
Static Analysis

of

Dynamic Communication Systems

Jörg Bauer

Technical University of Denmark

February 21st, 2007

Motivation – Car Platooning

Coordinated groups of fully automated vehicles, called platoons,

can double or triple highway capacity when operating in their own

dedicated lanes.

DEMO

Motivation – Car Platooning

A car platoon of size two.

Motivation – Car Platooning

A free agent appears and approaches the platoon.

Motivation – Car Platooning

The free agent request a merge from the platoon leader.

Motivation – Car Platooning

The leader accepts the free agent as a new follower.

Motivation – Car Platooning

A car platoon of size three is established.

Communication Topology

car1 : free agent

car ahead(car3)

car2 : follower car3 : leader

ldr

flws

• Local states: free agent, follower, leader.

• Channels: ldr, flws.

• Message queues.

Challenge

Specification and verification of systems with

• Dynamically evolving communication topologies.

• Changing and unbounded number of objects.

• Properties of interest (platoons):

– Topology Properties: unique leaders, no lonely followers, no

leader cycles, . . .

– Temporal properties: Merge will finish (successfully), cars

will always be able to leave the platoon.

Static Analysis of DCS

• Outline:

– Partner graph grammars (PGG)

– Abstract interpretation of PGG’s

– Platoon Case Study: Results

– Extensions, conclusions, further reading

Platoons as Graphs – Idealized

• Abstract from queues and explicit messages.

• Perfect communication.

• Platoon terminology

platoons

free agent

leader

follower

front leaderrear leader

Platoon Merge

• Non-deterministically start a merge.

• Rear leader hands over followers to front leaders.

• Finish merge after the hand-over.

Partner Graph Grammars

• Assume undirected, node-labeled graph G = (VG, EG, ℓG) over

finite set N of node labels

• A PGG is a pair (R, I) of rules and initial graph.

• A rule is a four-tuple (L, h, p, R), where

– L is the left graph

– h : VL → VR is a (partial) mapping

– p : VL → P(N) are partner constraints

– R is the right graph

• SPO approach with injective matching and a mild form of

negative application conditions.

Semantics

• Application of rule (L, h, p, R) to graph G:

1. Match: an injective morphism m : VL → VG

2. Partner constraint satisfaction: For all u ∈ dom(p) holds:

p(u) = {ℓG(v) | {u, v} ∈ EG}

3. Replace image of m by R.

• Graph semantics [[(R, I)]]: set of all graphs obtainable by

iterated rule application from I. (undecidable)

Platoon Partner Graph Grammar

• Arbitrary creation and destruction of free agents

free agent and leader

start to merge. . .
. . . to be rear leader

and front leader

two leaders start to

merge

two free agents start

to merge end of merge hand over follower

from rear to front

Sample Rule Application

Follower Hand-Over

match

Overview

• Partner graph grammars (PGG)

• Abstract interpretation of PGG’s

– Abstraction function

– Abstract transformers

• Results

• Extensions, conclusions, further reading

Abstraction of Graphs

• Two-layered abstraction.

• For each connected component (cluster) of graph (V,E, ℓ), two

nodes are partner equivalent iff

ℓ(u) = ℓ(v) ∧ {ℓ(u′) | {u′, u} ∈ E} = {ℓ(v′) | {v′, v} ∈ E}

1. Build quotient graph cluster-wise wrt. partner equivalence

while tracking multiplicity up to some k.

2. Summarize isomorphic connected components: abstract clusters

Example Abstraction

αk=1

x1

x2

x3

{x1, x2}

{x3}

{{y1}, {y2}, {y3}, {y4}}

y1

y2

y3

y4

Concretization

. . .

. . .

. . .

...

. . .

...

. . .

γk=1

Abstract Updates—Best Abstract Transformers

1. Non-injective matches due to abstraction.

2. Materialization locally undoes abstraction: injective match

• Node materialization

• Cluster materialization

3. Update like in the concrete case.

4. Abstract to guarantee boundedness.

• Abstract graph semantics: finite, bounded set [[R]]k of abstract

clusters

Sample Abstract Update

#

cluster materialization

update

match

abstract

Sample Abstract Update

#

node materialization

abstract

match

update

Platoon Abstract Graph Semantics

Overview

• Partner graph grammars (PGG)

• Abstract interpretation of PGG’s

• Results

– Soundness

– Completeness

– Experiments

• Extensions, conclusions, further reading

Soundness

• The abstract graph semantics is an over-approximation of the

concrete graph semantics:
⋃

G∈[[R]] αk(G) ⊆ [[R]]k

• Forbidden Subgraphs

– Given a forbidden subgraph F

– N := N∪̇{evil}

– R := R∪̇{F → evil}

– If evil 6∈ [[R]]k, then F does not occur in [[R]]

Towards Completeness

• Friendly Grammars: No initial graph implies cluster

multiplicity.

• Summary Cycles.

• Unique Partners.

• Lone Summaries: No adjacent summary nodes.

• Inductive Summaries: all concretizations possible.

Completeness

• No summary cycles + unique partner imply Matching

Theorem: Abstract matches are equivalent to concrete matches.

• Lone summaries + unique partner + inductive summaries

imply cluster completeness:
⋃

G∈[[R]] αk(G) = [[R]]k.

• Property preservation: Lone summaries + unique partners

imply (for connected graphs C) C |= ψ ⇐⇒ αk(C) |= ψ, for

first-order formulas ψ without equality.

Experimental Evaluation of Platoons

Example N. Labels E. Labels Rules Constraints Clusters Rule App. Iter

Merge 5 1 8 1 12 19 5

Split 6 1 4 4 13 15 4

Combined 6 1 12 5 169 302 10

Combined+ 6 1 12 9 22 34 7

Queues 18 4 30 34 159 163 40

Faulty1 5 1 32 1 20 53 6

Faulty3 5 2 32 1 450 1206 10

• Relevant topology properties proven, sometimes completeness.

• Useful for protocol design, too.

• Partner graph grammars are highly sensitive to changes, in

particular to partner constraints.

Overview

• Partner graph grammars (PGG)

• Abstract interpretation of PGG’s

• Results

• Extensions, conclusions, further reading

Existing Extensions

• Syntactic sugar for PGG’s; directed, edge-labeled graphs.

• Counting clusters.

• General clusters.

• A logic for reasoning about PGG’s.

Potential Extensions

• Attributed graphs for queue implementations.

• Unified framework with general, property-driven . notions of

(partner) equivalence.

• More hierarchy than just 2 (ad hoc routing).

• Beyond dynamic communication systems.

What have you learnt?

• Graph Grammars: powerful specification formalism for highly

dynamic systems

→ Motives: Reiko Heckel, Andy Schürr.

→ http://gratra.org/

→ Handbook of Graph Grammars and Computing by Graph

Transformation. World Scientific 1997 - 99, published in

three volumes.

• Platoon case study

→ http://www.path.berkeley.edu/

What have you learnt?

• Abstract interpretation: powerful verification formalism

→ Patrick & Radhia Cousot. Abstract interpretation: a unified

lattice model for static analysis of programs by construction

or approximation of fixpoints. ACM POPL 1977.

→ Patrick & Radhia Cousot. Systematic design of program

analysis frameworks. ACM POPL, 1979.

→ Hanne Nielson, Flemming Nielson, and Chris Hankin.

Principles of Program Analysis. Springer 1999.

→ Motives: Sylvie Putot, Reinhard Wilhelm, Hanne Riis

Nielson.

What have you learnt?

• Graph grammar verification

→ Barbara König, Vitali Kozioura. Counterexample-Guided

Abstraction Refinement for the Analysis of Graph

Transformation Systems., TACAS 2006.

→ Arend Rensink, Dino Distefano. Abstract Graph

Transformation. Electr. Notes Theor. Comput. Sci. 157(1):

39-59 (2006).

→ Reiko Heckel. Compositional Verification of Reactive

Systems Specified by Graph Transformation. FASE 1998.

→ http://www2.imm.dtu.dk/~joba/phd.pdf

