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ComponentComponent--based constructionbased construction –– ObjectivesObjectives

Develop a rigorous and general basis for real-time system 
design and implementation:

• Concept of component and associated composition operators for 
incremental description and correctness by construction

• Concept for real-time architecture encompassing heterogeneity, 
paradigms and styles of computation e.g. 

� Synchronous vs. asynchronous execution
� Event driven vs. data driven computation 
� Distributed vs. centralized  execution

• Automated support for component integration and generation of glue 
code meeting given requirements
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Approches involving componentsApproches involving components

• Theory such as process algebras and automata

• SW Component frameworks, such as

� Coordination languages extensions of programming languages : 
Linda, Javaspaces, TSpaces, Concurrent Fortran, NesC

� Middleware e.g. Corba, Javabeans, .NET

� Software development environments: PCTE, SWbus, Softbench, 
Eclipse

• System modeling languages: SystemC, Statecharts, UML, Simulink/Stateflow, 
Metropolis, Ptolemy

• Architecture Description Languages focusing on non-functional aspects e.g. AADL 

Lack of 
• frameworks treating interactions and system architecture as first class entities that 

can be composed and analyzed (usually, interaction by method call)
• rigorous models for behavior and in particular aspects related to time and 

resources.
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Sources of Sources of heterogeneityheterogeneity [[HenzingerHenzinger&&SifakisSifakis FM06]FM06]

Heterogeneity of interaction
• Atomic or non atomic 
• Rendezvous or Broadcast
• Binary or n-ary

Heterogeneity of execution
• Synchronous execution
• Asynchronous execution
• Combinations of them

Heterogeneity of abstraction e.g. granularity of execution



5

Sources of heterogeneity Sources of heterogeneity -- ExampleExample

Asynchronous Computation

A R nonA R A B nonA B

Lotos
CSP

Java
UML

SDL
UML

Matlab/Simulink
VHDL/SystemC
Synchronous languages

A: Atomic interaction     R: Rendezvous             B: Broadcast

Synchronous Computation
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OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion
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ComponentComponent--based construction based construction –– FormalFormal frameworkframework

Build a component C satisfying a given property P, from
• C0 a set of atomic components modeling behavior 
• GL ={gl1, …, gli, …} a set of glue operators on components

c1 c’1
gl1

c2 c’2 

gl12
sat Pgl2

Glue operators 
• model mechanisms used for communication and control such as 
protocols, controllers, buses.
• restrict the behavior of their arguments, that is 

gl(C1 ,C2 ,.., Cn)| A1 refines C1
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ComponentComponent--based construction based construction –– FormalFormal frameworkframework

Semantics:
• Atomic components → behavior 
• Glue operators transform sets of components into components

Semantics BB1

gl
B2 Bn

The process algebra paradigm
• Components are terms of an algebra of terms (C, ≅ )  generated from 
C0 by using operators from GL 
• ≅ is a congruence compatible with semantics
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ComponentComponent--based construction based construction -- RequirementsRequirements

Find sets of glue operators meeting the following 
requirements:

1. Incremental description

2. Correctness-by-construction

3. Expressiveness (discussed later)
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ComponentComponent--based construction based construction –– Incremental descriptionIncremental description

≅ C1

gl_1
1. Decomposition

gl

C1 C2 Cn

gl_2
C2 Cn

≅
c1 c’1

gl1
c2 c’2 

gl12
gl2

2. Flattening 

c1 c’1 c2 c’2 

g

Flattening can be achieved by using a (partial) associative 
operation ⊕ on GL
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ComponentComponent--based construction based construction ––
CorrectnessCorrectness by construction : by construction : CompositionalityCompositionality

Building correct systems 
from correct components

We need compositionality results about preservation of  
progress properties such as  deadlock-freedom and liveness.

☺ ☺
gl

☺

ci sat gl(P1, ..,Pn)
gl

c1 cn

sat Pi implies ∀gl ∃gl ~~
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ComponentComponent--based construction based construction ––
CorrectnessCorrectness by construction : by construction : ComposabilityComposability

Integrated components 
preserve essential 
properties ☺

gl
☺ ☺

gl

/

and

Composability means non interference of properties of integrated
components.  Lack of results for guaranteeing property stability e.g.

• non composability of scheduling algorithms
• feature interaction

sat Pc1 cn

gl sat P’
c1 cn

gl’

c1 cn
implies sat P∧P’gl ⊕ gl’
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ComponentComponent--based construction based construction –– The BIP frameworkThe BIP framework

Interaction Model (Collaboration)

Priorities  (Conflict resolution)

PR2 
IM2 

PR1 
IM1 IM1 

PR1 ⊕ PR2 ⊕ PR12

Composition (incremental description) 

Layered component model

IM1 ⊗ IM2 ⊗ IM12
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ComponentComponent--based construction based construction ––
The BIP framework: BehaviorThe BIP framework: Behavior

put

An atomic component has
• A set of ports P, for interaction with other components 
•A set of control states S 
• A set of variables V 
• A set of transitions of the form

� p is  a port
� gp is a guard, boolean expression on V
� fp is a function on V (block of code)

full

empty

get, 0<x
y:=f(x)ge

t

pu
t

p     g p fp

s1 s2

x y
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ComponentComponent--based construction based construction ––
The BIP framework: BehaviorThe BIP framework: Behavior

s1 s2

p:  a port through which interaction is sought
gp: a pre-condition for interaction through p
fp : a computation (local state transformation)

Semantics
• Enabledness: gp is true and some interaction involving p 
is possible
• Execution: interaction involving  p followed by the    
execution of fp

p     gp fp
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OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion
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Interaction modelingInteraction modeling

Interactions: 
{tick1,tick2,tick3} {out1} {out1,in2} {out1,in3} {out1,in2, in3}

tick1 tick2 tick3

out1 in2 in3

• A connector is a set of ports which can be involved in an interaction

• Port attributes (complete , incomplete ) are used to distinguish 
between rendezvous and broadcast.
• An interaction of a connector is a set of ports such that: either it contains 
some complete port or it is maximal.
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IInteraction nteraction modeling modeling -- ExamplesExamples

cl1 cl2

out in

out in1

in2

CN:{cl1,cl2}
CP: ∅

CN:{out,in}
CP: {out}

CN:{in1,out,in2
}
CP: {out}

cl1,cl2

cl2cl1

out, in

inout

out,in1

in1

in1,in2

in2

out,in2

out

in1,out,in2
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IInteraction nteraction modeling modeling –– HierarchicalHierarchical connectorsconnectors

send rec1 rec2
Atomic Broadcast:
send + send rec1 rec2

a b c a b c

a b c d

Causal chain:
a+ab+abc+abcd

≈
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Interaction modeling Interaction modeling –– OperationalOperational semanticssemantics

prod              put

CN: {put,get},{prod},{cons}
CP: {prod},{cons}

get              cons

{put, get}

putprod
get 

putget 

cons

prodcons
×
×

×

×
O

perational

Sem
antics
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prod              put get              cons

Interaction modeling Interaction modeling –– CompositionComposition

⎢⎢

CN[P,C]: {put,get}
CP[P,C]: ∅

prod              put

CN[P]: {put},{prod}
CP[P]: {prod}

get              cons

CN[C]: {get}, {cons}
CP[C]: {cons}

CN: {put,get},{prod},{cons}
CP: {prod},{cons}



22

Interaction modeling Interaction modeling ––
Composition: Results Composition: Results [[GoesslerGoessler&SifakisSCP2005]&SifakisSCP2005]

Incremental commutative composition directly encompassing  
rendezvous and broadcast

sender receiver1 sender receiver1

receiver2receiver2

=

out1 in1

in2

sender receiver1

receiver2
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Interaction modelingInteraction modeling –– DDataata transfertransfer

CN: BUS={send,rec1,rec2} 
{send}:  true →skip
{send,rec1}:  x<y →x:=y-x, y:=y+x
{send,rec2}:  x<z →x:=z-x, z:=z+x
{send,rec1,rec2}:  x<z+y →x:=y+z-x, y:=y+x, z:=z+x

send x rec1 y rec2 z

• Notice the difference between control flow and data flow (input, output)
• Maximal progress: execute a maximal enabled interaction
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Interaction modeling Interaction modeling ––
Checking for deadlockChecking for deadlock--freedomfreedom[Goessler&Sifakis[Goessler&Sifakis FSTTCS2003]FSTTCS2003]

For a given system (set of components + interaction model), its dependency 
graph is a bipartite labeled graph with
Nodes N = Set of components ∪ Set of minimal interactions
Edges E 
- (α,p,k)∈E if α is an interaction, p∈α is an incomplete port of k
- (k1,p1,α)∈E if p1∈α is a port of k1     

Blocking condition for an incomplete port p: 
Bl(p) = gp∧ ¬ (gp1 ∧ gp2 ∧ gp3)

p
p1

p2

p3
{p,p1,p2,p3}

kk2

k1

k3
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Interaction modeling Interaction modeling ––
Checking for deadlockChecking for deadlock--freedom (2)freedom (2)

Possibility of deadlock for the components of circuits ω

such that Bl (ω) = ∧p∈ω Inc(ω)∧Bl(p) = false

where Inc(ω)= ∧k∈ωInc(k) with Inc(k) the set of the control 
states of k offering only incomplete ports 

p1
p2

p3
p4

k1

k3

k4 k2
Bl(p1) Bl(p2)

Bl(p3)Bl(p4)
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OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion
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PrioritiesPriorities

Priorities are a powerful tool for restricting non-determinism:

• they allow straightforward modeling of urgency and 

scheduling policies for real-time systems 

• run to completion and synchronous execution can be 

modeled by assigning  priorities to threads 

• they can advantageously replace (static) restriction of 

process algebras
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Priorities Priorities –– Priorities as controllersPriorities as controllers

A controller restricts the behavior (non determinism) of system S to enforce  
a property P

Controller for P

Interactions

stateinteraction

system S

Results [Goessler&Sifakis, FMCO2003][Goessler&Sifakis, FMCO2003] :

• Restrictions induced by controllers enforcing deadlock-free state 
invariants can be described by dynamic priorities 

• Conversely, for any restriction induced by dynamic priorities there 
exists  a controller enforcing a  deadlock-free control invariant
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g1 g2

Priorities Priorities -- DefinitionDefinition

Priority  rule                        Restricted guard g1’
true → p1 〈 p2 g1’ = g1 ∧ ¬ g2 

C → p1 〈 p2 g1’ = g1 ∧ ¬(C ∧ g2 )

p1                 p2

Priority rules
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Priorities Priorities –– Definition (2)Definition (2)

pr = { Ci → 〈I }i is a set of priority rules, where 
• {Ci }i is a set of disjoint state predicates 
• 〈i ⊆ Interactions × Interactions is  a strict partial order 

g’k = gk ∧ ∧ C → 〈 ∈pr (C ⇒ ∧pk 〈pi ¬ gi )

pr = { Ci → 〈i }i

pk gk pk g’k
semantics
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Priorities Priorities –– Example: FIFO policy Example: FIFO policy 

t1≤ t2 → b1〈 b2              t2< t1 → b2〈 b1

sleep1

wait1

use1    

sleep2

wait2

use2
e1

b1

a1

b2

a2

e2
#

start t1 start t2
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Priorities Priorities –– Example: EDF policy Example: EDF policy 

D1-t1≤ D2-t2 → b2〈 b1       D2-t2< D1-t1 → b1〈 b2

sleep1

wait1

use1    

sleep2

wait2

use2
e1

b1

a1

b2

a2

e2
#

start t1 start t2

t1 ≤D1 t2 ≤D2
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Priorities Priorities –– CompositionComposition

pr1
pr2

≠ pr2
pr1

a c
b

a 〈1 b c
b

b〈2 c
c

b〈2 c
a 〈1 b

a c a c
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Priorities Priorities –– Composition (2)Composition (2)

pr1⊕ pr2 is the least priority containing pr1∪pr2

Results :
•The operation ⊕ is partial, associative and commutative
• pr1(pr2(B)) ≠pr1(pr2(B)) 
• pr1⊕ pr2(B) refines pr1∪pr2(B) refines pr1(pr2(B)) 
• Priorities preserve deadlock-freedom

pr1
pr2 pr1⊕ pr2

=

Take:
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Priorities Priorities ––
Example: Mutual exclusion + FIFO policyExample: Mutual exclusion + FIFO policy

true → b1〈 e2              true → b2〈 e1

t1≤ t2 → b1〈 b2              t2< t1 → b2〈 b1

sleep1

wait1

use1    

sleep2

wait2

use2
e1

b1

a1

b2

a2

e2

start t1 start t2
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Priorities Priorities –– Checking for deadlockChecking for deadlock--freedom: Examplefreedom: Example

s1 b1

w2
a1

f1

a2

f2

Mutex on R :  b1 〈 f2   b2 〈 { f1, b1’} 

b2’

w1

b1’ b2

R

RR’ RR’

R’

Risk of deadlock: b1’ 〈 b2  and b2 〈 b1’

Mutex on R’ : b1’ 〈 { f2, b2 } b2’ 〈f1

s2
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OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion
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ImplementationImplementation –– the BIP toolset  the BIP toolset  

BIP language

BIP Platform

Graphic language
AADL or UML

C++

THINK

IF Platform
IF
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Implementation Implementation –– C++ code generation for the BIP platformC++ code generation for the BIP platform

Interaction Meta-model

Priority
Meta-model

EngineBIP model

C→a〈b

Component Meta-model

BIP Platform



40

ImplementationImplementation –– TThe BIP platformhe BIP platform

• Code execution and state space exploration features
• Implementation in C++ on Linux using POSIX threads. 

Interaction model

Priorities

Engine
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Implementation Implementation –– The BIP platformThe BIP platform: : The engineThe engine

init

loop

Launch 
atom’s threads

stable

Wait
all atoms

ready

Compute
legal interactions

filter
Filter
w.r.t. priorities

choose

Choose 
among maximal

execute

Execute chosen
interaction transfer

Notify
involved atoms
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Implementation Implementation –– the BIPthe BIP language: language: atomic componentatomic component

component C 
port  complete: p1, … ;  incomplete: p2, …
data  {# int x, float y, bool z, …. #} 
init {# z=false; #} 

behavior
state s1

on p1 provided g1 do f1 to  s1’
……………… ……
on pn provided gn do fn to  sn’

state s2
on …..

….

state sn
on ....

end
end
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Implementation Implementation –– the BIPthe BIP language: language: connectors and prioritiesconnectors and priorities

connector BUS= {p, p’, … , }
complete()

behavior
on α1 provided gα1 do fα1
……….
on αn provided gαn do fαn

end

priority PR
if C1 (α1 < α2), (α3 < α4) , …
if C2 (α < …), (α <…) , …
…
if Cn (α <…), (α <…) , …
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Implementation Implementation –– the BIP language: compound componentthe BIP language: compound component

component name
contains c_name1 i_name1(par_list)

……
contains c_namen i_namen(par_list)

connector name1
……
connector namem 

priority name1 
……
priority namek 
end
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OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion
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Modeling in BIPModeling in BIP––
Other frameworks encompassing heterogeneityOther frameworks encompassing heterogeneity

Metropolis

Platform

Channels

Director

PTOLEMY

Behavior 

Semantic Domain MoC
(Model of Computation)

Media

Quantity 
Manager

Behavior 

PlatformASML

.net

Composition
Operators

Vanderbilt’s Approach

Operational
Semantics

Semantic Unit
Meta-model

Behavior 

Semantic Unit
Meta-model

Operational
Semantics

Operational
Semantics
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Modeling in BIPModeling in BIP–– Model construction space Model construction space 

A system is defined as a point of the 3-
dimensional space
Full separation of concerns: any combination of 
coordinates defines a system

Be
ha

vi
or

IM         Interaction

P
R

   
  P

rio
rit

y 

Architecture

System
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M
od

el
 o

f C
om

pu
ta

tio
n

Modeling in BIP Modeling in BIP –– Model construction space (2)Model construction space (2)

Model construction space for PTOLEMY

Be
ha

vi
or

Interaction 
(channels) 
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Modeling in BIP Modeling in BIP –– Relating classes of components Relating classes of components 

Study transformations characterizing 
relations between classes of systems:

• Untimed – timed
• Synchronous – asynchronous
• Event triggered – data triggered

Bs

IMa

asynchronousP
R

a 
   

   
  P

R
s 

synchronous

Ba

IMs
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Modeling in BIPModeling in BIP –– Timed Timed systemssystems

ptimeout

tick
x++

tick

tick tick tick tick

PR: red_guards →tick 〈 all_other_ports

x:=0

x=10 x<10

Timed Component

Timed architecture
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Modeling in BIPModeling in BIP –– Timed Timed systemssystems: : ExampleExample

T1 T2 T3

CPU1 CPU2 CPU3

Bursty Event-Stream:
Period = 10
Jitter = 50

Min. Interarrival Dist. = 1

WCED = 8 WCED = 4 WCED = 1

Source: http://www.tik.ee.ethz.ch/~leiden05
Workshop on Distributed Embedded Systems, Leiden, November 21-24, 2005

End-to-end Delay?
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Modeling in BIPModeling in BIP –– Timed Timed systemssystems: : ExampleExample (2)(2)

READY

EXEC

start, (count>0)
count--, delay:=0

get
count++

get
count++

tick

tick
delay++

ge
t

fin
is

h

tick

finish, 
[delay<= WCET ]

Task ComponentTask Component
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Modeling in BIPModeling in BIP –– Timed Timed systemssystems: : Example (3)Example (3)

ge
t

fin
is

h
tick

ge
t

fin
is

h

tick

ge
t

fin
is

h

tick

Event
Generator go

tick

PR: tick 〈 { EvntT1, T1T2, T2T3 , T3.Finish }

T1 T2 T3

tick

EvntT1 T1T2 T2T3

System architecture
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Modeling in BIPModeling in BIP –– Synchronous systemsSynchronous systems

syn
p

syn

p1 pn syn
syn

p1p pnpi

Micro-step

Synchronous component

syn syn syn syn

PR: syn〈 all_other_ports

Synchronous architecture
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Modeling in BIPModeling in BIP –– Synchronous mod2 counterSynchronous mod2 counter

Zero’

One’

flip
gflip: X=1
fflip: Y:=1

syn

syn

flip
gflip: X=1
fflip: Y:=0

Zero

One

syn

syn

syn

Modulo-2 counter

in
:X

ou
t:Y



56

Modeling in BIPModeling in BIP –– Synchronous mod8 counterSynchronous mod8 counter

in
:X

1

in
:X

2

CN: syn={syn0, syn1 , syn2}, fsyn: X1 := Y0;  X2 := Y1 ∧ Y0

in
:X

0

ou
t:Y

0

ou
t:Y

1

ou
t:Y

2

PR: syn〈flip0, syn 〈 flip1, syn 〈 flip2

tick1tick0 tick2

in
:X

1

in
:X

2

in
:X

0

ou
t:Y

0

ou
t:Y

1

ou
t:Y

2

AND

syn
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Modeling in BIPModeling in BIP ––
MPEG4 Video encoder: ComponentizationMPEG4 Video encoder: Componentization

f_in f_out

grabPicture()

f_in f_out

outputPicture()

GrabPicture OutputPicture

f_out f_out f_outf_in f_inf_in

Encode

Transform a monolithic program into a componentized one
++ reconfigurability, schedulability
– – overheads (memory, execution time)

Video encoder characteristics:
• 12000 lines of C code
• Encodes one frame at a time:

– grabPicture() : gets a frame
– outputPicture()  :  produces an encoded frame
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Reconstruction

Modeling in BIPModeling in BIP ––Video encoder: The Encode componentVideo encoder: The Encode component

Intraprediction

IQuant

IDCT

MotionEstimation

DCT

Quant

Coding

GrabMacroBlock

out
in

out
in

out
in

out
in

out
in

out

f_in

out
in

out
in

in1 in2

f_in

f_out

f_out

: buffered
connections

GrabMacroBlock:   
splits a frame in   
(W*H)/256 macro 
blocks, outputs one 
at a time 

Reconstruction: 
regenerates the 
encoded frame from 
the encoded macro 
blocks.
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Modeling in BIPModeling in BIP –– Video encoder : Atomic componentsVideo encoder : Atomic components

in out

fn()

in  c<MAX  c:=c+1 

f_out
c=MAX
c:=0

Reconstruction

Generic Functional component

f_in

out

GrabMacroBlock

c<MAX
grabMacroBlock(), c:=c+1

in f_outout

out

f_in

in

reconstruction()

exit
c=MAX c:=0

MAX=(W*H)/256
W=width of frame
H=height of frame
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Modeling in BIPModeling in BIP –– Video encoder: The BIP Encoder featuresVideo encoder: The BIP Encoder features

• BIP code describes a control skeleton for the encoder
– Consists of 20 atomic components and 34 connectors 
– ~ 500 lines of BIP code
– Functional components call routines from the encoder library 

• The generated C++ code from BIP is ~ 2,000 lines

• The size of the BIP binary is 288 Kb compared to 172 
Kb of monolithic binary.
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Modeling in BIPModeling in BIP ––
Video encoder : Componentization overheadVideo encoder : Componentization overhead

Overhead in execution time wrt monolithic code:

• ~66% due to communication (can be reduced by composing 
components at compile time) 
–function calls by atomic components to the execution engine for 

synchronization.

• ~34% due to resolution of non determinism  (can be reduced by 
narrowing the search space at compile time)
– time spent by engine to evaluate feasible interactions

Problem: Reduce execution time overhead
for componentized code
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OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion
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Discussion Discussion –– The BIP framework: summaryThe BIP framework: summary

Framework for component-based construction 
encompassing heterogeneity and relying on a minimal set 
of constructs and principles

Clear separation between structure (interaction +priority) 
and behavior

• Structure is a first class entity 
• Layered description => separation of concerns => 
incrementality

• Correctness-by-construction techniques for deadlock-
freedom and liveness, based (mainly) on sufficient 
conditions on the structure



64

Discussion Discussion –– The BIP framework: Work directionsThe BIP framework: Work directions

Theory
• Study Component Algebras  CA= (B, GL,⊕, ≅),  where 
� (GL,⊕) is a monoid and ⊕ is idempotent
� ≅ is a congruence compatible with operational semantics

• Study notions of expressiveness characterizing structure: Given two 
component algebras defined on the same set of atomic components,

CA1 is more expressive than CA2
if ∀P  ∃gl2∈GL2 gl2(B1, .,Bn) sat P ⇒ ∃ gl1∈GL1. gl1(B1, …Bn) sat P

• Model transformations
� relating classes of systems
� preserving properties 

• Distributed implementations of BIP
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Discussion Discussion -- The BIP framework: Work directions (2)The BIP framework: Work directions (2)

Methodology
• Using BIP as a programming model

• Reference architectures in BIP

BIP toolset Implementation
• Generation of BIP models from system description languages such as 
SysML (IST/SPEEDS project), AADL and SystemC (ITEA/Spices project)

• Model transformation techniques in particular for code optimization

• Validation techniques 
� connection to Verimag’s IF simulation/validation environment
� specific techniques e.g. checking conditions for correctness by
construction
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More about BIP:

• http://www-verimag.imag.fr/index.php?page=tools

• Email to Joseph.Sifakis@imag.fr


