IMA: The Good, The Bad, and The Ugly

Peter H Feiler
phf@sei.cmu.edu
November 8, 2007
Outline

The Good

The Bad

The Ugly

Conclusion
Integrated Modular Avionics

Partitioned system architecture (ARINC 653)

- Componentized system
- Migration to common compute platform
- Integration of embedded software systems

Network architecture (ARINC 429, 629)

- Globally synchronous
- Globally asynchronous Locally Synchronous (GALS)
The Good

Partitioned system architecture

- Flexibility through configurability of componentized system & migration of legacy components
- Reduced cost through shared compute platform & increased utilization

Space & time partitioning

- Impact of run-away threads contained to single partition
- Partition-specific scheduling policies facilitate integration of subsystems
- Protected address spaces provide fault isolation barrier for safety-critical subsystems

Inter-partition communication semantics

- Directional port communication facilitates partition distribution
- Phase-delay semantics maintain determinism despite concurrency and partition reordering
Outline

The Good

The Bad

The Ugly

Conclusion
Late Discovery of System Problems

System integration problems

• System instability and failures
• Implicit and mismatched assumptions
• Shared computing resources
• Complexity of component interaction
 — Functional
 — Extra-functional

Current practice

• Build components first
• Then integrate and test

Way forward

• Analyze system models early and often
• Evolve components and integrated system
Mismatched Assumptions

System Engineer

Control Engineer

Hardware Engineer

Application Developer

Physical Plant Characteristics

Data Stream Characteristics

Precision Units

Distribution Redundancy

Concurrency Communication

System Under Control

Control System

Compute Platform

Runtime Architecture

Application Software

Embedded SW System Engineer
Partition Assumptions

Partitions cannot affect other partitions in terms of resource use

- Unmanaged resource sharing across partitions
 - Partitions on different processors utilize shared hardware
- Unmanaged partition initiated tasks
 - DMA transfer continues on partition switch
 - Same memory accessed by DMA & instruction fetch

Partition cannot affect OS services

- Unmanaged DMS transfer may slow cache swap during partition switch
Partition Assumptions

Scheduling analysis is partition insensitive

- Task set on processor of prorated speed
- Pre-period deadline may not be met due to late window slot allocation

Fault tolerance through redundancy

- Partition virtualizes processors
- Partition binding must be considered

Inter-partition communication is always phase delayed

- Communication timing is sensitive to application level send/receive
- Application level legacy communication may impose additional delay
Partition Order & Timing Semantics

ARINC 653: enforced frame-delayed partition communication

Timing semantics are insensitive to partition order

Delayed connection (AADL notation)
Application Level Send/Receive

- Message-based communication
- Transmission initiated by application send
- Sensitive to partition order & concurrency

Partition order affects cross-partition connection semantics

Concurrent partition execution leads to non-deterministic send/receive order
Legacy Phase-Delayed I/O

Periodic I/O

Callout rate

From other Subsystems

Execution order

Shared data area

Shared data area

Integrated Navigation

Navigation Sensor Processing

Periodic I/O

20Hz

20Hz

10Hz

20Hz

10Hz

20Hz

5Hz

2Hz

5Hz

2Hz

From other Subsystems

To other Subsystems

Switch clock mod
Hyperperiod
Case 20Hz:
call PIO
call NSP
call GP
Case 2*20Hz: -- 10Hz
call PIO
call NSP
call IN
call GP
Case 3*20Hz:

Case 4*20Hz: -- 5Hz

Simple mapping to a cyclic callout implementation

Callout rate

Legacy Phase-Delayed I/O

Navigation Sensor Processing

Integrated Navigation

Guidance Processing

Flight Plan Processing

Aircraft Performance Calculation

Periodic I/O

20Hz

20Hz

Execution order

20Hz

10Hz

20Hz

5Hz

2Hz
Partition Level Send/Receive

- Message-based communication
- Transmission handled by PIO
- Sensitive to partition order & concurrency

Partition order affects Periodic IO
Outline

The Good
The Bad
The Ugly
Conclusion
Impact of Sampling Latency Jitter

Impact of Scheduler Choice on Controller Stability

• A. Cervin, Lund U., CCACSD 2006

Root cause: sampling jitter due execution time jitter and non-deterministic communication

Tasks with high priority prefix perform best
Frame-Level Latency Jitter

Variation in actual write & read time due to preemption or concurrency
 - Operation performed by application code
 - Preemption of application threads

Example: Downsampling
 - Desired sampling pattern 2X: n, n+2, n+4 (2,2,2,…)
 - Worst-case sampling pattern: n, n+1, n+4 (1,3,…)

Timeline

Software Engineering Institute | Carnegie Mellon
Latency Contributors

- Processing latency
- Sampling latency
- Physical signal latency
- Age vs. latency

System Engineer

Control Engineer

Operational Environment

System Under Control

Control System
Software-Based Latency Variation & Jitter

Contributors

Preemptive thread scheduling & legacy shared variables
Concurrency due to multiple & multi-core processors
Resource contention
Protocol specific communication delay
Globally asynchronous systems
Rate group optimization within partition
Migration of partitions
Application redundancy & partition binding
Preemptive scheduling of partitions
Data-driven processing & cross-partition communication
Outline

The Good

The Bad

The Ugly

Conclusion
Conclusion

Predictability through quantitative analysis
• Requires an architecture modeling notation with well-defined semantics
• Requires the ability to leverage existing analysis capabilities

Prediction of runtime behavior
• Requires modeling notation for embedded software systems
• Requires ability to represent dynamics of runtime architecture

Embedded systems with different architectures
• Require extensible modeling notation for analysis specific annotations
• Require analysis frameworks that span engineering views

SAE AADL for embedded systems modeling & analysis
• As industry standard allows for leveraged industry investment
• Provides a transition platform for university and industrial research
• OMG MARTE AADL profile provides UML migration path