
Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

1

ARTIST2 ARTIST2 -- MOTIVESMOTIVES
Trento Trento -- Italy, February 19Italy, February 19--23, 200723, 2007

Modeling and Design of Modeling and Design of HeterogeneousHeterogeneous SystemsSystems

Alberto FerrariAlberto Ferrari

Alberto.Ferrari@parades.rm.cnr.itAlberto.Ferrari@parades.rm.cnr.it

PARADES GEIE, Roma, ITPARADES GEIE, Roma, IT

ModelingModeling of of HeterogeneousHeterogeneous
SystemsSystems in in MetropolisMetropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

2

Outline

● Motivation and Industrial Landscape

● Platform Based Design Methodology

● The Metropolis Framework

● The Semantics of the Metropolis Metamodel

● Architecture and Mapping Modeling in Metropolis

● Conclusions

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

3

Product Specification & Architecture Definition
(e.g., determination of Protocols and Communication)
System Partitioning and Subsystem Specification
Critical Software Development
System Integration

Automotive Supply Chain: Car Manufacturers

Motivations

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

4

ABS: Antilock Brake System
ACC: Adaptive Cruise Control
BCM: Body Control Module
DoD: Displacement On Demand
ECS: Electronics, Controls, and Software

EGR: Exhaust Gas Recirculation.
GDI: Gas Direct Injection
OBD: Onboard Diagnostics
TCC: Torque Converter Clutch
PT: Powertrain

Va
lu

e
fr

om
 E

le
ct

ro
ni

cs
 &

 S
of

tw
ar

e

-More functions & features
-Less hardware
-Faster

Forefront of Innovation

Vehicle Integration

System Connection

Subsystem Controls & Features

Potential inflection
point. Now! Hybrid PT Hybrid PT

Electric IgnitionElectric Ignition

ACCACC

Rear Vision Rear Vision

Passive Entry Passive Entry

Side AirbagsSide Airbags

Fuel CellFuel Cell

Wheel Motor Wheel Motor

……

OnStarOnStar

OBD IIOBD II

HI Spd DataHI Spd Data

Rear aud/vidRear aud/vid

CDsCDs

BCMBCM

ABSABS

TCCTCC

EGREGR

Electric FanElectric Fan

Head AirbagsHead Airbags......

Electric BrakeElectric Brake

DoDDoD

GDIGDI

……

……

……

…………

……

1970s 1980s 1990s 2000s 2010s 2020s

Software $
Other $ Electronics $ Software $Other $

2%
13%

76%

9%

Mechanical $

13%

24%

55%

8%

Mechanical $

Electronics $

AVG. AVG.

Source: Matt Tsien, GM

$1
18

2
 (

+
19

6%
)

$1
18

2

$1
18

2
 (

+
19

6%
)

(+
19

6%
)

50
 E

C
U

s
(+

15
0%

)
50

 E
C

U
s

(+
15

0%
)

10
0M

 L
in

es
 o

f
C

od
e

 (
+

99
00

%
)

10
0M

 L
in

es
 o

f
C

od
e

 (
+

99
00

%
)

$4
00

$4
00

20
 E

C
U

s
20

 E
C

U
s

1
M

 L
in

es
1

M
 L

in
es

1
M

 L
in

es

Electronics, Controls & Software is shifting the basis of
competition in vehicles

Motivations

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

5

Real-Time and Distributed

Information
Systems

Te
le

m
at

ic
s

Fa
il

St
op

Body
Electronics B

od
y

Fu
n

ct
io

n
s

Fa
il

Sa
fe

Fa
u

lt
Fu

n
ct

io
n

al

System
Electronics

D
ri

vi
n

g
an

d
V

eh
ic

le
D

yn
am

ic
 F

u
n

ct
io

n
s

Mobile Communications Navigation

Fire
Wall

Access to
WWWDAB

Gate
Way

Gate
Way

Theft warning

Door Module Light Module

Air
Conditioning

Shift by
Wire

Engine
Management

ABS

Steer by
Wire

Brake
by Wire

MOSTMOST
FirewireFirewire

CANCAN
LinLin

CANCAN
TTCANTTCAN

FlexRayFlexRay

R
ea

l T
im

e
So

ft
 R

ea
l

Ti
m

e
H

ar
d

R
ea

l
Ti

m
e

Motivations

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

6

Motivations

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

7

Platform Models for Model Based Development

Development Development Development
of Distributed of Distributed of Distributed

SystemSystemSystem

Distributed Distributed Distributed
System System System
SignSignSign---Off!Off!Off!

Distributed
System

Partitioning

SubSubSub---System(s) System(s) System(s)
SignSignSign---Off!Off!Off!

Network Network Network
Communication Communication Communication
Protocol SignProtocol SignProtocol Sign---Off!Off!Off!

Virtual Integration of
Sub-System(s) w/
Network Protocol,
Test, and Validation

Sub-Systems
(s)

Requirements

SubSubSub---System(s) System(s) System(s)
Integration, Test, Integration, Test, Integration, Test,
and Validationand Validationand Validation

Sub-System(s)
Implementation Models
Sign-Off!

Distributed
System

Requirements

Network Network Network
ProtocolProtocolProtocol

RequirementsRequirementsRequirements

Sub-Systems Model
Based Development

Platform
Abstraction

Platform Based Design Methodology

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

8

Platform-based Design

● Platform: library of resources defining an abstraction
layer

– hide unnecessary details
– expose only relevant parameters for the next step

Platform
Design-Space

Export

Platform
Mapping

Architectural Space

Application Space
Application Instance

Platform Instance

Common Semantic Domain

Platform Based Design Methodology

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

9

Meet-in-the-middle

Platform
Abstraction

WHAT ? HOW ?

Platform Based Design Methodology

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

10

Putting it all together….CHALLENGE and
Opportunity!

● We need an integration design platform
– To deal with heterogeneity:

● Where we can deal with Hardware and Software (verification and
synthesis)

● Where we can mix digital and analog
● Where we can assemble internal and external IPs
● Where we can work at different levels of abstraction

– To handle the design chain
– To support integration

● e.g. tool integration
● e.g. IP integration

● The integration platform must subsume the traditional
design flow, rather than displacing it

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

11

Metropolis: an Environment for System-Level Design
● Motivation

– Design complexity and the need for verification and time-to-market
constraints are increasing

– Semantic link between specification and implementation is necessary

● Platform-Based Design
– Meet-in-the-middle approach
– Separation of concerns

● Function vs. architecture
● Capability vs. performance
● Computation vs. communication

● Metropolis Framework
– Extensible framework providing simulation, verification, and synthesis

capabilities
– Easily extract relevant design information and interface to external tools

● Released Sept. 15th, 2004

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

12

Metropolis Project Big Picture: Target and Goals
Target: Embedded System Design

– Set-top boxes, cellular phones, automotive controllers, …
– Heterogeneity:

● computation: Analog, ASICs, programmable logic, DSPs, ASIPs, processors
● communication: Buses, cross-bars, cache, DMAs, SDRAM, …
● coordination: Synchronous, Asynchronous (event driven, time driven)

Goals:
– Design methodologies:

● abstraction levels: design capture, mathematics for the semantics
● design tasks: cache size, address map, SW code generation, RTL generation,

…
– Tool set:

● synthesis: data transfer scheduling, memory sizing, interface logic, SW/HW
generation, …

● verification: property checking, static analysis of performance, equivalence
checking, …

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

13

Metropolis Project
Participants:

– UC Berkeley (USA): methodologies, modeling, formal methods
– CMU (USA): formal methods
– Politecnico di Torino (Italy): modeling, formal methods
– Universita Politecnica de Catalunya (Spain): modeling, formal methods
– Cadence Berkeley Labs (USA): methodologies, modeling, formal methods
– PARADES (Italy): methodologies, modeling, formal methods
– ST (France-Italy): methodologies, modeling
– Philips (Netherlands): methodologies (multi-media)
– Nokia (USA, Finland): methodologies (wireless communication)
– BWRC (USA): methodologies (wireless communication)
– Magneti-Marelli (Italy): methodologies (power train control)
– BMW (USA): methodologies (fault-tolerant automotive controls)
– Intel (USA): methodologies (microprocessors)
– Cypress (USA): methodologies (network processors, USB platforms)
– Honeywell (USA): methodologies (FADEC)

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

14

Metropolis Framework
Design Constraints &

Assertions
Function

Specification
Architecture
Specification

Metropolis Infrastructure
• Design methodology
• Meta model of computation
• Base tools

- Design imports
- Meta model compiler
- Simulation

Synthesis/Refinement
• Compile-time scheduling of

concurrency
• Communication-driven

hardware synthesis
• Protocol interface generation

Analysis/Verification
• Static timing analysis of reactive

systems
• Refinement verification
• Formal verification of embedded

software

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

15

Metropolis Objects

Proc1P1 P2

I1 I2Media1

QM1

Active Objects
Sequential Executing Thread

Passive Objects
Implement Interface Services

Schedule access to
resources and quantities

• Processes (Computation)

• Media (Communication)

• Quantity Managers (Coordination)

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

16

Meta Frameworks: Metropolis
Tagged Signal Semantics

Process Networks Semantics

Firing Semantics

Stateful Firing SemanticsKahn process
networks

dataflow

discrete
events

synchronous/
reactive

hybrid systems

continuous
time

Metropolis provides a process networks abstract
semantics and emphasizes formal description of
constraints, communication refinement, and joint
modeling of applications and architectures.

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

17

A Producer–Consumer Example

● A process P producing integers

● A process C consuming integers

● A media M implementing the communication services

Proc P Proc C
Media M

∞

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

18

package producers_consumer;
process P {

port IntWriter port_wr;
public P(String name) {}
void thread() {

int w = 0;
while (w < 30) {

port_wr.writeInt(w);
w = w + 1;

}
}}

package producers_consumer;
interface IntWriter extends Port{

update void writeInt(int i);
eval int nspace();

}

Writer: Process P (Producer)

● P.mmm:
– Process behavior definition

Proc P

● Writer.mmm:

– Port (interface) definition

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

19

package producers_consumer;
process C {

port IntReader port_rd;
public C(String name) { };
void thread() {

int r = 0;
while (r < 30) {

port_rd.readInt();
}

}}

● Reader.mmm:

– Port (Interface) definition

● C.mmm:

– Process behavior definition

package producers_consumer;
interface IntReader extends Port{

update int readInt();
eval int num();

}

Reader: Process C (Consumer)

Proc C

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

20

package producers_consumer;
medium IntM implements IntReader, IntWriter, Semaphore {

int_infinite_queue storage;

public IntM(String name) { }

public update void writeInt(int w) {
await(true; this.Semaphore; this.Semaphore) {

storage.write(w);
}

}
public update int readInt() {

int _retval = 0;
await(storage.getN()>0; this.Semaphore; this.Semaphore){

_retval = storage.read();
}
return _retval;

}
}

Media M: Writer services
● Communication definition

Media M

∞

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

21

Media M

∞

Example: producers-consumers
● A set of processes “Writer” write data to a FIFO

● A set of processes “Reader” read data from a FIFO

● An unbounded FIFO is used to store written data and to retrieve read data

Proc P2 Proc C

Proc P3

Proc P1

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

22

package producers_consumer;

public netlist IwIr {
IntM m;
public IwIr(String name) {
m = new IntM("InstIntM");
addcomponent(m, this, "MEDIUM");

for (int i = 0; i < 3; i++) {
P p = new P("Producer"+i);
addcomponent(p, this, "Producer"+i);
connect(p, port_wr, m);

}

for (int i = 0; i < 1; i++) {
C c = new C("Consumer"+i);
addcomponent(c, this, "Consumer"+i);
connect(c, port_rd, m);

}
}

}

Top level netlist

Media M

∞
Proc P2 Proc C

Proc P3

Proc P1

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

23

Protecting against concurrency

● If more than one process is calling the services, the
services can be executed concurrently, hence the state
of the media must be protected by concurrent access

● The protection is guaranteed by the await statement

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

24

Media M

∞

public update void writeInt(int w) {
await { (true; this.Semaphore; this.Semaphore){

storage.write(w);
}

}

public update int readInt() {
int _retval = 0;
await(storage.getN()>0; this.Semaphore; this.Semaphore){

_retval = storage.read();
}
return _retval;

}

}

Media M: await
● Communication definition

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

25

AWAIT

● The await statement is used to describe a situation that a
process object waits for a given condition to become
true, and once the condition holds, it continues its
execution with the guarantee that the condition still holds

await {

(guard, testlist, setlist) statements;

}

Metropolis Framework

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

26

Logic of Constraints (LOC)

● A transaction-level quantitative constraint language

● Works on a sequence of events from a particular
execution trace

Throughput: “at least 3 Display events will be produced
in any period of 30 time units”.

t (Display[i+3]) – t (Display[i]) <= 30
Other LOC constraints

Performance: rate, latency, jitter, burstiness
Functional: data consistency

The Semantics of the Metropolis Metamodel

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

27

Key Modeling Concepts

● An event is the fundamental concept in the framework

– Represents a transition in the action automata of an object

– An event is owned by the object that exports it

– During simulation, generated events are termed as event instances

– Events can be annotated with any number of quantities

– Events can partially expose the state around them, constraints can then
reference or influence this state

● A service corresponds to a set of sequences of events

– All elements in the set have a common begin event and a common end
event

– A service may be parameterized with arguments

1. E. Lee and A. Sangiovanni-Vincentelli, A Unified Framework for Comparing Models of Computation,
IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, Vol. 17, N. 12, pg. 1217-1229, December 1998

The Semantics of the Metropolis Metamodel

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

28

Action Automata
● Processes take actions.

– statements and some expressions, e.g.

y = z+port.f();, z+port.f(), port.f(), i < 10, …
– only calls to media functions are observable actions

● An execution of a given netlist is a sequence of vectors of events.

– event : the beginning of an action, e.g. B(port.f()),
the end of an action, e.g. E(port.f()), or null N

– the i-th component of a vector is an event of the i-th process

● An execution is legal if

– it satisfies all coordination constraints, and

– it is accepted by all action automata.

The Semantics of the Metropolis Metamodel

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

29

Execution semantics
Action automaton:

– one for each action of each process
● defines the set of sequences of events that can happen in

executing the action
– a transition corresponds to an event:

● it may update shared memory variables:
– process and media member variables
– values of actions-expressions

● it may have guards that depend on states of other action
automata and memory variables

– each state has a self-loop transition with the null N event.

– all the automata have their alphabets in common:
● transitions must be taken together in different automata, if

they correspond to the same event.

The Semantics of the Metropolis Metamodel

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

30

Action Automata for “y=x+1”

Return

B y=x+1 B x+1 E x+1 E y=x+1
y:=Vx+1

B x+1 E x+1 E y=x+1
y:=any

* = write y* * *

B x+1 E x+1
Vx+1 :=x+1

E x+1
Vx+1 :=any

write x

y=x+1

x+1

0
0
0

B y=x+1 B x+1 E x+1NN N E y=x+1

5
0
0

5
5
0

1
0
0

1
1
0

Vx+1
y
x

The Semantics of the Metropolis Metamodel

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

31

Semantics summary
● Processes run sequential code concurrently, each at its own

arbitrary pace.

● Read-Write and Write-Write hazards may cause unpredictable
results

– atomicity has to be explicitly specified.

● Progress may block at synchronization points

– awaits

– function calls and labels to which awaits or constraints refer.

● The legal behavior of a netlist is given by a set of sequences of
event vectors.

– multiple sequences reflect the non-determinism of the semantics:

concurrency, synchronization (awaits and constraints)

The Semantics of the Metropolis Metamodel

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

32

Metropolis Meta Model
● Do not commit to the semantics of a particular Model

of Computation (MoC)

● Define a set of “building blocks”:
– specifications with many useful MoCs can be described using the

building blocks.

– unambiguous semantics for each building block.

– syntax for each building block a language of the meta model.

● Represent behavior at all design phases; mapped
or unmapped

The Semantics of the Metropolis Metamodel

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

33

Metropolis Objects: adding quantity managers
● Metropolis elements adhere to a “separation of concerns” point of view.

Proc1P1 P2

I1 I2Media1

QM1

Active Objects
Sequential Executing Thread

Passive Objects
Implement Interface Services

Schedule access to
resources and quantities

• Processes (Computation)

• Media (Communication)

• Quantity Managers (Coordination)

The Semantics of the Metropolis Metamodel

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

34

Metro. Netlists and Events

Proc1

P1

Media1 QM1

Scheduled Netlist Scheduling Netlist

Global
Time

Metropolis Architectures are created via two netlists:
• Scheduled – generate events1 for services in the scheduled netlist.
• Scheduling – allow these events access to the services and annotate
events with quantities.

I1

I2

Proc2

P2

Event1 –
represents a
transition in the
action automata
of an object. Can
be annotated
with any number
of quantities.
This allows
performance
estimation.

Related Work

Architecture and Mapping Modeling in Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

35

Meta-model: architecture components

● Which levels of abstraction, what kind of quantities, what kind of cost
constraints should be used to capture architecture components?

– depends on applications: on-going research

An architecture component specifies services, i.e.
• what it can do:

• how much it costs:

interfaces, methods, coordination (awaits,
constraints), netlists

quantities, annotated with events, related over a set
of events

Architecture and Mapping Modeling in Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

36

Programmable Architecture Modeling
Computation Services

Communication Services

Coordination Services

PPC405 MicroBlaze SynthSlaveSynthMaster

Processor
Local
Bus

(PLB)

On-Chip
Peripheral

Bus
(OPB)

Read (addr, offset, cnt, size), Write(addr, offset, cnt, size),
Execute (operation, complexity)

BRAM
addrTransfer(target, master)
addrReq(base, offset, transType, device)
addrAck(device)

dataTransfer(device, readSeq, writeSeq)
dataAck(device)

PPC Sched OPB SchedPLB SchedMicroBlaze
Sched

Architecture and Mapping Modeling in Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

37

Prog. Platform Characterization

From Char Flow Shown

From Metro Model Design

From ISS for PPC
1. Douglas Densmore, Adam Donlin, A.Sangiovanni-Vincentelli, FPGA Architecture Characterization in

System Level Design, Submitted to CODES 2005.
2. Adam Donlin and Douglas Densmore, Method and Apparatus for Precharacterizing Systems for Use

in System Level Design of Integrated Circuits, Patent Pending.

Create database ONCE prior to
simulation and populate with
independent (modular)
information.

1. Data detailing
performance based on
physical implementation.

2. Data detailing the
composition of
communication transactions.

3. Data detailing the
processing elements
computation.

Work with Xilinx Research Labs

Architecture and Mapping Modeling in Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

38

Modeling and Characterization Review

DedHW Sched

PLB Sched

BRAM Sched

Global
Time

PPC Sched

Task1 Task2

PPC

Task3 Task4

DEDICATED HW

BRAM

PLB

Scheduled Netlist Characterizer

Scheduling Netlist

Media (scheduled) Process

Quantity Manager Quantity
Enabled Event

Disabled Event

Architecture and Mapping Modeling in Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

39

Mapping in Metropolis

● Objectives:
– Map a functional network with an architectural network without changing

either of the two
● Support design reuse

– Specify the mapping between the two in a formal way
● Support analysis techniques
● Make future automation easier

● Mechanism:
– Use declarative

synchronization constraints
between events

– One of the unique aspects
of Metropolis

Functional
Network

Arch.
Network

synch(…), synch(…), …

Mapping Network

Architecture and Mapping Modeling in Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

40

Synchronization constraints

● Synchronization constraint between two events e1 and e2:
– ltl synch(e1, e2)

– e1 and e2 occur simultaneously or not at all

● Optional variable equality portion:
– ltl synch(e1, e2: var1@e1 == var2@e2)

– The value of var1 in the scope of e1 is equal to the value of var2 when
e1 and e2 occur

– Can be useful for “passing” values between functional and architectural
models

Architecture and Mapping Modeling in Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

41

Meta-model: mapping netlist

Bus
ArbiterBus

Mem

Cpu OsSched

MyArchNetlist

mP1 mP2

MyFncNetlist

MP1 P2

Env1 Env2

B(P1, M.write) <=> B(mP1, mP1.writeCpu); E(P1, M.write) <=> E(mP1, mP1.writeCpu);
B(P1, P1.f) <=> B(mP1, mP1.mapf); E(P1, P1.f) <=> E(mP1, mP1.mapf);
B(P2, M.read) <=> B(P2, mP2.readCpu); E(P2, M.read) <=> E(mP2, mP2.readCpu);
B(P2, P2.f) <=> B(mP2, mP2.mapf); E(P2, P2.f) <=> E(mP2, mP2.mapf);

MyMapNetlist

Architecture and Mapping Modeling in Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

42

Meta-model: recursive paradigm of platforms

S

N N'

B(Q2, S.cdx) <=> B(Q2, mQ2.excCpu); E(Q2, M.cdx) <=> E(mQ2, mQ2.excCpu);
B(Q2, Q2.f) <=> B(mQ2, mQ2.mapf); E(Q2, P2.f) <=> E(mQ2, mQ2.mapf);

MyArchNetlistMyFncNetlist MP1 P2

B(P1, M.write) <=> B(mP1, mP1.writeCpu);
B(P1, P1.f) <=> B(mP1, mP1.mapf); E(P1, P1.f) <=> E(mP1,)
B(P2, M.read) <=> B(P2, mP2.readCpu);
E(P2, P2.f) <=> E(mP2, mP2.mapf);

MyMapNetlist1

MyArchNetl
ist

MyFncNe
tlist

MP1 P2
B(P2, M.read) <=> B(P2, mP2.readCpu);
E(P2, P2.f) <=> E(mP2, mP2.mapf);

M

Architecture and Mapping Modeling in Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

43

Metropolis Driver: Picture-in-Picture Design Exercise
Evaluate the methodology with formal techniques applied.

• Function
– Input: a transport stream for multi-channel
video images
– Output: a PiP video stream

- the inner window size and frame color
dynamically changeable

DEMUX PARSER

JUGGLER

MPEG RESIZE

MPEG

PIP

USRCONTROL

60 processes with
200 channels

Architecture and Mapping Modeling in Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

44

Multi-Media System: Abstraction Levels

∞

∞

∞

∞

DMA

DSP

RAMs RAMd

$

CPU$ $

HW

HW
MemFMemS

$

DSP

CPU

HW

HW

• Network of processes with sequential program for each

• Unbounded FIFOs with multi-rate read and write

•Communication refined to bounded FIFOs and shared
memories with finer primitives (called TTL API):

allocate/release space, move data, probe space/data

• Mapped to resources with coarse service APIs
• Services annotated with performance models
• Interfaces to match the TTL API

• Cycle-accurate services and performance models

Architecture and Mapping Modeling in Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

45

H264 - Mapping

FrameProducer Encoder
Medium

H264Encoder

Channel
Medium

Funzione Architettura

AHB BUS

CAMERA

ASIC ETHERNETMEMORY

CPU
TIMER

• Frame capture
• Frame acquisition
• Frame coding
• Frame transmission

ENCODED

Architecture and Mapping Modeling in Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

46

Netlist Synchronization

Frame
capture

Frame
acquisition

Frame
encoding

Frame
transmission

CPU bus
transactions

ASIC bus
transactions

ASIC
computations

Architecture and Mapping Modeling in Metropolis

Functional Level Actions

Architectural Level Actions

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

47

Metropolis design environment

Meta model
compiler

Verification
tool

Synthesis
tool

Front end

Meta model language

Simulator
tool

...Back end1

Abstract syntax trees

Back end2 Back endNBack end3

Metropolis
interactive

Shell

•Load designs

•Browse designs

•Relate designs
refine, map etc

•Invoke tools

•Analyze results

Verification
tool

Functional Spec

Communication Spec
Constraints

Architecture

Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

48

Backend Point Tools
● Synthesis/refinement:

– Quasi-static scheduling

– Scheduler synthesis from constraint formulas

– Interface synthesis

– Refinement (mapping) synthesis

– Architecture-specific synthesis from concurrent processes for:
● Hardware (with known architecture)

● Dynamically reconfigurable logic

● Verification/analysis:
– Static timing analysis for reactive processes

– Invariant analysis of sequential programs

– Refinement verification

– Formal verification for software

Metropolis

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

49

Conclusions: a Metropolis Summary
● Concurrent specification with a formal execution semantics

● Feasible executions of a netlist: sequences of event vectors

● Quantities can be defined and annotated with events, e.g.
– Time, power, global indices, composite quantities.

● Concurrent events can be coordinated in terms of quantities:
– logic can be used to define the coordination,
– algorithms can be used to implement the coordination.

● The mechanism of event coordination wrt quantities plays a key role:
– architecture modeling as service with cost,
– a mapping coordinates executions of function and architecture netlists,
– a refinement through event coordination provides a platform.

● Metropolis design environment:
– meta-model compiler to provide an API to browse designs,
– backend tools to analyze designs and produce appropriate models.

Conclusions

Alberto Ferrari – PARADES GEIE - 19 feb 2007 – Trento -IT

PA
R

A
D

ES

50

Acknowledgments

● Prof. A.Sangiovanni-Vincentelli

● PARADES EEIG:
– L.Mangeruca, M.Baleani, F.Carnevale

● UCB: the entire Metropolis Team
– http://www.gigascale.org/metropolis/index.html

