Static Analysis

of

Dynamic Communication Systems

Jorg Bauer

Technical University of Denmark
February 215, 2007

Motivation — Car Platooning

Coordinated groups of fully automated vehicles, called platoons,
can double or triple highway capacity when operating in their own
dedicated lanes.

DEMO

Motivation — Car Platooning

A car platoon of size two.

Motivation — Car Platooning

A free agent appears and approaches the platoon.

Motivation — Car Platooning

The free agent request a merge from the platoon leader.

Motivation — Car Platooning

The leader accepts the free agent as a new follower.

Motivation — Car Platooning

A car platoon of size three is established.

Communication Topology

I

cary : free_agent

car_ahead(cars)

e Local states: free_agent, follower, leader.

e Channels: Idr, flws.

e Message queues.

I

cars : follower

r 1

ldr

/—\ﬂ’t.vs

cars : leader
1

Challenge

Specification and verification of systems with
e Dynamically evolving communication topologies.
e Changing and unbounded number of objects.

e Properties of interest (platoons):

— Topology Properties: unique leaders, no lonely followers, no
leader cycles, ...

— Temporal properties: Merge will finish (successfully), cars
will always be able to leave the platoon.

Static Analysis of DCS

e Outline:
— Partner graph grammars (PGG)
— Abstract interpretation of PGG’s
— Platoon Case Study: Results

— Extensions, conclusions, further reading

Platoons as Graphs — Idealized

e Abstract from queues and explicit messages.

e Perfect communication.

e Platoon terminology

follower

.

free agent

leader

r

N

platoons

Platoon Merge

e Non-deterministically start a merge.

e Rear leader hands over followers to front leaders.

e Finish merge after the hand-over.

Partner Graph Grammars

e Assume undirected, node-labeled graph G = (Vo, Eg,{g) over
finite set N of node labels

e A PGG is a pair (R,Z) of rules and initial graph.
e A rule is a four-tuple (L, h, p, R), where

— L is the left graph

— h:Vp — Vg is a (partial) mapping

— p: VL — P(N) are partner constraints

— R is the right graph

e SPO approach with injective matching and a mild form of
negative application conditions.

Semantics

e Application of rule (L, h, p, R) to graph G:
1. Match: an injective morphism m : Vi, — Vg

2. Partner constraint satisfaction: For all u € dom(p) holds:

p(u) = {fa(v) | {u,v} € Eg}

3. Replace image of m by R.

e Graph semantics [(R,Z)]: set of all graphs obtainable by
iterated rule application from Z. (undecidable)

Platoon Partner Graph Grammar

e Arbitrary creation and destruction of free agents

@ @& © O @ O

free agent and leader 1o be two leaders start to

start to merge. .. and front leader merge
Left @
L

@ O A —
two free agents start

to merge end of merge hand over

from to front

@

Sample Rule Application

Follower Hand-Over

Overview
e Partner graph grammars (PGG)

e Abstract interpretation of PGG’s
— Abstraction function

— Abstract transformers

e Results

e Extensions, conclusions, further reading

Abstraction of Graphs

e Two-layered abstraction.

e For each connected component (cluster) of graph (V, E,¢), two

nodes are partner equivalent iff
l(u) = Lv) A {l(u) | {u',u} € E} = {£(v') | {v',0} € E}

1. Build quotient graph cluster-wise wrt. partner equivalence

while tracking multiplicity up to some k.

2. Summarize isomorphic connected components: abstract clusters

Example Abstraction

n

®-9

®

o

x3

. -%.m

O @
.ﬂ/ @
‘ZM

=1

Hu ki {yed {vsh {yat}
@9

.\‘
‘{xs}

e .p{”“’“}

Concretization

22%esele 0

V=1

Abstract Updates—Best Abstract Transformers

1. Non-injective matches due to abstraction.

2. Materialization locally undoes abstraction: injective match
e Node materialization

e Cluster materialization
3. Update like in the concrete case.
4. Abstract to guarantee boundedness.

e Abstract graph semantics: finite, bounded set [R]* of abstract

clusters

Sample Abstract Update

cluster materialization ‘ ‘

Sample Abstract Update

node materialization

|
\ \
\| \

@ 0@

match

Overview
e Partner graph grammars (PGG)
e Abstract interpretation of PGG’s

e Results
— Soundness
— Completeness

— Experiments

e Extensions, conclusions, further reading

Soundness

e The abstract graph semantics is an over-approximation of the
concrete graph semantics: Ugcrry ar(G) C [R]"
e Forbidden Subgraphs
— Given a forbidden subgraph F
— N = NU{ewil}
— R := RU{F — ewvil}
— If evil € [R]*, then F' does not occur in [R]

Towards Completeness

e Friendly Grammars: No initial graph implies cluster

multiplicity.
e Summary Cycles.
@ @ ¢-0-0-0
e Unique Partners.
o ® 2% o7
o % ¢ O 3
e Lone Summaries: No adjacent summary nodes.

e Inductive Summaries: all concretizations possible.

Completeness

e No summary cycles + unique partner imply Matching
Theorem: Abstract matches are equivalent to concrete matches.

e Lone summaries 4+ unique partner + inductive summaries

imply cluster completeness: (Jgepry ar(G) = [R]*.

e Property preservation: Lone summaries + unique partners
imply (for connected graphs C) C' = ¢ <= ai(C) = 9, for
first-order formulas 1) without equality.

Experimental Evaluation of Platoons

Example N. Labels | E. Labels | Rules | Constraints || Clusters | Rule App. | Iter
Merge 5 1 8 1 12 19 5
Split 6 1 4 4 13 15 4
Combined 6 1 12 5 169 302 10
Combined+ 6 1 12 9 22 34 7
Queues 18 4 30 34 159 163 40
Faultyl 5 1 32 1 20 53 6
Faulty3 5 2 32 1 450 1206 10

e Relevant topology properties proven, sometimes completeness.

e Useful for protocol design, too.

e Partner graph grammars are highly sensitive to changes, in

particular to partner constraints.

Overview
e Partner graph grammars (PGG)
e Abstract interpretation of PGG’s
e Results

e Extensions, conclusions, further reading

Existing Extensions
e Syntactic sugar for PGG’s; directed, edge-labeled graphs.
e Counting clusters.
e General clusters.
e A logic for reasoning about PGG's.
Potential Extensions
e Attributed graphs for queue implementations.

e Unified framework with general, property-driven . notions of

(partner) equivalence.
e More hierarchy than just 2 (ad hoc routing).

e Beyond dynamic communication systems.

What have you learnt?

e Graph Grammars: powerful specification formalism for highly

dynamic systems

— Motives: Reiko Heckel, Andy Schiirr.

— http://gratra.org/

— Handbook of Graph Grammars and Computing by Graph
Transformation. World Scientific 1997 - 99, published in

three volumes.

e Platoon case study

— http://www.path.berkeley.edu/

What have you learnt?

e Abstract interpretation: powerful verification formalism

— Patrick & Radhia Cousot. Abstract interpretation: a unified

lattice model for static analysis of programs by construction
or approximation of fixpoints. ACM POPL 1977.

— Patrick & Radhia Cousot. Systematic design of program
analysis frameworks. ACM POPL, 1979.

— Hanne Nielson, Flemming Nielson, and Chris Hankin.

Principles of Program Analysis. Springer 1999.
— Motives: Sylvie Putot, Reinhard Wilhelm, Hanne Riis

Nielson.

What have you learnt?

e Graph grammar verification

— Barbara Konig, Vitali Kozioura. Counterexample-Guided
Abstraction Refinement for the Analysis of Graph
Transformation Systems., TACAS 2006.

— Arend Rensink, Dino Distefano. Abstract Graph
Transformation. Electr. Notes Theor. Comput. Sci. 157(1):
39-59 (2006).

— Reiko Heckel. Compositional Verification of Reactive
Systems Specified by Graph Transformation. FASE 1998.

— http://www2.imm.dtu.dk/~ joba/phd.pdf

