
1

ComponentComponent--based Construction based Construction
of Realof Real--Time SystemsTime Systems

Joseph Sifakis
VERIMAG

ARTIST2 MOTIVES School
Trento, February 19-23, 2007

2

ComponentComponent--based constructionbased construction –– ObjectivesObjectives

Develop a rigorous and general basis for real-time system
design and implementation:

• Concept of component and associated composition operators for
incremental description and correctness by construction

• Concept for real-time architecture encompassing heterogeneity,
paradigms and styles of computation e.g.

� Synchronous vs. asynchronous execution
� Event driven vs. data driven computation
� Distributed vs. centralized execution

• Automated support for component integration and generation of glue
code meeting given requirements

3

Approches involving componentsApproches involving components

• Theory such as process algebras and automata

• SW Component frameworks, such as

� Coordination languages extensions of programming languages :
Linda, Javaspaces, TSpaces, Concurrent Fortran, NesC

� Middleware e.g. Corba, Javabeans, .NET

� Software development environments: PCTE, SWbus, Softbench,
Eclipse

• System modeling languages: SystemC, Statecharts, UML, Simulink/Stateflow,
Metropolis, Ptolemy

• Architecture Description Languages focusing on non-functional aspects e.g. AADL

Lack of
• frameworks treating interactions and system architecture as first class entities that

can be composed and analyzed (usually, interaction by method call)
• rigorous models for behavior and in particular aspects related to time and

resources.

4

Sources of Sources of heterogeneityheterogeneity [[HenzingerHenzinger&&SifakisSifakis FM06]FM06]

Heterogeneity of interaction
• Atomic or non atomic
• Rendezvous or Broadcast
• Binary or n-ary

Heterogeneity of execution
• Synchronous execution
• Asynchronous execution
• Combinations of them

Heterogeneity of abstraction e.g. granularity of execution

5

Sources of heterogeneity Sources of heterogeneity -- ExampleExample

Asynchronous Computation

A R nonA R A B nonA B

Lotos
CSP

Java
UML

SDL
UML

Matlab/Simulink
VHDL/SystemC
Synchronous languages

A: Atomic interaction R: Rendezvous B: Broadcast

Synchronous Computation

6

OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

7

ComponentComponent--based construction based construction –– FormalFormal frameworkframework

Build a component C satisfying a given property P, from
• C0 a set of atomic components modeling behavior
• GL ={gl1, …, gli, …} a set of glue operators on components

c1 c’1
gl1

c2 c’2

gl12
sat Pgl2

Glue operators
• model mechanisms used for communication and control such as
protocols, controllers, buses.
• restrict the behavior of their arguments, that is

gl(C1 ,C2 ,.., Cn)| A1 refines C1

8

ComponentComponent--based construction based construction –– FormalFormal frameworkframework

Semantics:
• Atomic components → behavior
• Glue operators transform sets of components into components

Semantics BB1

gl
B2 Bn

The process algebra paradigm
• Components are terms of an algebra of terms (C, ≅) generated from
C0 by using operators from GL
• ≅ is a congruence compatible with semantics

9

ComponentComponent--based construction based construction -- RequirementsRequirements

Find sets of glue operators meeting the following
requirements:

1. Incremental description

2. Correctness-by-construction

3. Expressiveness (discussed later)

10

ComponentComponent--based construction based construction –– Incremental descriptionIncremental description

≅ C1

gl_1
1. Decomposition

gl

C1 C2 Cn

gl_2
C2 Cn

≅
c1 c’1

gl1
c2 c’2

gl12
gl2

2. Flattening

c1 c’1 c2 c’2

g

Flattening can be achieved by using a (partial) associative
operation ⊕ on GL

11

ComponentComponent--based construction based construction ––
CorrectnessCorrectness by construction : by construction : CompositionalityCompositionality

Building correct systems
from correct components

We need compositionality results about preservation of
progress properties such as deadlock-freedom and liveness.

☺ ☺
gl

☺

ci sat gl(P1, ..,Pn)
gl

c1 cn

sat Pi implies ∀gl ∃gl ~~

12

ComponentComponent--based construction based construction ––
CorrectnessCorrectness by construction : by construction : ComposabilityComposability

Integrated components
preserve essential
properties ☺

gl
☺ ☺

gl

/

and

Composability means non interference of properties of integrated
components. Lack of results for guaranteeing property stability e.g.

• non composability of scheduling algorithms
• feature interaction

sat Pc1 cn

gl sat P’
c1 cn

gl’

c1 cn
implies sat P∧P’gl ⊕ gl’

13

||

B E H A V I O R

ComponentComponent--based construction based construction –– The BIP frameworkThe BIP framework

Interaction Model (Collaboration)

Priorities (Conflict resolution)

PR2
IM2

PR1
IM1 IM1

PR1 ⊕ PR2 ⊕ PR12

Composition (incremental description)

Layered component model

IM1 ⊗ IM2 ⊗ IM12

14

ComponentComponent--based construction based construction ––
The BIP framework: BehaviorThe BIP framework: Behavior

put

An atomic component has
• A set of ports P, for interaction with other components
•A set of control states S
• A set of variables V
• A set of transitions of the form

� p is a port
� gp is a guard, boolean expression on V
� fp is a function on V (block of code)

full

empty

get, 0<x
y:=f(x)ge

t

pu
t

p g p fp

s1 s2

x y

15

ComponentComponent--based construction based construction ––
The BIP framework: BehaviorThe BIP framework: Behavior

s1 s2

p: a port through which interaction is sought
gp: a pre-condition for interaction through p
fp : a computation (local state transformation)

Semantics
• Enabledness: gp is true and some interaction involving p
is possible
• Execution: interaction involving p followed by the
execution of fp

p gp fp

16

OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

17

Interaction modelingInteraction modeling

Interactions:
{tick1,tick2,tick3} {out1} {out1,in2} {out1,in3} {out1,in2, in3}

tick1 tick2 tick3

out1 in2 in3

• A connector is a set of ports which can be involved in an interaction

• Port attributes (complete , incomplete) are used to distinguish
between rendezvous and broadcast.
• An interaction of a connector is a set of ports such that: either it contains
some complete port or it is maximal.

18

IInteraction nteraction modeling modeling -- ExamplesExamples

cl1 cl2

out in

out in1

in2

CN:{cl1,cl2}
CP: ∅

CN:{out,in}
CP: {out}

CN:{in1,out,in2
}
CP: {out}

cl1,cl2

cl2cl1

out, in

inout

out,in1

in1

in1,in2

in2

out,in2

out

in1,out,in2

19

IInteraction nteraction modeling modeling –– HierarchicalHierarchical connectorsconnectors

send rec1 rec2
Atomic Broadcast:
send + send rec1 rec2

a b c a b c

a b c d

Causal chain:
a+ab+abc+abcd

≈

20

Interaction modeling Interaction modeling –– OperationalOperational semanticssemantics

prod put

CN: {put,get},{prod},{cons}
CP: {prod},{cons}

get cons

{put, get}

putprod
get

putget

cons

prodcons
×
×

×

×
O

perational

Sem
antics

21

prod put get cons

Interaction modeling Interaction modeling –– CompositionComposition

⎢⎢

CN[P,C]: {put,get}
CP[P,C]: ∅

prod put

CN[P]: {put},{prod}
CP[P]: {prod}

get cons

CN[C]: {get}, {cons}
CP[C]: {cons}

CN: {put,get},{prod},{cons}
CP: {prod},{cons}

22

Interaction modeling Interaction modeling ––
Composition: Results Composition: Results [[GoesslerGoessler&SifakisSCP2005]&SifakisSCP2005]

Incremental commutative composition directly encompassing
rendezvous and broadcast

sender receiver1 sender receiver1

receiver2receiver2

=

out1 in1

in2

sender receiver1

receiver2

23

Interaction modelingInteraction modeling –– DDataata transfertransfer

CN: BUS={send,rec1,rec2}
{send}: true →skip
{send,rec1}: x<y →x:=y-x, y:=y+x
{send,rec2}: x<z →x:=z-x, z:=z+x
{send,rec1,rec2}: x<z+y →x:=y+z-x, y:=y+x, z:=z+x

send x rec1 y rec2 z

• Notice the difference between control flow and data flow (input, output)
• Maximal progress: execute a maximal enabled interaction

24

Interaction modeling Interaction modeling ––
Checking for deadlockChecking for deadlock--freedomfreedom[Goessler&Sifakis[Goessler&Sifakis FSTTCS2003]FSTTCS2003]

For a given system (set of components + interaction model), its dependency
graph is a bipartite labeled graph with
Nodes N = Set of components ∪ Set of minimal interactions
Edges E
- (α,p,k)∈E if α is an interaction, p∈α is an incomplete port of k
- (k1,p1,α)∈E if p1∈α is a port of k1

Blocking condition for an incomplete port p:
Bl(p) = gp∧ ¬ (gp1 ∧ gp2 ∧ gp3)

p
p1

p2

p3
{p,p1,p2,p3}

kk2

k1

k3

25

Interaction modeling Interaction modeling ––
Checking for deadlockChecking for deadlock--freedom (2)freedom (2)

Possibility of deadlock for the components of circuits ω

such that Bl (ω) = ∧p∈ω Inc(ω)∧Bl(p) = false

where Inc(ω)= ∧k∈ωInc(k) with Inc(k) the set of the control
states of k offering only incomplete ports

p1
p2

p3
p4

k1

k3

k4 k2
Bl(p1) Bl(p2)

Bl(p3)Bl(p4)

26

OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

27

PrioritiesPriorities

Priorities are a powerful tool for restricting non-determinism:

• they allow straightforward modeling of urgency and

scheduling policies for real-time systems

• run to completion and synchronous execution can be

modeled by assigning priorities to threads

• they can advantageously replace (static) restriction of

process algebras

28

Priorities Priorities –– Priorities as controllersPriorities as controllers

A controller restricts the behavior (non determinism) of system S to enforce
a property P

Controller for P

Interactions

stateinteraction

system S

Results [Goessler&Sifakis, FMCO2003][Goessler&Sifakis, FMCO2003] :

• Restrictions induced by controllers enforcing deadlock-free state
invariants can be described by dynamic priorities

• Conversely, for any restriction induced by dynamic priorities there
exists a controller enforcing a deadlock-free control invariant

29

g1 g2

Priorities Priorities -- DefinitionDefinition

Priority rule Restricted guard g1’
true → p1 〈 p2 g1’ = g1 ∧ ¬ g2

C → p1 〈 p2 g1’ = g1 ∧ ¬(C ∧ g2)

p1 p2

Priority rules

30

Priorities Priorities –– Definition (2)Definition (2)

pr = { Ci → 〈I }i is a set of priority rules, where
• {Ci }i is a set of disjoint state predicates
• 〈i ⊆ Interactions × Interactions is a strict partial order

g’k = gk ∧ ∧ C → 〈 ∈pr (C ⇒ ∧pk 〈pi ¬ gi)

pr = { Ci → 〈i }i

pk gk pk g’k
semantics

31

Priorities Priorities –– Example: FIFO policy Example: FIFO policy

t1≤ t2 → b1〈 b2 t2< t1 → b2〈 b1

sleep1

wait1

use1

sleep2

wait2

use2
e1

b1

a1

b2

a2

e2
#

start t1 start t2

32

Priorities Priorities –– Example: EDF policy Example: EDF policy

D1-t1≤ D2-t2 → b2〈 b1 D2-t2< D1-t1 → b1〈 b2

sleep1

wait1

use1

sleep2

wait2

use2
e1

b1

a1

b2

a2

e2
#

start t1 start t2

t1 ≤D1 t2 ≤D2

33

Priorities Priorities –– CompositionComposition

pr1
pr2

≠ pr2
pr1

a c
b

a 〈1 b c
b

b〈2 c
c

b〈2 c
a 〈1 b

a c a c

34

Priorities Priorities –– Composition (2)Composition (2)

pr1⊕ pr2 is the least priority containing pr1∪pr2

Results :
•The operation ⊕ is partial, associative and commutative
• pr1(pr2(B)) ≠pr1(pr2(B))
• pr1⊕ pr2(B) refines pr1∪pr2(B) refines pr1(pr2(B))
• Priorities preserve deadlock-freedom

pr1
pr2 pr1⊕ pr2

=

Take:

35

Priorities Priorities ––
Example: Mutual exclusion + FIFO policyExample: Mutual exclusion + FIFO policy

true → b1〈 e2 true → b2〈 e1

t1≤ t2 → b1〈 b2 t2< t1 → b2〈 b1

sleep1

wait1

use1

sleep2

wait2

use2
e1

b1

a1

b2

a2

e2

start t1 start t2

36

Priorities Priorities –– Checking for deadlockChecking for deadlock--freedom: Examplefreedom: Example

s1 b1

w2
a1

f1

a2

f2

Mutex on R : b1 〈 f2 b2 〈 { f1, b1’}

b2’

w1

b1’ b2

R

RR’ RR’

R’

Risk of deadlock: b1’ 〈 b2 and b2 〈 b1’

Mutex on R’ : b1’ 〈 { f2, b2 } b2’ 〈f1

s2

37

OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

38

ImplementationImplementation –– the BIP toolset the BIP toolset

BIP language

BIP Platform

Graphic language
AADL or UML

C++

THINK

IF Platform
IF

39

Implementation Implementation –– C++ code generation for the BIP platformC++ code generation for the BIP platform

Interaction Meta-model

Priority
Meta-model

EngineBIP model

C→a〈b

Component Meta-model

BIP Platform

40

ImplementationImplementation –– TThe BIP platformhe BIP platform

• Code execution and state space exploration features
• Implementation in C++ on Linux using POSIX threads.

Interaction model

Priorities

Engine

41

Implementation Implementation –– The BIP platformThe BIP platform: : The engineThe engine

init

loop

Launch
atom’s threads

stable

Wait
all atoms

ready

Compute
legal interactions

filter
Filter
w.r.t. priorities

choose

Choose
among maximal

execute

Execute chosen
interaction transfer

Notify
involved atoms

42

Implementation Implementation –– the BIPthe BIP language: language: atomic componentatomic component

component C
port complete: p1, … ; incomplete: p2, …
data {# int x, float y, bool z, …. #}
init {# z=false; #}

behavior
state s1

on p1 provided g1 do f1 to s1’
……………… ……
on pn provided gn do fn to sn’

state s2
on …..

….

state sn
on

end
end

43

Implementation Implementation –– the BIPthe BIP language: language: connectors and prioritiesconnectors and priorities

connector BUS= {p, p’, … , }
complete()

behavior
on α1 provided gα1 do fα1
……….
on αn provided gαn do fαn

end

priority PR
if C1 (α1 < α2), (α3 < α4) , …
if C2 (α < …), (α <…) , …
…
if Cn (α <…), (α <…) , …

44

Implementation Implementation –– the BIP language: compound componentthe BIP language: compound component

component name
contains c_name1 i_name1(par_list)

……
contains c_namen i_namen(par_list)

connector name1
……
connector namem

priority name1
……
priority namek
end

45

OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

46

Modeling in BIPModeling in BIP––
Other frameworks encompassing heterogeneityOther frameworks encompassing heterogeneity

Metropolis

Platform

Channels

Director

PTOLEMY

Behavior

Semantic Domain MoC
(Model of Computation)

Media

Quantity
Manager

Behavior

PlatformASML

.net

Composition
Operators

Vanderbilt’s Approach

Operational
Semantics

Semantic Unit
Meta-model

Behavior

Semantic Unit
Meta-model

Operational
Semantics

Operational
Semantics

47

Modeling in BIPModeling in BIP–– Model construction space Model construction space

A system is defined as a point of the 3-
dimensional space
Full separation of concerns: any combination of
coordinates defines a system

Be
ha

vi
or

IM Interaction

P
R

 P

rio
rit

y

Architecture

System

48

M
od

el
 o

f C
om

pu
ta

tio
n

Modeling in BIP Modeling in BIP –– Model construction space (2)Model construction space (2)

Model construction space for PTOLEMY

Be
ha

vi
or

Interaction
(channels)

49

Modeling in BIP Modeling in BIP –– Relating classes of components Relating classes of components

Study transformations characterizing
relations between classes of systems:

• Untimed – timed
• Synchronous – asynchronous
• Event triggered – data triggered

Bs

IMa

asynchronousP
R

a

 P

R
s

synchronous

Ba

IMs

50

Modeling in BIPModeling in BIP –– Timed Timed systemssystems

ptimeout

tick
x++

tick

tick tick tick tick

PR: red_guards →tick 〈 all_other_ports

x:=0

x=10 x<10

Timed Component

Timed architecture

51

Modeling in BIPModeling in BIP –– Timed Timed systemssystems: : ExampleExample

T1 T2 T3

CPU1 CPU2 CPU3

Bursty Event-Stream:
Period = 10
Jitter = 50

Min. Interarrival Dist. = 1

WCED = 8 WCED = 4 WCED = 1

Source: http://www.tik.ee.ethz.ch/~leiden05
Workshop on Distributed Embedded Systems, Leiden, November 21-24, 2005

End-to-end Delay?

52

Modeling in BIPModeling in BIP –– Timed Timed systemssystems: : ExampleExample (2)(2)

READY

EXEC

start, (count>0)
count--, delay:=0

get
count++

get
count++

tick

tick
delay++

ge
t

fin
is

h

tick

finish,
[delay<= WCET]

Task ComponentTask Component

53

Modeling in BIPModeling in BIP –– Timed Timed systemssystems: : Example (3)Example (3)

ge
t

fin
is

h
tick

ge
t

fin
is

h

tick

ge
t

fin
is

h

tick

Event
Generator go

tick

PR: tick 〈 { EvntT1, T1T2, T2T3 , T3.Finish }

T1 T2 T3

tick

EvntT1 T1T2 T2T3

System architecture

54

Modeling in BIPModeling in BIP –– Synchronous systemsSynchronous systems

syn
p

syn

p1 pn syn
syn

p1p pnpi

Micro-step

Synchronous component

syn syn syn syn

PR: syn〈 all_other_ports

Synchronous architecture

55

Modeling in BIPModeling in BIP –– Synchronous mod2 counterSynchronous mod2 counter

Zero’

One’

flip
gflip: X=1
fflip: Y:=1

syn

syn

flip
gflip: X=1
fflip: Y:=0

Zero

One

syn

syn

syn

Modulo-2 counter

in
:X

ou
t:Y

56

Modeling in BIPModeling in BIP –– Synchronous mod8 counterSynchronous mod8 counter

in
:X

1

in
:X

2

CN: syn={syn0, syn1 , syn2}, fsyn: X1 := Y0; X2 := Y1 ∧ Y0

in
:X

0

ou
t:Y

0

ou
t:Y

1

ou
t:Y

2

PR: syn〈flip0, syn 〈 flip1, syn 〈 flip2

tick1tick0 tick2

in
:X

1

in
:X

2

in
:X

0

ou
t:Y

0

ou
t:Y

1

ou
t:Y

2

AND

syn

57

Modeling in BIPModeling in BIP ––
MPEG4 Video encoder: ComponentizationMPEG4 Video encoder: Componentization

f_in f_out

grabPicture()

f_in f_out

outputPicture()

GrabPicture OutputPicture

f_out f_out f_outf_in f_inf_in

Encode

Transform a monolithic program into a componentized one
++ reconfigurability, schedulability
– – overheads (memory, execution time)

Video encoder characteristics:
• 12000 lines of C code
• Encodes one frame at a time:

– grabPicture() : gets a frame
– outputPicture() : produces an encoded frame

58

Reconstruction

Modeling in BIPModeling in BIP ––Video encoder: The Encode componentVideo encoder: The Encode component

Intraprediction

IQuant

IDCT

MotionEstimation

DCT

Quant

Coding

GrabMacroBlock

out
in

out
in

out
in

out
in

out
in

out

f_in

out
in

out
in

in1 in2

f_in

f_out

f_out

: buffered
connections

GrabMacroBlock:
splits a frame in
(W*H)/256 macro
blocks, outputs one
at a time

Reconstruction:
regenerates the
encoded frame from
the encoded macro
blocks.

59

Modeling in BIPModeling in BIP –– Video encoder : Atomic componentsVideo encoder : Atomic components

in out

fn()

in c<MAX c:=c+1

f_out
c=MAX
c:=0

Reconstruction

Generic Functional component

f_in

out

GrabMacroBlock

c<MAX
grabMacroBlock(), c:=c+1

in f_outout

out

f_in

in

reconstruction()

exit
c=MAX c:=0

MAX=(W*H)/256
W=width of frame
H=height of frame

60

Modeling in BIPModeling in BIP –– Video encoder: The BIP Encoder featuresVideo encoder: The BIP Encoder features

• BIP code describes a control skeleton for the encoder
– Consists of 20 atomic components and 34 connectors
– ~ 500 lines of BIP code
– Functional components call routines from the encoder library

• The generated C++ code from BIP is ~ 2,000 lines

• The size of the BIP binary is 288 Kb compared to 172
Kb of monolithic binary.

61

Modeling in BIPModeling in BIP ––
Video encoder : Componentization overheadVideo encoder : Componentization overhead

Overhead in execution time wrt monolithic code:

• ~66% due to communication (can be reduced by composing
components at compile time)
–function calls by atomic components to the execution engine for

synchronization.

• ~34% due to resolution of non determinism (can be reduced by
narrowing the search space at compile time)
– time spent by engine to evaluate feasible interactions

Problem: Reduce execution time overhead
for componentized code

62

OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

63

Discussion Discussion –– The BIP framework: summaryThe BIP framework: summary

Framework for component-based construction
encompassing heterogeneity and relying on a minimal set
of constructs and principles

Clear separation between structure (interaction +priority)
and behavior

• Structure is a first class entity
• Layered description => separation of concerns =>
incrementality

• Correctness-by-construction techniques for deadlock-
freedom and liveness, based (mainly) on sufficient
conditions on the structure

64

Discussion Discussion –– The BIP framework: Work directionsThe BIP framework: Work directions

Theory
• Study Component Algebras CA= (B, GL,⊕, ≅), where
� (GL,⊕) is a monoid and ⊕ is idempotent
� ≅ is a congruence compatible with operational semantics

• Study notions of expressiveness characterizing structure: Given two
component algebras defined on the same set of atomic components,

CA1 is more expressive than CA2
if ∀P ∃gl2∈GL2 gl2(B1, .,Bn) sat P ⇒ ∃ gl1∈GL1. gl1(B1, …Bn) sat P

• Model transformations
� relating classes of systems
� preserving properties

• Distributed implementations of BIP

65

Discussion Discussion -- The BIP framework: Work directions (2)The BIP framework: Work directions (2)

Methodology
• Using BIP as a programming model

• Reference architectures in BIP

BIP toolset Implementation
• Generation of BIP models from system description languages such as
SysML (IST/SPEEDS project), AADL and SystemC (ITEA/Spices project)

• Model transformation techniques in particular for code optimization

• Validation techniques
� connection to Verimag’s IF simulation/validation environment
� specific techniques e.g. checking conditions for correctness by
construction

66

More about BIP:

• http://www-verimag.imag.fr/index.php?page=tools

• Email to Joseph.Sifakis@imag.fr

