrupts
| | ‘ * Fault effects containment
N ' N B — Detects deadline failures
SAFEbus — Responds to partition attempts

to write to illegal location

| | | — Rapid restart after power failure
- - P i

IOM — Executes PBIT/CBIT
— Manages fault recovery

IMA Requirements and Development 23

Processor Fault Recovery

* Progressive Fault Recovery Design

— Transparent Re-Try (If Possible)
— Restart Partition or CPM

— Shutdown Partition or CPM

* Time based strike counters used to determine
recovery action

* Fault Recovery is dependent upon software
executing during fault occurrence

— CPM level recovery during O/S execution,
Initialization or Loading

— Partition level recovery during Partition
execution and APEX service calls

IMA Requirements and Development

24

IOM

1€ Memory * 1/O partitioning
512kB RAM)
— Table driven protocols
e ensure that inputs are
" sampled and outputs are
sent at specific times
[/O Control Logg
DI — w.r.t. the SAFEbus
timeline
e S —
: (1307 DD Card) | — Memory mapped transfer
T — from processor to 1/O
== > A28 AsIcs module ensures user
Growth IJO ,—'
¢ y L software cannot corrupt
| another function’s 1/0
Data Converter Discrete I/0 :

MM — All I/O SW iS Ievel A
e * Fault effects containment

vV
ARINC 659 SAFEbus®
Backplane

IMA Requirements and Development

— Architecture supports
dedicated wraps for high-
integrity outputs

25

Summary

Space Time 110 Fault
partitioning | partitioning | partitioning | Containment
SAFEbus Addresses |e¢ Sync e Supports o Self-
in tables protocol memory checking
SplitIMMs |« Table mapped e Error
driven transfer correcting
Processor e Protected |e Only one |e Through o Lock-step
page tables interrupt memory e EDC
Validated (from mapped e Monitors
MMU SAFEbus) IMM e BIT
IOM N/A e Table e Memory e Support for
driven mapped dedicated
ensures transfer wraps
I/0 timing ensures
routing
o Level ASW

IMA Requirements and Development

26

Why Is The Network So Important?

* Distribution needed to achieve @ @
Independence @
— E.g. against @
Impact of spatial proximity
faults
Component failures @ @
Power supply failures “Blurring” communication >
* The network is the “Glue” replication becomes useless

of a distributed architecture
— Connects replicated components

— Information only as good as
provider (component) and
communication path

* Key for single source
architectures

‘ A chain is only as strong as its weakest link I .
Replication is useful

IMA Requirements and Development 27

How can we make a reliable system out of
notoriously unreliable computers and software?

How does one make a strong building out of sand?

Sand is a very weak construction material. One
cannot make a roof or even vertical walls with it.

But, add some “glue” (cement), and you get one of
the strongest and most commonly used
construction materials in the world — concrete.

IMA Requirements and Development 28

SAFEbus Fault Coverage and Containment

LRM LEM
Haost Host ‘
It mescule ntamesis) Irtzmcs Il
Klamory Klsmay kismory Klamory
Satic RAK Statie RAK Srale RAK Satic RAK
L. k, r r
Tada Tabls Tabia: Tada
Kemory Klamary kKemory Kemory
BlLIx = Bl Lk BILYy
EEPROHI P EEPROHI EEPROH e EEPROH
Tl T L T
'.‘l'.1- '.''.'.'.'.:'.'.:'._.'_'._.'..:".'I " _'II|E|'.".'.'.'.'.:'.'.:'.'."".'. 'J._
e | EEFED EHEE | o e | e ERfEr | [ow
1 | | |
Moclle == == Modils
o o o I
Bur B
E ZA1-Checking Bus Palr & E|
B Ly
SAFEbus®
Buz Bx
E SZAl-Checking Bus Pair B @
BBy

* Full-Coverage (near 100%), including Byzantine failure

* (C)Lock-stepping host processing — Self-Checking Buses
— Medium availability via cross-coupled TX bus enable

— Data integrity via bit-for-bit comparison at RX
(local exchange for Byzantine fault containment)

— BIU is firewall for all host failures (including SW)
— Validated Fail-Silence Model

IMA Requirements and Development 29

SAFEbus® Byzantine Fault Tolerance Passes

Host
[1 1 A i !
Intermaodul Intermodul Jmermuduig Intermoduld
Memory =1 Memory Memory [” Memaory
Static RAM| ~ | static RaM Static RAM[Static RAM
1 L |
3 | & & @ \ i
Table - Table Table - - Table
Memory Memory Memory Memory
= BlUx BlUy BlUx BlUy
EEPROM —] EEPROM EEPROM EEPROM
: h : i
"1 Iy 3
l H
Q‘ ‘f'
:'l'l.‘:' e e e o -:
!c'“"‘l [ETLHET [clucu] |cmckl

Module

1D

Madule

Module
1D

Craml

Self-Checking Bus Pair A

=]

Tam

|

Self-Checking Bus Pair B

(=L

Bus By

Three exchanges are done simultaneously: on bus, from BTLs to BIUs, between BIU .

ARINC 659 Messages

Messages are pure data payload. There are no protocol bits in the message to
waste bandwidth (SAFEbus is 8 times more efficient than Ethernet for
average sized avionics messages). More importantly, there are no protocol
bits in the message to get corrupted at the source or in transit, €.g. messages
can’t get misrouted.

Window: Length = 16*N + Gap

|
|
Message . Gap |
]
Clock | |
| (I
| L
Data0f_ { / 0) 2X ,X28 30} oY 2)a) 6 (242628} 30/ |) ox2
[(I
Data ({7 N 0 5 €30 D S0 660 B0 75 1)) (1) RN WD
| | [| (I
! Word 0 " word1 "' WordN-1 | 1

. . \\\\\ |///// L . |
W1 \wry\ wn+1/ _/ A/ L A\we Ay \wyf\ wae/ _/ VA /L Awz/
L T—Unallocated window

Allocated window

A

Frame =|
(200 ms) !

IMA Requirements and Development 31

ARINC 659 Table Memory

Table Memory contains commands that tell the BIU when messages are to be
transferred, their source, and their destinations. The table memory can only
be written by an IEEE 1149 maintenance network that is only active “on the

ground” (system is safed).

Module A

Commands

Module A skips

TX a _ _
Rx P this wllndow

Skip N |
Rx & |

Skip M I Unallocated
oo h window

/ /

AW STV e Y A

IMA Requirements and Development 32

ARINC 659 - Partition Synchronization

* ARINC 659 provides the mechanism to synchronize partition

execution to backplane activity

- Host interrupt command in the Table Memories

- Interrupt code is provided to uniquely identify the event

- Interrupt pattern is unique to each module

* This mechanism can be used to guarantee that data transmission is
non-overlapping with the tasks that use the data

Table Memory

Tx o

Rx B

!

Time Interrupt
Line (to host)

Host Interrupt

BIU

Skip N

Rx &

Skip M

e AT T

TBIU issues Time Interrupt here due to

IMA Requirements and Development

the command in the table memory

33

Bus Encoding

* The bus lines are encoded as follows:
- Ax - normal data (bus high ='1")
- Ay = Ax XOR '010101..."
- Bx=NOT Ax
- By = NOT Ay
* Provides several key benefits:
- Rapid detection of bus shorts or transient errors
- Rapid detection of bus collisions (caused by faults)
- Evens out power dissipation (both AC and DC)

. 1

Example: A B
Ax Data 0 }011‘?05050'/15151503151
Ax Data 1 515151&|o?|1&|0?|1E1E1&|07|1

P S I I A O I A O I O I I
TSI W N o W N o W S
Ay Data 1 E }_I/ | | | | ‘?_I/ | |

ok oy yy Yy
ot
somat L L L]

BYCk EIIIIIIIIII
A SN N S s WD S sy W
LS I O o U T S S D g G

Gap !

IMA Requirements and Development

SAFEbus Scheduling

* Table generation supported through an off-line scheduler
— Schedules both message transfer times and process
execution times
e Software developers enter process execution, input and
output requirements into database
— Includes period, jitter, latency, etc.
* Off-line tool attempts to create efficient schedule which
meets the user’s requirements
— Essentially, resource contention is handled off-line
* Post-processing step verifies integrity of tables produced
— Eliminates the need to verify heuristic search tool to
critical status

IMA Requirements and Development 35

SAFEbus Scheduling Statistics

for proto-AIMS

Partitions 18
Tasks 63
Data ltems 6,000
Messages 17,000
Constraints 100,000

Decisions

100,000,000,000,000,000,000

(= 1023)

IMA Requirements and Development

Can We Achieve Aerospace Dependability At Low Cost?

Dependabilit
y Y92

=H [HE] ——
% SAFEbus

8’ triple star
®
D
&)
= ? ? ? 9 dual star
| 3 3
dual bus
2979,
single bus >
—increasing—>» Cost

IMA Requirements and Development 37

Braided Ring Integrity Availability Network (BRAIN)

Cost-effective solution to

address high dependability

Decentralized guardian Dependability
strategies A
Alternative to centralized stars
and busses

Applicable to existing network
standards

Response to various failures is
flexible (availability vs. integrity)
Simple protocol strategies can dual bus
decrease guardian design m
complexity roens
Self-checking pairs enable high

data integrity and application

software simplification Detailed description and

Adopting aerospace rationale information in our paper at

needn’t drive increased costs Dependable Systems and
Network (DSN) Conference
2005, Japan

IMA Requirements and Development 38

% SAFEbus

triple star

By

dual star

—increasing—»

—increasing—>» Cost

