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Mottvations

= Reuse strategy critical for cost and time-to-market
= Systems assembled from internal and third party IPs
= Correctness of composition must be verified
o Costly simulations may still miss problems
o Safety-critical applications require a formal correctness proof
= Abstract component models used to specify the requirements
o Transaction-level models shorten time to verification
o Standards used to simplify the verification problem
= Formal proofs usually based on type systems
o Typically only limited to static information
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Extending types to richer models

= Define the rules of interaction
o Static typing
o Dynamic behaviors
o Non-functional performance parameters
= Distinguish between roles and responsibilities
o Assumptions on inputs accepted from the environment
o Guarantees on the outputs generated
= Leads to a notion of compatibility

o Informally, the output guarantees must satisfy the input
assumptions
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‘ Component models

= Descriptive
o What does the component do?
o Examples: a C++ class definition (modulo static typing), a
Verilog module, a device simulation model
= Defines behavior under all possible inputs
o Terminology: input enabling, progressive, receptive
u Does not constrain the environment
= Composes well under any environment
o Component will do something in the end
o Appropriate for describing implementations
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‘ Interface models

= Prescriptive
o How can a component be combined with other components?
o Examples: typing of a C function, Java interface definition, I/O
signature of a Verilog module, operating conditions of a device
= Defines requirements under which a component may
be used
o Not all inputs are legal
o Constrains the environment to avoid those inputs

= May not compose under some environment

o Rejects environments that violate assumptions
o Appropriate for describing specifications
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Producer Consumer
Send b immediately after a Possibly wait between a and b

Data partitioned into two parts: aand b
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‘ Example revisited

Rejects T
input
Producer Consumer

Possibly wait between a and b Must receive b immediately after a

Data partitioned into two parts: aand b
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‘ Observations

= Compatibility depends on who controls the signals
o The input/output profile is essential

= Compatibility here reduced to checking behavior containment
o Producer Outputs < Consumer Inputs

= Symbols are used to represent data

o Data must be represented explicitly when the behavior depends on
the values

m  Some mechanism in the implementation must signal whether a
or b is being transferred
o We don't need to be specific at this level of description
o Any mechanism will do (toggling bits, additional signal, etc.)
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‘ Uses of interfaces

= Document a design
o Provides formal specification to which components must comply
= Compatibility checking and assumption propagation under
composition
o Incremental design
= Interface refinement checking

o Compliance between interfaces or between interface and
component

= Compositional verification
o Essential for efficiency
= Synthesis of interface requirements
o Derive requirements on yet unknown parts of the system
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‘ Objectives

= Informally introduced two notions of consistency
o Compatibility of assumptions and guarantees of interface models
in a composition
o Refinement or implementation relation between interfaces, or
between an interface and a component
= The two notions are not independent
o A consistent refinement must be compatible in the context of its
specification
= We seek a general way to define and reason about them

o Derive a formalism that is independent of the particular model of
computation

o Essential for heterogeneous models
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‘ Outline

= Theory
o Define component and interface models

o Define a notion of refinement as a function of a
compatibility condition (conformance)

o Derive their relation with the operation of
composition (mirrors)
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Domain of computation

= A set of computational blocks, called the agents
o The automata in a finite state model
o The Verilog modules in a discrete event model
o The data-flow actors
= Each agent is characterized by the set of “signals” it uses
o Signals may be values, actions, events, etc.
o We call the set of signals the alphabet A of the agent
= Asetof operators on agents
o scoping: proj(B)(p)
o instantiation: rename(r)(p)

o composition: p; || p,
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Framework algebraic structure

» Different models fit this template

o We can reason abstractly without saying what the operators
actually do

o Our results will be valid for all models of computation
o Our model has the structure of an algebra

= To comply with their intuitive interpretation, the operators
must satisfy certain properties (axioms), e.g.

o Parallel composition is associative and commutative
o rename(id )(p)=p

a proj(A)(p)=p

o etc.
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‘ Input/Output model

Each agent simply consists of a set of input ports and a set of output

ports

Agents are of the form
p=(l,0) wherelandO are
disjoint sets of signal names and FITEIE 2 G i 11
A=1uvO

proj(B)(p)=(InB,ONnB)
iff lcB

rename(r)(p)=(r(1),r(0))
iff Ac dom(r)

PP =((lyu 1,)-(0;,L0;),0,L0,) iffO;N0,=0
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‘ Synchronous component model

= LetA={a, b, c}be asetof signals
o Behaviors are elements of the language £, = ( 2*)*, e.g.
o x=<{a}, {b}, {bc}, &, {ab}, @, {b}, ... >
o p=(A P) wherePc (2*)*
= Projection operator
o Setintersection
o proj({a, c})(x)=<{a}, I, {c}, ©,{a}, I, 9, ... >
= Parallel composition operator
a pyllp= (A=A, UA, proj(A)(Py) m proj*(A)(P,) )

o A behavior is part of the composite if and only if it is a behavior of
each of the components

o Composition here is synchronous, because & keeps track of time
when there are no events
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‘ Synchronous mterface model

= Each agent includes a set of successes and a set of failures
o p=(A,S,F), P=SUF
o The failures represent possible behaviors that are illegal uses of
the component
o Assumes environment behaves only in —F
o Interesting, for example, for protocol specification
= Composition
PP = (ALwA, S N S, (Fin Py)u (Fon Pp) )
To simplify, ignored inverse projection here
o A behavior is a failure of the composite if and only if
= ltis afailure of one of the components
= Itis a possible behavior of the other component
o Otherwise the failure is ruled out by the other component

O

O
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‘ Example revisited

Failure
state

Producer Consumer
Possibly wait between a and b Must receive b immediately after a

Data partitioned into two parts: aand b
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‘ Compatibility and refinement

= Failure represent assumptions on the environment

o For compatibility, the other components must not excite the
failure behavior

= Compatibility reduces to checking the presence of failure
behaviors
o Two interfaces are compatible if their composition is “failure-free”
= We want to explore the relation between compatibility and
refinement
o We will define the refinement order in terms of compatibility

o The generic definition can be applied to interface, as well as to
component models

o Interface and component models thus differ only in their level of
abstraction
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‘ Refinement verification

Have a specification p’

= Have an implementation p

Want to show that p refines p’

Refinement

p can be substituted for p’ in

every context where p’ can occur
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‘ Refinement and substitutability

= A (pre)ordered agent algebra includes a preorder < on the agents
= One possible interpretation of the order is substitutability
o p<p’ ifand only if p can be substituted for p’
= Or refinement
o p<p’ ifandonly if p refines p’
= Principle. We require that in an ordered agent algebra the operators
be monotonic with respect to the order
o If fis an operator, then f is monotonic if and only if
forallpandp’, if p<p’ thenf(p) < f(p’)
= Monotonicity is essential to apply compositional methods
o If p<p and gq<q then pllg<p’ |l
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‘ Composttional verification

Specification p’'=q,’ || q,’

Implementation p=q, || g,

Want to show that p refines p’

Compositionality

Assumeq, <q,” and g, <q,’

Then p<p’
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‘ Substitutability for I/O agents

= Recall the definition of I/O agents
o p=(1,0)
o p'=(I0)
= Define the following order on
agents
o p<p ifandonlyif
O0=0"and Ic I
= Other orders are also possible

o We have defined the weakest
(strongest?) order such that the
operators are monotonic
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‘ Contexts

= The implementation makes use of a hierarchical
structure

o Expressions in the algebra represent the structure
o proj(A)(p || rename(r)(a)) || rename(r,)(proj(B)(qy))

= A context is an expression E with one free variable g
o The variable represents the “hole” in the structure
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| Compatibility

= Two agents p and g may be incompatible

o Roughly speaking, p and q are compatible when their parallel
composition is defined (and failure free)

= No matter what compatibility is, the following must be true
o If p’is compatible in a certain context, and if p <p’, then p must
be compatible in the same context
o Infact, this must be true for all contexts in which p’ is compatible
m Decision. Compatibility becomes a parameter of our model

o We express compatibility in terms of a set G of agents, called
conformance set

o p’is compatible in E iff E[p’] € G
o Similarly, p and g are compatible iff p||q € G
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‘ Conformance order

= G induces an order called G-conformance order
o psgp’ ifand only if for all contexts E, if E[p’] € G then E[p] € G
= If the order <in Q is the same as the order <5 induced by
G, we say that Q has a G-conformance order
o Note: different G’s induce different conformance orders
= For the I/O agents
o Let G be the set of agents that have no inputs
= Then

o The I/O agent algebra has a G-conformance order

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 26

13



‘ Relative conformance

= If Q has a G-conformance order, we can check
refinement by checking conformance
o But complexity is high, since it involves considering all possible
compatible contexts
= Generalize conformance to only a subset of the contexts

u p <R p ifand onlyif for all contexts E € R, if E[p’] € G then E[p]
eG

o We call this relative conformance

o Checking relative conformance is less complex than checking
conformance
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‘ Relative conformance

= Theorem. If Q has a G-relative conformance order, then
Q has a G-conformance order
o Non trivial result: intuition goes the other way around!
= We are particularly interested in composition contexts
o We call it conformance relative to composition
o psgpifandonlyifforallg,ifp’||geGthenp|lqeG
= For the I/O agents

o Let G be the set of agents that have no inputs

= Then
o The I/O agent algebra has a G-conformance order relative to
composition
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‘ Proof of theorem

by T-monotonicity

since relative conformance
and downward closure

uses fewer contexts

4 Relative conformance

p<Rp

G-conformance

pP<gP

Original order

p=<p

by assumption
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‘ Compatibility set

= Only certain composition contexts are relevant!

= Compatibility set
o cmp(P)={q | p'llaeG}

= Theorem. If Q has a G-conformance order relative to composition, then
o p<p ifandonlyif p|l cmp(p) cG

= Restrict the compatibility set further to just the maximal element
o mcp(p’) = maximal( cmp(p’) )

= Theorem. If Q has a G-conformance order relative to composition, then
o p<p ifandonlyif p|| mep(p) cG

= Result. Conformance relative to composition can be checked by only
considering the maximally compatible agents
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Mirrors

= The greatest element of the compatibility set of an agent p’ is

called its mirror

o It contains all the information of the remaining compatible agents

o It can be used to check refinement
= A mirror function is a map from D to D such that
o p<p ifandonlyif p || mirror(p’) € G

o Mirrors exist if and only if Q has a G-conformance order relative

to composition and for all agents p’, cmp(p’) has a greatest
element

= Mirror properties (similar to complementation)
o p=mirror’(p)
o p < q ifandonlyif mirror( q) < mirror( p)
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‘ Synchronous component model

= Choose G to be the set of all agents with empty set of
behaviors
= Refinement and conformance order
o p,<p, ifand only if P, P,
= Mirror
o mirror(p)=(A, L,—P)
= A component model gives only guarantees
o It guarantees the component has no behaviors outside P

o The refinement provides stronger guarantees than its
specification (fewer behaviors are possible)

o Thus it can be used in place of its specification
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‘ Synchronous mterface model

= Choose G to be the set of all agents with empty set of failures
= Refinement and conformance order
o p<p ifandonlyif Fc F and Pc P’
= Mirror
o mirror(p) = (A, S-F, L,-P )
= An interface model provides assumptions as well as
guarantees
o The environment is not supposed to excite the behaviors in F

o The refinement provides stronger guarantees than its
specification (fewer behaviors are possible), and requires weaker
assumptions (there are fewer failures)

o Thus it can be used in place of its specification
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‘ Assumption/guarantee propagation

= Composition computes assumptions and guarantees for the
composite
o PP, = (ALVA,S N S, (Fin P)u (Fon Pr) )
= Let
o R= —=F (required behaviors)
o G =S uF (guaranteed behaviors)

= Then
o R=(R;,n R)uU-G,u-G,
0 G=G;nG,

m The interaction discharges some of the assumptions
o Assumptions are propagated to the composite, but relaxed

o Behaviors that are ruled out by the composition become
acceptable, since they will not occur anyway
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‘ Compatibility of mterface models

G is the set of failure-free agents
For a closed system compatibility is easy

o Two components are compatible if their composition is failure-
free

For open systems compatibility is more subtle
o There may still be failures in the composition

o But there could be environments that prevent the failure to be
excited

o The environment must be capable of controlling the composition
The input/output profile is therefore essential

o A portis an input if the agent is receptive relative to that port

o Itis ready to accept any value
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‘ Example revisited

Producer Consumer
Possibly wait between a and b Must receive b immediately after a

Data partitioned into two parts: aand b
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‘ Example revisited: closed system
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‘ Example revisited: open system
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‘ Helpful environment

Failureis
unreachable
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‘ Conclusions

= Discussed about component and interface models
o Interfaces provide assumptions and guarantees
o Essential for incremental design and component reuse
o Components can be seen as interfaces with no assumptions
o They differ in their level of abstraction
m Derived a relation between compatibility and refinement
o Developed a model independent formalism

o Formulated refinement order as a compatibility preservation
condition

= Introduced success/failure automata for synchronous model
o Encodes assumptions and guarantees
o Composition computes assumption/guarantee propagation
o Discussed compatibility for open systems
o Asynchronous models can be handled similarly
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Model-independent formal framework

L]

A
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' To probe further

Interface models useful in simulation

o Assumptions and guarantees can be turned into monitors that flag
error conditions

Interface models useful for synthesis

o Assumptions provide don'’t care conditions for optimization

o Synthesis problem formulated and solved using the mirror operator
o Technique applicable to a variety of problems

Interface models can be used for deployment

o Platform gives performance assumptions and guarantees

o Compatibility can be reformulated as correct deployment of a
function on an architecture

Algebraic models can be related by homomorphism
o Translate between domains of computation
o Verify asynchronous implementation vs. synchronous assumptions
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' Additional Slides

= Define problem of local specification
synthesis as the synthesis of adapters
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‘ Example revisited

Adapter

Producer Consumer
Possibly wait between a and b Must receive b immediately after a

Data partitioned into two parts: aand b
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‘ Local spectfication synthesis

= Global specification p’

= Implementation
aop=gllalflaz]l a3

= Find the local specification

of a component g such that
p refines p’

= The components around g
form its context

= Solution

£ = mirror(q, || 9z || 9 || proj(A)(mirror(p’)))
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‘ Local spectfication synthesis

projB)(Allq) = P
if and only if

£ < mirror( q || proj(B)(mirror( p’)) )

= Result similar to many specific results

0O 0O 0O O

But the formulation here is generic
In particular we don’t say what mirror is
Complexity depends on the model and its implementation

Having established correctness, we can now focus on efficiency
issues
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‘ Application areas

= Supervisory control
o Context: a plant to be controlled
o Global specification: what the plant is supposed to do
o Local specification: controller for the plant

= Engineering Change (ECO), Rectification
o Global specification: corrected functionality
o Context: untouchable part of the system
o Local specification: replacement part

= Optimization
o Global specification: old functionality
o Context: rest of the system
o Local specification: optimized part

= Protocol conversion
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‘ Example

= p’'=({a b} {c, d})

= p = proj(B)( Al p. 1l p2)
app=({a g, h}{d})
ap=({d}{gj})
uB={ab,cdef}

= Solution: = (1, O) such that
m INnO =0
s J c | c{abdagj}

s{c,h}c Oc A-{ab,defagj}
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Protocol Conversion

Correctness Specification

(ab)
—| Protocol 1 Protocol 2

Converter
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‘ Conversion result
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' Additional slides

= Define an asynchronous model, and relate it
to the synchronous one
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‘ Asynchronous Agent Algebra

= LetA={a, b, c}be a set of signals

o Behaviors are non-empty sequences of signals
Ly=(28-D)*

a x=<{a}, {b}, {bc}, {ab}, {b}, {ac}, ... >
a p=(A,P) wherePc (24-O)*

= Parallel composition operator
QPP = (A v A, PN Py)

= Refinement order
a p,<p, ifandonlyif P,c P,

= Mirror
a mirror(p)=(A, L,—P)
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Desynchronization

= Abstraction
o X =< {a}, {b}, {bc}, {ab}, {b}, {ac}, ... > is an abstraction of
o x, = <{a}, {b}, &, {bc}, {ab}, T, {b}, {ac}, ... >,
o X, = <{a}, g, {b}, {bc}, G, {ab}, G, &, {b}, {ac}, ... >, etc.
o X, and x, are concretizations of x’
= Upper Bound
o ‘P,(p) contains the abstraction of all the behaviors of p
o 'Y, (p) contains the abstraction of behaviors that are not necessarily in p
o The abstraction removes the ability to count the clocks
= Lower Bound
o ‘P|(p) contains the abstraction of only behaviors of p
o If X' is a behavior of ‘P|(p), then all the concretizations of X must be in p
o ‘P|(p) contains the behaviors of p that are insensitive to delays
= ¥, and ¥, form a conservative approximation
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‘ Desynchronization

= Assume p is such that ¥ (p) = ¥/(p) = p’
o p’ has all the behaviors of p
o p’ has only the behaviors of p
o All the behaviors of p are insensitive to delays

= Therefore p is a synchronous agent with non-
deterministic delay
o Hence it can be represented exactly in the asynchronous

model

= All asynchronous agents have a corresponding non-

deterministic synchronous agent

o The inverse of the conservative approximation is defined
everywhere
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' Additional slides

= Computing mirrors when they don’t exist
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Mirrors don’t always exist

= Mirrors may not exist for two reasons

o Parallel composition is unable to characterize the
refinement relation

o The model fails to have maximally compatible agents
= An extended model is required
a Agents that contain more information

a The original model is embedded in the extended
model

a The larger model improves our understanding of the
original (much like real and complex numbers)
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Extension of I/O agents

= Locked I/O agents
2 p=(1,0,L)
a pllp=((lu I;)=(0;,L0;),0,00, LuL,)
iff O,ul)N(O,uL,)=C,InL,=0,L,nL, =T
o mirror(p)=(0,1,42-(luOuUL))
o Embedding: (,0)—(1,0,9) mirror(p)
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