‘.;rlirt

Component-pased Construction
of Real-Time Systems

Joseph Sifakis
VERIMAG

ARTIST2 MOTIVES School
Trento, February 19-23, 2007

.(3"'1“ Component-based construction — Objectives

Develop a rigorous and general basis for real-time system
design and implementation:

» Concept of component and associated composition operators for
Incremental description and correctness by construction

» Concept for real-time architecture encompassing heterogeneity,
paradigms and styles of computation e.g.

= Synchronous vs. asynchronous execution

= Event driven vs. data driven computation
= Distributed vs. centralized execution

» Automated support for component integration and generation of glue
code meeting given requirements

i&m Appreches invelving cemponents

» Theory such as process algebras and automata

« SW Component frameworks, such as

= Coordination languages extensions of programming languages :
Linda, Javaspaces, TSpaces, Concurrent Fortran, NesC

= Middleware e.g. Corba, Javabeans, .NET

» Software development environments: PCTE, SWbus, Softbench,
Eclipse

« System modeling languages: SystemC, Statecharts, UML, Simulink/Stateflow,
Metropolis, Ptolemy

» Architecture Description Languages focusing on non-functional aspects e.g. AADL

Lack of

» frameworks treating interactions and system architecture as first class entities that
can be composed and analyzed (usually, interaction by method call)

 rigorous models for behavior and in particular aspects related to time and
resources.

artirt :
‘.' Sources ofi heterogeneity [Henzinger&Sifakis FMO6]

Heterogeneity of interaction
e Atomic or non atomic
* Rendezvous or Broadcast
e Binary or n-ary

Heterogeneity of execution
e Synchronous execution
e Asynchronous execution
e Combinations of them

Heterogeneity of abstraction e.g. granularity of execution

‘gti-"t Sources ofi heterogeneity - Example

A: Atomic interaction R: Rendezvous B: Broadcast

Java

i
l
l
l
l
l
l
l
l

Matlab/Simulink
VHDL/SystemC
Synchronous languages

Overview.

About component-based construction

Interaction modeling

Priority modeling

Implementation

Modeling systems in BIP

Discussion

l'&m Component-based construction — Formall framework

Build a component C satisfying a given property P, from
* ¢, asetof atomic components modeling behavior
* £ ={0l,, ..., gl, ...} a set of glue operators on components

Glue operators
 model mechanisms used for communication and control such as
protocols, controllers, buses.
e restrict the behavior of their arguments, that is
ol(C,.C,,.., C)| A, refines C,

artit
=g Component-based construction — Formall framework

Semantics:
« Atomic components — behavior
» Glue operators transform sets of components into components

Semantics

[0 — B

The process algebra paradigm
« Components are terms of an algebra of terms (¢, =) generated from
¢, by using operators from £

e ~ |S a congruence compatible with semantics

t'am Component-based construction - Reguirements

Find sets of glue operators meeting the following
requirements:

1. Incremental description

2. Correctness-by-construction

3. Expressiveness (discussed later)

t'am Component-based construction — Incremental description

1. Decomposition

g/

2. Flattening

Flattening can be achieved by using a (partial) associative
operation @ on GL

‘-;l't'u't Component-based construction —
Correctness by construction : Compositionality.

Building correct systems

from correct components

c sat P, implies vgl gl satEjI(Pl, . Pp)

We need compositionality results about preservation of
progress properties such as deadlock-freedom and liveness.

,(3""-“1 Component-based construction —
Correctness by construction : Cemposability.

Integrated components
preserve essential
properties

atP and

C]_ e 0o Cn

sat PAP’

Implies

Composability means non interference of properties of integrated
components. Lack of results for guaranteeing property stability e.g.
* non composability of scheduling algorithms
o feature interaction

igtm Component-based construction — The BIP framework

Layered component model

Priorities (Conflict resolution)

Interaction Model (Collaboration)

B E H AV I O R

Composition (incremental description)

PR1 ® PR2 © PR12
IM1 ® IM2 ® IM12

‘-gti-"t Component-based construction —
The BIP framework: Behavior

An atomic component has

A set of ports P, for interaction with other components

A set of control states S

A set of variables V

A set of transitions of the form O
" p IS a port St

" g, Is a guard, boolean expression on V
= f,Is a function on V (block of code)

‘-gti-rt Component-based construction —
The BIP framework: Behavior

p: a port through which interaction is sought
g, @ pre-condition for interaction through p

f, : @ computation (local state transformation)

Semantics

* Enabledness: g, Is true and some interaction involving p
IS possible

e Execution: interaction involving p followed by the
execution of f,

Overview.

About component-based construction

Interaction modeling

Priority modeling

Implementation

Modeling systems in BIP

Discussion

‘-glirt Interaction modeling

« A connector is a set of ports which can be involved in an interaction

 Port attributes (complete V, incomplete @) are used to distinguish
between rendezvous and broadcast.

* An interaction of a connector is a set of ports such that: either it contains
some complete port or it is maximal.

Interactions:
{tickd,tick2,tick3} {outl} {outl,in2} {outl,in3} {outl,in2, in3}

Interaction modeling - Examples

L CN{clcl2y
cpp o D Can

CN:{out,in}
CP: {out}

CN:{inl,out,in2§
) =

&rlirr.

Interaction modeling — Hierarchical connectors

Atomic Broadcast:
send + send recl rec2

Causal chain:
a+ab+abc+abcd

Interaction moedeling — Operational semantics

CN: {put,get},{prod},{cons}
CP: {prod},{cons}

prod

0p)
@
3
D
=
=
»

Interaction modeling— Composition

CNI[P,C]: {put,get}
CP[P,C]: &

CNIP]: {put},{prod}
CP[P]: {prod}

CN: {put,get},{prod},{cons}
CP: {prod},{cons

‘-g'i"t Interaction modeling —
Composition: Results [Goessler&SifakisSCP2005]

Incremental commutative composition directly encompassing
rendezvous and broadcast

sender receiverl sender receiverl
receiver2 receiver2

‘-g'ti-"t Interaction modeling — Data transfer

CN: BUS={send,recl,rec2}
{send}. true —skip
{send,recl}. x<y —X:=y-X, Y:=y+X
{send,rec2}. x<z —5>X:=z-X, Z:=Z+X
{send,recl,rec2}. x<z+y —5X:=y+z-X, Y.=y+X, Z:=Z+X

» Notice the difference between control flow and data flow (input, output)
« Maximal progress: execute a maximal enabled interaction

‘.glirt Interaction modeling —
Checking for deadlock-freedom|Goessler&Sifakis FESTTCS2003]

For a given system (set of components + interaction model), its dependency
graph is a bipartite labeled graph with

Nodes N = Set of components U Set of minimal interactions
Edges E

- (a,p,K)€E If a Is an interaction, pea Is an incomplete port of k
- (k1,pl,0)eE if pleais a port of k1

.
?\‘

M ¥

{p.p1,p2,p3}

Blocking condition for an incomplete port p:
BI(P) = 9p = (9p1 A Gp2 A Gp3)

artit nteraction modeling —
N Checking for deadlock-freedom (2)

Possibility of deadlock for the components of circuits o

such that Bl (o) = Ay, INc(w)ABI(p) = false

where Inc(m)= Ay .,INc(k) with Inc(k) the set of the control
states of k offering only incomplete ports

/\\
/' Bi(p1) BI(p2) \2
k2

BIp3)
B

Overview.

About component-based construction

Interaction modeling

Priority modeling

Implementation

Modeling systems in BIP

Discussion

artit -
“.' Priorities

Priorities are a powerful tool for restricting non-determinism:
e they allow straightforward modeling of urgency and
scheduling policies for real-time systems
 run to completion and synchronous execution can be
modeled by assigning priorities to threads

 they can advantageously replace (static) restriction of

process algebras

artirt " o
‘e Priorities — Priorities as controllers

A controller restricts the behavior (non determinism) of system S to enforce
a property P

Controller for P

interaction ﬂ ﬁstate

Interactions

Results [Goeessler&Sifakis, FEMCO2003] :

> system S

» Restrictions induced by controllers enforcing deadlock-free state
Invariants can be described by dynamic priorities

» Conversely, for any restriction induced by dynamic priorities there
exists a controller enforcing a deadlock-free control invariant

Priorities - Definition

Priority rules

‘.;rlirt Priorities — Definition (2)

pr={C — (}; Is a set of priority rules, where
« {C.} Is a set of disjoint state predicates

* {(; < Interactions X Interactions Is a strict partial order

pr={C; >}

semantics

Pk | Y«

i’;ﬂm Priorities — Example: FIFO policy

t1<t2 - bl1{ b2 t2<tl — b2(bl

sleepl sleep?2 O
al a2 \

start tl start t2

C) waitl

bl

1 \O (")/ez
usel <—# —— use?2

i’;ﬂm Priorities — Example: EDFE policy

D1-t1< D2-t2 — b2(bl D2-t2< D1-t1 — b1{ b2

al

start tl start t2

C) waitl

sleepl sleep? O
a2 \

i&“““ Priorities — Compaosition

pr2 prl

prl ¢ pr2

a(lhb b(c \
/\/ b\c y
2 C ‘;
bw
\

Priorities — Compeosition (2)

pri®pr2

pri® pr2 is the least priority containing prlupr2

Results :
*The operation @ is partial, associative and commutative

* pri(pr2(B)) #pri(pr2(B))
e pr1® pr2(B) refines prlupr2(B) refines pri(pr2(B))
* Priorities preserve deadlock-freedom

‘;rti-"t Priorities —
Example: Mutual exclusion + EIFO policy

t1<t2 > bl1{ b2 t2<tl — b2(bl
true - bi{e2 true —» b2(el

sleepl
al

start tl start t2

C) waitl Wait2©

b1 b2

el \O (")/ez
usel use2

sleep2 O
a2 \

igtm Priorities — Checking for deadlock-freedom: Example

Mutexon R: bl {(f2 b2 ({fl, bl’}
Mutex on R": b1’ ({f2,b2} b2 (fl

Overview.

About component-based construction

Interaction modeling

Priority modeling

Implementation

Modeling systems in BIP

Discussion

artist :
‘e Implementation — the BIP toolset

Graphic language
AADL or UML

v
v

BIP language

|
|

C++

BIP Platform

‘3&“ Implementation — C++ code generation for the BIP platform

Component Meta-model

Interaction Meta-model

Priority
C—-ab Meta-model

BIP model

Engine

BIP Platform

Implementation — The BIP platform

Interaction model

Priorities

artirt : :
“" Implementation — The BIP platform: The engine

Notify
involved atoms

Execute chosen
interaction transfer

Choose
among maximal

Launch
atom’s threads

Walit
all atoms

Compute
legal interactions

Filter
w.r.t. priorities

artirt : :
"' Implementation — the BIP language: atemic component

component C
port complete: pl, ... ; incomplete: p2, ...
data {#int x, floaty, bool z, #}
Init {# z=false; #}
behavior
state s1
on pl provided gl do fl1to sl’

on pn provided gn do fn to sn’

State s2

state sn
on

artit : .
"' Implementation — the BIP language: connectors and: priorities

connector BUS={p, p’, ... , }
complete()
behavior
on al provided g, do f_;

on an provided g,, do f_,
end

priority PR
If Cl(al<a2),(@a3<a4d), ...
If C2(a<...),(a<...), ...

If Cn(a<..)(ax<...), ...

artirt :
"' Implementation — the BIP language: compound compenent

component name
contains ¢c_namel i _namel(par_list)

contains c_namen i_namen(par_list)
connector namel

connector namem

priority namel

priority namek
end

Overview.

About component-based construction

Interaction modeling

Priority modeling

Implementation

Modeling systems in BIP

Discussion

‘-3"1'1 Modeling in BIP—
Other frameworks encoempassing heteregeneity

Semantic Unit Semantic Domain MoC

Meta-model - (Model of Computation)

Composition
Operators - Channels
ehavior

vior

en en
= = =
- - -

Operational Operational Operational
Semantics Semantics Semantics

A§ML Platform Platform

vior

t'am Modeling in BIP— Model construction space

P Architecture

: M Interaction
>

A system is defined as a point of the 3-
dimensional space

Full separation of concerns: any combination of
coordinates defines a system

"3""-”1 Modeling in BIP — Medel construction space (2)

c
O
r
©
)
>
Q.
&
O
@)
[T
@)
[
©
@)
=

Interac:tion>
(channels)

Model construction space for PTOLEMY

;;""—i-"t Modelingin BIP'— Relating classes of components

[

Study transformations characterizing
relations between classes of systems:

e Untimed — timed

* Synchronous — asynchronous

« Event triggered — data triggered

‘-gti-"t Modeling in BIP'— Timed systems

Timed Component

| PR: red _guards —tick (all_other_ports |
I

Timed architecture

artist .. :
g Modeling in BIP'— Timed systems: Example

Bursty Event-Stream:
Period = 10
Jitter = 50
Min. Interarrival Dist. = 1

WCED =8 WCED =4

End-to-end Delay?

Modeling in BIP. — Timed systems: Example (2)

get

finish,

start, (count>0)
[delay<= WCET]

count--, delay:=0

Task Component

rtirt
1’3 Modeling in BIP'— Timed systems: Example (3)

PR: tick ({ EvntT1, T1T2, T2T3, T3.Finish }

ET EvntT1l

Generator

System architecture

Modeling in BIP — Synchronous systems

Micro-step

Synchronous component

. . . s

Synchronous architecture

artist -
‘.' Modeling in BIP. — Synchronous moed2 counter

Modulo-2 counter

artirt e
N Modeling in BIP'— Synchronous mod8 counter

PR: syn{flipy, syn (flip;, syn flip,

‘-gﬂ-"t Modeling in BIP —
MPEG4 Video encoder: Compenentization

Transform a monolithic program into a componentized one
++ reconfigurability, schedulability
— — overheads (memory, execution time)

Video encoder characteristics:
e 12000 lines of C code
e Encodes one frame at a time:

— grabPicture() : gets a frame
— outputPicture() : produces an encoded frame

GrabPicture Encode OutputPicture

fin

i; Modeling in BIP -Video encoder: The Encode component
fin

GrabMacroBlock

outI_
in

MotionEstimation

out
in

DCT

outI _
in

Quant

IQuant

Intraprediction

outI_
in

IDCT

out|
in

Coding

outI_
in

Reconstruction

GrabMacroBlock:
splits a frame in
(W*H)/256 macro
blocks, outputs one
at a time

Reconstruction:
regenerates the
encoded frame from
the encoded macro
blocks.

. buffered
connections

l'; Modeling in BIP. — Video encoeder : Atemic components

in c<MAX c:=c+1

c<MAX reconstruction()
grabMacroBlock(), c:=c+1

GrabMacroBlock Reconstruction

MAX=(W*H)/256
W=width of frame
H=height of frame

Generic Functional component

artirt
“.' Modeling in BIP — Video encoder: The BlP Encoder features

 BIP code describes a control skeleton for the encoder
— Consists of 20 atomic components and 34 connectors

— ~ 500 lines of BIP code
— Functional components call routines from the encoder library

 The generated C++ code from BIP is ~ 2,000 lines

 The size of the BIP binary is 288 Kb compared to 172
Kb of monolithic binary.

i&m Modeling in BIP —
Video encoder : Componentization overhead

Overhead in execution time wrt monolithic code;:

* ~66% due to communication (can be reduced by composing
components at compile time)

—function calls by atomic components to the execution engine for
synchronization.

 ~34% due to resolution of non determinism (can be reduced by
narrowing the search space at compile time)

— time spent by engine to evaluate feasible interactions

Problem: Reduce execution time overhead
for componentized code

Overview.

About component-based construction

Interaction modeling

Priority modeling

Implementation

Modeling systems in BIP

Discussion

i&m Discussion — The BIP framework: summary

Framework for component-based construction
encompassing heterogeneity and relying on a minimal set
of constructs and principles

Clear separation between structure (interaction +priority)
and behavior
e Structure Is a first class entity
» Layered description => separation of concerns =>
Incrementality
« Correctness-by-construction techniques for deadlock-
freedom and liveness, based (mainly) on sufficient
conditions on the structure

t'am Discussion — The BIP framework: \Work directions

Theory
» Study Component Algebras CA= (B, GL,®, =), where
» (GL,®) is a monoid and @ is idempotent
» ~|s a congruence compatible with operational semantics

» Study notions of expressiveness characterizing structure: Given two

component algebras defined on the same set of atomic components,
CAl is more expressive than CA2

If VP 3gl2eGL2 gl2(B1, .,Bn) sat P = 3 glleGL1. gl1(B1, ...Bn) sat P

* Model transformations
= relating classes of systems

" preserving properties

e Distributed implementations of BIP

i;mDiscussion - The BIP framework: Work directions (2)

Methodology

» Using BIP as a programming model

» Reference architectures in BIP

BIP toolset Implementation
» Generation of BIP models from system description languages such as
SysML (IST/SPEEDS project), AADL and SystemC (ITEA/Spices project)

» Model transformation techniques in particular for code optimization
 Validation techniques

= connection to Verimag'’s IF simulation/validation environment
= specific techniques e.g. checking conditions for correctness by

construction

‘.;rlirt
More about BIP:

e http://www-verimag.imag.fr/index.php?page=tools

« Email to Joseph.Sifakis@imag.fr

THANK YOU

