Supporting Heterogeneous Applications in the DECOS Integrated Architecture

Roman Obermaisser
Overview

- Federated and Integrated Architectures
- DECOS Architecture
- Model-Based Development Process
- Architectural Services
 - Virtual Networks
 - Diagnostic Services
- Implementation and Results
Federated and Integrated Architectures

• Federated architectures provide each application subsystem with its own dedicated computer system
 – natural separation of application subsystems
 – complexity control
 – fault isolation between computer systems
 – service optimization

• Integrated architectures support multiple application subsystems within a single distributed computer system
 – reduced hardware cost
 – dependability
 – flexibility
Shift to Integrated Architectures

- *Federated architectures* lead to high numbers of deployed nodes and networks: “1 Function – 1 Node” design philosophy
- As a result *integrated architectures* are gaining more and more importance (e.g., IMA, AUTOSAR, DECOS)
Challenges in Moving Towards the Integrated Architectural Paradigm

- System complexity in distributed embedded real-time systems causes increasing cost of design, verification, integration and maintenance
- Inherent application complexity
- Accidental complexity through integration-induced interference between application subsystems
 - example: integration of two CAN-based subsystems
 - invalidation of prior services
Temporal Composability

- Divide-and-conquer strategies reduce the mental effort for understanding large systems using subsystems that can be developed and analyzed in isolation.
- Requirement of a framework for smooth integration and reuse of independently developed components is needed in order to increase the level of abstraction in the design process.
- Notion of composability refers to the stability of component properties across integration.
- Temporal composability
 - instantiation of the general notion of composability
 - temporal correctness is not refuted by the system integration.
Challenges in Moving Towards the Integrated Architectural Paradigm (2)

- Heterogenous application subsystems
 - safety-critical and non safety-critical application subsystems
 - different programming models (e.g., synchronous data flow, client/server)
 - designed for different platforms (e.g., legacy systems)
- Divergent requirements concerning the services of the underlying platform
 - functionality of communication system (e.g., communication topology, control flow, connection-oriented/connection-less)
 - temporal properties (e.g., bandwidth, latencies)
 - Application Programming Interfaces (e.g., CAN-based API)
 - guaranteed services vs. best-effort services
Time-Triggered Integrated Architectures

- Time-triggered networks are widely accepted as communication infrastructure for safety-critical applications (e.g., aerospace, currently introduced in automotive domain)
 - temporal predictability
 - fault tolerance
- Foundation for integrated system architectures that support heterogeneous application subsystems
 - improved resource utilization
 - coordination of application subsystem
 - complexity management
DECOS Architecture

- Application consisting of Distributed Application Subsystems (DASs)
- Core architectural services abstract from the implementation of the underlying network
- High-level architectural services
 - specific to certain types of application subsystems
 - provide support for heterogenous application subsystems
 - different types of high-level arch. services to handle contradicting requirements (e.g., flexibility vs. predictability)
Structuring of a DECOS System

• Logical View
 – Distributed Appl. Subsystems (DASs)
 – jobs
 – specification of linking interfaces

• Physical View
 – node computers
 – partitions
Encapsulation in the DECOS Architecture

• Partitioning for computational and communication resources
 – partitions within a node computer with hardware support (e.g., multi-core processors) and software support (e.g., operating system)
 – virtual networks with guaranteed temporal properties (bandwidths, latencies)

• Partitioning in value and time domain
 – spatial partitioning to ensure data integrity (e.g., memory protection)
 – temporal partitioning to ensure guaranteed temporal properties of resources (e.g., CPU time)
Design Methodology

PIM: Formal specification of the structure and function of a system that abstracts away technical details.

CRD: Specification of the available resources on the hardware platform implementing the DECOS architecture.

PSM: Extension of the PIM covering the details how the integrated system (architectural services as well as application jobs) use the available resources.
Platform Independent Model (PIM)

- Functional structuring of the system into Distributed Application Subsystems (DASs) and jobs.
- Identification of DASs is guided by functional coherence and common criticality of subsystems.
- Major focus of the PIM lies in the specification of the Linking Interfaces (LIFs) between jobs of the same DAS as well as between DASs
 - *port requirements*: definition of information semantics (state or event) and data direction
 - *communication topology*: connection between output and input ports
 - *temporal requirements*: bandwidth and latency requirements
Platform Specific Model (PSM)

- Allocation of jobs to node computers
 - *dependability requirements*: allocation of jobs to partitions of independent fault containment regions
 - *resource constraints of nodes*: sufficient computational resources
- Mapping of virtual networks to the core network:
 - *resource constraints of physical time-triggered network*: number and performance of virtual networks
 - *scheduling*: creation of a time-triggered message schedule
 - *higher protocols*: selection of the protocol of a virtual network (e.g., CAN, TCP/IP)
- Parameterization of high-level services: The DECOS high-level services (e.g., virtual networks, gateways, and diagnosis) have to be instantiated and configured
Hardware Specification Model (HSM)

- Besides performance and dependability aspects the transformation of the PIM to the PSM is mainly guided by the availability of resources.
- **Computational Resources:** Sufficient processing power and memory capacity are mandatory prerequisites for the allocation of a job to a particular partition.
- **Communication Resources:** A job-to-partition allocation is only considered as valid, if the communication demands (e.g. latency, bandwidth) can be fulfilled, e.g. a communication schedule can be found.
- **Special Purpose HW:** The availability of particular sensor/actuator devices or special purpose hardware (e.g., DSPs) highly influences the virtual integration.
Exemplary High-Level Architectural Services

- Virtual Networks
- Diagnostic Services
High-Level Architectural Service 1: Virtual Networks

- Overlay network on top of a time-triggered physical network
- Communication according to requirements of a particular DAS (e.g., bandwidth, control paradigm)
- Time-triggered virtual networks for safety-critical DASs
 - periodic broadcast of state messages
 - bounded latency and jitter
- Event-triggered virtual networks for non safety-critical DASs
 - sporadic exchange of event messages
 - emulation of existing event-triggered protocols (e.g. CAN)
 - flexibility
Partitioning of Comm. Resources

Protection of statically reserved slots in the underlying TDMA scheme

- protection between nodes by time-triggered communication protocol (e.g., local or central guardian in TTP or FlexRay)
- protection within a node, e.g., using virtual network middleware
 - encapsulation of criticality domains by protecting criticality-domain slots
 - encapsulation of DAS by protecting DAS slots
 - encapsulation of jobs by protecting job slots
Higher Protocols to Support Heterogeneous Application Subsystems

- Time-triggered virtual network (e.g., safety-critical application subsystems)
- Virtual CAN network (e.g., CAN-based legacy applications)
- Virtual TCP/IP network (e.g., diagnosis, infotainment services)
- Virtual network with CORBA transport protocol
Exemplary High-Level Architectural Services

• Virtual Networks
• Diagnostic Services
High-Level Architectural Service 2: Diagnosis

- Operation on the interface state of node computers and jobs to protect intellectual property
- Avoidance of probe effects (e.g., transport, analysis)
- Detection of correlated errors
- Analysis of the information according to a fault model for maintenance
Maintenance-Oriented Fault Model

- We stop “fault-error-failure” chain at Field Replaceable Unit (FRU) level
- Node computer as unit of replacement for hardware faults:
 - Internal (e.g., crack in PCB, faulty processor)
 - Borderline (e.g., connector failures)
 - Non-destructive external (e.g., EMI)
- Jobs as unit of update for software faults:
 - Inherent
 - Borderline
 - External
Out-of-Norm Assertions (ONAs)

• Capture consequences of faults on the distributed state
• Characteristic manifestation of a fault in the time, value and space domain (fault pattern)
• Fault patterns on the interface state (symptoms) are characteristic for particular classes of faults
• Interface state is defined between the intervals of activity on the sparse time base

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Massive Transient</th>
<th>Connector Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>approximately at the same time (within a small delta)</td>
<td>arbitrary</td>
</tr>
<tr>
<td>Space</td>
<td>multiple node computers with spatial proximity</td>
<td>one node computer</td>
</tr>
<tr>
<td>Value</td>
<td>multiple bit flips</td>
<td>message omissions, syntactic invalid frames on a channel</td>
</tr>
</tbody>
</table>

• **Architecture-level:** Detection and analysis of architecture level failures and anomalies (e.g., diverging replicas, channel failures, lost messages);
• **Application-level:** Detection and analysis of anomalous and faulty job behavior
Detection of Out-of-Norm Behavior in Heterogenous Application Subsystems

• Time-Triggered Applications
 – a priori knowledge about points in time of the periodic message transmissions
 – exploited for error detection and the establishment of membership information
• Event-Triggered Applications
 – inherent impreciseness of temporal specifications
 – gathering and correlating information about improbable behavior denoted as out-of-norm behavior
 – analysis process concentrates information about out-of-norm behavior occurrences to conclude whether an error has occurred
Analysis

- Global analysis process on action lattice of the sparse time base of time-triggered core system
- Integrated architectures provide the inclusion of structural information into the analysis process
 - functional vs. physical
 - job vs. node computer
- Analysis algorithms exploit architectural services like other jobs (protection mechanisms)
Overview

- Federated and Integrated Architectures
- DECOS Architecture
- Fault Assumptions
- Model-Based Development Process
- Architectural Services
 - Virtual Networks
 - Diagnostic Services
- Implementation and Results
Implementation of DECOS Architecture

- Prototype implementation of DECOS architecture
- Time-triggered communication protocol: Ethernet with TDMA scheme
- Evaluation of partitioning at communication system using 20,000 testruns
Example Configuration

• Two time-triggered virtual networks (class D, approx. 3Mbps)
 – periodic message transmissions
 – safety-Critical applications or multimedia services
• Two virtual CAN networks (class B, 125kbps)
 – sporadic message transmissions
 – non safety-critical application services with low comm. bandwidth
• Two event-triggered virtual network (class C, 500kbps)
 – sporadic message transmissions
 – non safety-critical application services with higher comm. bandwidth

<table>
<thead>
<tr>
<th>Network Class</th>
<th>Exemplary Protocols</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>LIN</td>
<td>< 10 kbps</td>
</tr>
<tr>
<td>Class B</td>
<td>CAN</td>
<td>10kbps-125kbps</td>
</tr>
<tr>
<td>Class C</td>
<td>CAN</td>
<td>125kbps-1Mbps</td>
</tr>
<tr>
<td>Class D</td>
<td>FlexRay, Byteflight</td>
<td>> 1 Mbps</td>
</tr>
</tbody>
</table>
Latencies of Messages

- Sporadic and periodic msg. transmissions controlled by minimum interarrival time random interval with uniform distribution for sporadic msgs.
- Probe job in virtual network with 125 kbps: increasing bandwidth utilization
- Reference jobs: invariant minimum interarrival time and random interval 50% bandwidth utilization
Experimental Results: Bandwidth

- Bandwidth of reference jobs independent from behavior of probe job
- Variability for sporadic message transmissions due to random message interarrival times
- Performance requirements w.r.t. SAE classification satisfied
Diagnostic Services: Detection and Transport

- Symptom collectors encoded as timed automata
- Diagnostic messages include global Time-Triggered Ethernet (TTE) timestamp (time), frame status information (value), and component information (space)
- Using a virtual diagnostic network a part of the available bandwidth is reserved for diagnosis
Diagnostic Services: Analysis

- Encoded as timed state machine
- Executed on action lattice of sparse time base
- Implements threshold-based analysis techniques
- Inclusion of the time, value, and space domain into analysis
- Fault classification:
 - permanent internal
 - transient internal
 - transient external
Conclusion

- Increasing importance of integrated architectures facilitating correctness-by-construction
- DECOS architecture provides generic high-level architectural services
- Encapsulation of communication and computational resources: key technology for temporal composability
- Virtual networks on top of a time-triggered physical network as the comm. infrastructure for integrated architectures
 - predefined temporal properties (e.g., bandwidth, latency)
 - rigid temporal and spatial encapsulation