
1

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 1

Roberto Passerone

Department of Information and Communication Technology
University of Trento

Trento, Italy

Interface and component-based
design for heterogeneous systems

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 2

Outline
� Introduction

� Motivations
� Interfaces and Components
� Compatibility and Refinement

� Theory
� Component and interface models
� Refinement
� Conformance orders and compatibility sets
� Mirrors

� Behavior Compatibility
� Closed and open systems

2

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 3

Motivations
� Reuse strategy critical for cost and time-to-market

� Systems assembled from internal and third party IPs

� Correctness of composition must be verified

� Costly simulations may still miss problems

� Safety-critical applications require a formal correctness proof

� Abstract component models used to specify the requirements

� Transaction-level models shorten time to verification

� Standards used to simplify the verification problem

� Formal proofs usually based on type systems

� Typically only limited to static information

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 4

Extending types to richer models
� Define the rules of interaction

� Static typing

� Dynamic behaviors

� Non-functional performance parameters

� Distinguish between roles and responsibilities
� Assumptions on inputs accepted from the environment

� Guarantees on the outputs generated

� Leads to a notion of compatibility
� Informally, the output guarantees must satisfy the input

assumptions

3

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 5

Component models
� Descriptive

� What does the component do?

� Examples: a C++ class definition (modulo static typing), a
Verilog module, a device simulation model

� Defines behavior under all possible inputs
� Terminology: input enabling, progressive, receptive

� Does not constrain the environment

� Composes well under any environment
� Component will do something in the end

� Appropriate for describing implementations

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 6

Interface models
� Prescriptive

� How can a component be combined with other components?
� Examples: typing of a C function, Java interface definition, I/O

signature of a Verilog module, operating conditions of a device

� Defines requirements under which a component may
be used
� Not all inputs are legal
� Constrains the environment to avoid those inputs

� May not compose under some environment
� Rejects environments that violate assumptions
� Appropriate for describing specifications

4

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 7

Example

Consumer
Possibly wait between a and b

Producer
Send b immediately after a

b

T

a

0

1

b

T

a

T

0

1

Data partitioned into two parts: a and b

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 8

Example revisited

Consumer
Must receive b immediately after a

b

T

a

0

1

Producer
Possibly wait between a and b

b

T

a

T

0

1

Data partitioned into two parts: a and b

Rejects T
input

5

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 9

Observations
� Compatibility depends on who controls the signals

� The input/output profile is essential

� Compatibility here reduced to checking behavior containment

� Producer Outputs ⊆ Consumer Inputs

� Symbols are used to represent data

� Data must be represented explicitly when the behavior depends on
the values

� Some mechanism in the implementation must signal whether a
or b is being transferred

� We don’t need to be specific at this level of description

� Any mechanism will do (toggling bits, additional signal, etc.)

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 10

Uses of interfaces
� Document a design

� Provides formal specification to which components must comply

� Compatibility checking and assumption propagation under
composition
� Incremental design

� Interface refinement checking
� Compliance between interfaces or between interface and

component

� Compositional verification
� Essential for efficiency

� Synthesis of interface requirements
� Derive requirements on yet unknown parts of the system

6

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 11

Objectives
� Informally introduced two notions of consistency

� Compatibility of assumptions and guarantees of interface models
in a composition

� Refinement or implementation relation between interfaces, or
between an interface and a component

� The two notions are not independent
� A consistent refinement must be compatible in the context of its

specification

� We seek a general way to define and reason about them
� Derive a formalism that is independent of the particular model of

computation
� Essential for heterogeneous models

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 12

Outline
� Theory

� Define component and interface models
� Define a notion of refinement as a function of a

compatibility condition (conformance)

� Derive their relation with the operation of
composition (mirrors)

7

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 13

Domain of computation
� A set of computational blocks, called the agents

� The automata in a finite state model

� The Verilog modules in a discrete event model

� The data-flow actors

� Each agent is characterized by the set of “signals” it uses

� Signals may be values, actions, events, etc.

� We call the set of signals the alphabet A of the agent

� A set of operators on agents

� scoping: proj(B)(p)

� instantiation: rename(r)(p)

� composition: p1 || p2

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 14

Framework algebraic structure
� Different models fit this template

� We can reason abstractly without saying what the operators
actually do

� Our results will be valid for all models of computation

� Our model has the structure of an algebra

� To comply with their intuitive interpretation, the operators
must satisfy certain properties (axioms), e.g.
� Parallel composition is associative and commutative

� rename(id)(p) = p

� proj(A)(p) = p

� etc.

8

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 15

Input/Output model
Each agent simply consists of a set of input ports and a set of output
ports

Agents are of the form

p = (I, O) where I and O are
disjoint sets of signal names and
A = I ∪ O

proj(B)(p) = (I ∩ B, O ∩ B)
iff I ⊆ B

rename(r)(p) = (r(I), r(O))
iff A ⊆ dom(r)

p1 || p2 = ((I1 ∪ I2) – (O1 ∪ O2), O1 ∪ O2) iff O1 ∩ O2 = ∅

p1

p2

a

d

g

h

j

proj({a, b, c, h, j })(-)
a

h

j

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 16

Synchronous component model
� Let A = { a, b, c } be a set of signals

� Behaviors are elements of the language LA = (2A)*, e.g.

� x = < {a}, {b}, {bc}, ∅, {ab}, ∅, {b}, … >
� p = (A, P) where P ⊆ (2A)*

� Projection operator
� Set intersection
� proj({a, c})(x) = < {a}, ∅, {c}, ∅, {a}, ∅, ∅, … >

� Parallel composition operator
� p1 || p2 = (A = A1 ∪ A2, proj-1(A)(P1) ∩ proj-1(A)(P2))
� A behavior is part of the composite if and only if it is a behavior of

each of the components
� Composition here is synchronous, because ∅ keeps track of time

when there are no events

9

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 17

Synchronous interface model
� Each agent includes a set of successes and a set of failures

� p = (A, S, F); P = S ∪ F

� The failures represent possible behaviors that are illegal uses of
the component

� Assumes environment behaves only in ¬F

� Interesting, for example, for protocol specification

� Composition
� p1 || p2 = (A1 ∪ A2, S1 ∩ S2, (F1 ∩ P2) ∪ (F2 ∩ P1))

� To simplify, ignored inverse projection here

� A behavior is a failure of the composite if and only if
� It is a failure of one of the components

� It is a possible behavior of the other component

� Otherwise the failure is ruled out by the other component

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 18

Example revisited

Consumer
Must receive b immediately after a

b

T

a

0

1

Producer
Possibly wait between a and b

b

T

a

T

0

1

Data partitioned into two parts: a and b

F T

Failure
state

*

10

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 19

Compatibility and refinement
� Failure represent assumptions on the environment

� For compatibility, the other components must not excite the
failure behavior

� Compatibility reduces to checking the presence of failure
behaviors
� Two interfaces are compatible if their composition is “failure-free”

� We want to explore the relation between compatibility and
refinement
� We will define the refinement order in terms of compatibility
� The generic definition can be applied to interface, as well as to

component models
� Interface and component models thus differ only in their level of

abstraction

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 20

Refinement verification

p’

p

� Have a specification p’

� Have an implementation p

� Want to show that p refines p’

� Refinement

p can be substituted for p’ in

every context where p’ can occur

11

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 21

Refinement and substitutability
� A (pre)ordered agent algebra includes a preorder ≤ on the agents

� One possible interpretation of the order is substitutability

� p ≤ p’ if and only if p can be substituted for p’

� Or refinement

� p ≤ p’ if and only if p refines p’

� Principle. We require that in an ordered agent algebra the operators
be monotonic with respect to the order

� If f is an operator, then f is monotonic if and only if
for all p and p’, if p ≤ p’ then f(p) ≤ f(p’)

� Monotonicity is essential to apply compositional methods

� If p ≤ p’ and q ≤ q’ then p || q ≤ p’ || q’

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 22

Compositional verification

q1’ q2’

q1 q2

� Specification p’ = q1’ || q2’

� Implementation p = q1 || q2

� Want to show that p refines p’

� Compositionality

Assume q1 ≤ q1’ and q2 ≤ q2’

Then p ≤ p’

12

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 23

Substitutability for I/O agents
� Recall the definition of I/O agents

� p = (I, O)

� p’ = (I’, O’)

� Define the following order on

agents

� p ≤ p’ if and only if

O = O’ and I ⊆ I’

� Other orders are also possible

� We have defined the weakest

(strongest?) order such that the

operators are monotonic

p’
a

b

c

dp’
a

b

c

d

p
a c

d p
a

b

c

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 24

Contexts
� The implementation makes use of a hierarchical

structure
� Expressions in the algebra represent the structure
� proj(A)(p || rename(r)(q)) || rename(r2)(proj(B)(q2))

� A context is an expression E with one free variable β
� The variable represents the “hole” in the structure

q1

q2

q3

β

13

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 25

Compatibility
� Two agents p and q may be incompatible

� Roughly speaking, p and q are compatible when their parallel
composition is defined (and failure free)

� No matter what compatibility is, the following must be true

� If p’ is compatible in a certain context, and if p ≤ p’, then p must
be compatible in the same context

� In fact, this must be true for all contexts in which p’ is compatible

� Decision. Compatibility becomes a parameter of our model

� We express compatibility in terms of a set G of agents, called
conformance set

� p’ is compatible in E iff E[p’] ∈ G

� Similarly, p and q are compatible iff p || q ∈ G

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 26

Conformance order
� G induces an order called G-conformance order

� p ≤G p’ if and only if for all contexts E, if E[p’] ∈ G then E[p] ∈ G

� If the order ≤ in Q is the same as the order ≤G induced by

G, we say that Q has a G-conformance order

� Note: different G’s induce different conformance orders

� For the I/O agents

� Let G be the set of agents that have no inputs

� Then

� The I/O agent algebra has a G-conformance order

14

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 27

Relative conformance
� If Q has a G-conformance order, we can check

refinement by checking conformance

� But complexity is high, since it involves considering all possible
compatible contexts

� Generalize conformance to only a subset of the contexts

� p ≤G
R p’ if and only if for all contexts E ∈ R, if E[p’] ∈ G then E[p]

∈ G

� We call this relative conformance

� Checking relative conformance is less complex than checking
conformance

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 28

Relative conformance
� Theorem. If Q has a G-relative conformance order, then

Q has a G-conformance order
� Non trivial result: intuition goes the other way around!

� We are particularly interested in composition contexts
� We call it conformance relative to composition

� p ≤G p’ if and only if for all q, if p’ || q ∈ G then p || q ∈ G

� For the I/O agents
� Let G be the set of agents that have no inputs

� Then
� The I/O agent algebra has a G-conformance order relative to

composition

15

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 29

Proof of theorem

p ≤G p’p ≤ p’ p ≤G
R p’

Original order G-conformance Relative conformance

by T-monotonicity
and downward closure

since relative conformance
uses fewer contexts

by assumption

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 30

Compatibility set
� Only certain composition contexts are relevant!

� Compatibility set

� cmp(p’) = { q | p’ || q ∈ G }

� Theorem. If Q has a G-conformance order relative to composition, then

� p ≤ p’ if and only if p || cmp(p’) ⊆ G

� Restrict the compatibility set further to just the maximal element

� mcp(p’) = maximal(cmp(p’))

� Theorem. If Q has a G-conformance order relative to composition, then

� p ≤ p’ if and only if p || mcp(p’) ⊆ G

� Result. Conformance relative to composition can be checked by only

considering the maximally compatible agents

16

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 31

Mirrors
� The greatest element of the compatibility set of an agent p’ is

called its mirror

� It contains all the information of the remaining compatible agents

� It can be used to check refinement

� A mirror function is a map from D to D such that

� p ≤ p’ if and only if p || mirror(p’) ∈ G

� Mirrors exist if and only if Q has a G-conformance order relative
to composition and for all agents p’, cmp(p’) has a greatest
element

� Mirror properties (similar to complementation)

� p = mirror2(p)

� p ≤ q if and only if mirror(q) ≤ mirror(p)

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 32

Synchronous component model
� Choose G to be the set of all agents with empty set of

behaviors

� Refinement and conformance order
� p1 ≤ p2 if and only if P1 ⊆ P2

� Mirror

� mirror(p) = (A, LA – P)

� A component model gives only guarantees
� It guarantees the component has no behaviors outside P

� The refinement provides stronger guarantees than its
specification (fewer behaviors are possible)

� Thus it can be used in place of its specification

17

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 33

Synchronous interface model
� Choose G to be the set of all agents with empty set of failures

� Refinement and conformance order
� p ≤ p’ if and only if F ⊆ F’ and P ⊆ P’

� Mirror

� mirror(p) = (A, S – F, LA – P)

� An interface model provides assumptions as well as
guarantees
� The environment is not supposed to excite the behaviors in F

� The refinement provides stronger guarantees than its
specification (fewer behaviors are possible), and requires weaker
assumptions (there are fewer failures)

� Thus it can be used in place of its specification

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 34

Assumption/guarantee propagation
� Composition computes assumptions and guarantees for the

composite
� p1 || p2 = (A1 ∪ A2, S1 ∩ S2, (F1 ∩ P2) ∪ (F2 ∩ P1))

� Let
� R = ¬F (required behaviors)
� G = S ∪ F (guaranteed behaviors)

� Then
� R = (R1 ∩ R2) ∪ ¬G1 ∪ ¬G2

� G = G1 ∩ G2

� The interaction discharges some of the assumptions
� Assumptions are propagated to the composite, but relaxed
� Behaviors that are ruled out by the composition become

acceptable, since they will not occur anyway

18

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 35

Compatibility of interface models
� G is the set of failure-free agents

� For a closed system compatibility is easy
� Two components are compatible if their composition is failure-

free

� For open systems compatibility is more subtle
� There may still be failures in the composition

� But there could be environments that prevent the failure to be
excited

� The environment must be capable of controlling the composition

� The input/output profile is therefore essential
� A port is an input if the agent is receptive relative to that port

� It is ready to accept any value

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 36

Example revisited

Consumer
Must receive b immediately after a

b

T

a

0

1

Producer
Possibly wait between a and b

b

T

a

T

0

1

Data partitioned into two parts: a and b

F T

*

19

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 37

Example revisited: closed system

b

T

a

T

0

1

b

T

a
0 1

T
F

*

0

1
a

b

F

*
T

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 38

Example revisited: open system

g/b

s/T

g/a

s/T

0

1

b

s/T

a
0 1

T
F

*

0

1
g/a

g/b

F

*
s/T

20

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 39

Helpful environment

g

s

g

0

1

s/T
0 1

g/a

g/b

F

*
s/T

s/T
0

1
g/a

g/b
Failure is

unreachable

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 40

Conclusions
� Discussed about component and interface models

� Interfaces provide assumptions and guarantees
� Essential for incremental design and component reuse
� Components can be seen as interfaces with no assumptions
� They differ in their level of abstraction

� Derived a relation between compatibility and refinement
� Developed a model independent formalism
� Formulated refinement order as a compatibility preservation

condition
� Introduced success/failure automata for synchronous model

� Encodes assumptions and guarantees
� Composition computes assumption/guarantee propagation
� Discussed compatibility for open systems
� Asynchronous models can be handled similarly

21

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 41

Model-independent formal framework

p ≤ p’ ↔ p || mirror(p’) ∈ G

p ≤ p’ and q ≤ q’ → p || q ≤ p’ || q’

p compatible with q ↔ p || q ∈ G

proj(B)(β || q) ≤ p’

↔
β ≤ mirror(q || proj(B)(mirror(p’)))

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 42

To probe further
� Interface models useful in simulation
� Assumptions and guarantees can be turned into monitors that flag

error conditions

� Interface models useful for synthesis
� Assumptions provide don’t care conditions for optimization
� Synthesis problem formulated and solved using the mirror operator
� Technique applicable to a variety of problems

� Interface models can be used for deployment
� Platform gives performance assumptions and guarantees
� Compatibility can be reformulated as correct deployment of a

function on an architecture

� Algebraic models can be related by homomorphism
� Translate between domains of computation
� Verify asynchronous implementation vs. synchronous assumptions

22

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 43

Bibliography
� Roberto Passerone. Interface Specification and Converter Synthesis. In Richard Zurawski, editor,

Embedded Systems Handbook, Chapter 23. CRC Press, Taylor and Francis Group, Boca Raton,
London, New York, 2005.

� Thomas A. Henzinger, Ranjit Jhala and Rupak Majumdar. Permissive Interfaces. Proceedings of the
Symposium on the Foundations of Software Engineering, 2005. (FSE), 2005.

� Roberto Passerone, Luca de Alfaro, Thomas A. Henzinger, and Alberto Sangiovanni-Vincentelli.
Convertibility verification and converter synthesis: Two faces of the same coin. Proceedings of the
International Conference on Computer-Aided Design (ICCAD), IEEE Computer Society Press, 2002, pp.
132-139.

� Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-based design.
Proceedings of the First International Workshop on Embedded Software (EMSOFT), Lecture Notes in
Computer Science 2211, Springer, 2001, pp. 148-165.

� Luca de Alfaro and Thomas A. Henzinger. Interface automata. Proceedings of the Ninth Annual
Symposium on Foundations of Software Engineering (FSE), ACM Press, 2001, pp. 109-120.

� Radu Negulescu. Process Spaces and the Formal Verification of Asynchronous Circuits. PhD
dissertation, University of Waterloo, Canada, 1998.

� Elizabeth S. Wolf. Hierarchical Models of Synchronous Circuits for Formal Verification and
Substitution. PhD dissertation, Department of Computer Science, Stanford University, tech report
number STAN-CS-TR-95-1557, October 1995.

� David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits.
ACM Distinguished Dissertations, MIT Press, 1989.

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 44

Additional Slides
� Define problem of local specification

synthesis as the synthesis of adapters

23

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 45

Example revisited

Consumer
Must receive b immediately after a

b

T

a

0

1

Producer
Possibly wait between a and b

b

T

a

T

0

1 Adapter

Data partitioned into two parts: a and b

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 46

Local specification synthesis

p’
LS

� Global specification p’

� Implementation

� p = β || q1 || q2 || q3

� Find the local specification

of a component β such that

p refines p’

� The components around β
form its context

� Solution

q1

q2

q3

β

β ≤ mirror(q1 || q2 || q3 || proj(A)(mirror(p’)))

24

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 47

Local specification synthesis
proj(B)(β || q) ≤ p’

β ≤ mirror(q || proj(B)(mirror(p’)))

if and only if

� Result similar to many specific results
� But the formulation here is generic
� In particular we don’t say what mirror is
� Complexity depends on the model and its implementation
� Having established correctness, we can now focus on efficiency

issues

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 48

Application areas
� Supervisory control

� Context: a plant to be controlled
� Global specification: what the plant is supposed to do
� Local specification: controller for the plant

� Engineering Change (ECO), Rectification
� Global specification: corrected functionality
� Context: untouchable part of the system
� Local specification: replacement part

� Optimization
� Global specification: old functionality
� Context: rest of the system
� Local specification: optimized part

� Protocol conversion

25

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 49

Example

p1

p2

βa

d

g

h

j

p’

proj({a,b,c,d,e,f})(-)

a

b

c

d

� p’ = ({a, b}, {c, d})
� p = proj(B)(β || p1 || p2)
� p1 = ({ a, g, h }, { d })
� p2 = ({ d }, { g, j })
� B = { a, b, c, d, e, f }

� Solution: β = (I, O) such that
� I ∩ O = ∅
� ∅ ⊆ I ⊆ { a, b, d, g, j }
� { c, h } ⊆ O ⊆ A - { a, b, d, e, f, g, j }

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 50

Protocol Conversion

(a b) (a’ b’)
Protocol 1 Protocol 2Converter

Correctness Specification(a b) (a’ b’)

p’

p

26

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 51

Conversion result

b

-

a

-

b’
-

a’

-/-

-/-

a/-

-/b’

a/b’

b/a’

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 52

Additional slides
� Define an asynchronous model, and relate it

to the synchronous one

27

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 53

Asynchronous Agent Algebra
� Let A = { a, b, c } be a set of signals

� Behaviors are non-empty sequences of signals
LA = (2A - ∅)*

� x = < {a}, {b}, {bc}, {ab}, {b}, {ac}, … >
� p = (A, P) where P ⊆ (2A - ∅)*

� Parallel composition operator
� p1 || p2 = (A1 ∪ A2, P1 ∩ P2)

� Refinement order
� p1 ≤ p2 if and only if P1 ⊆ P2

� Mirror
� mirror(p) = (A, LA – P)

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 54

Desynchronization
� Abstraction
� x’ = < {a}, {b}, {bc}, {ab}, {b}, {ac}, … > is an abstraction of

� x1 = < {a}, {b}, ∅, {bc}, {ab}, ∅, {b}, {ac}, … >,

� x2 = < {a}, ∅, {b}, {bc}, ∅, {ab}, ∅, ∅, {b}, {ac}, … >, etc.
� x1 and x2 are concretizations of x’

� Upper Bound
� Ψu(p) contains the abstraction of all the behaviors of p

� Ψu(p) contains the abstraction of behaviors that are not necessarily in p
� The abstraction removes the ability to count the clocks

� Lower Bound
� Ψl(p) contains the abstraction of only behaviors of p
� If x’ is a behavior of Ψl(p), then all the concretizations of x’ must be in p
� Ψl(p) contains the behaviors of p that are insensitive to delays

� Ψl and Ψu form a conservative approximation

28

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 55

Desynchronization
� Assume p is such that Ψu(p) = Ψl(p) = p’

� p’ has all the behaviors of p
� p’ has only the behaviors of p
� All the behaviors of p are insensitive to delays

� Therefore p is a synchronous agent with non-
deterministic delay
� Hence it can be represented exactly in the asynchronous

model

� All asynchronous agents have a corresponding non-
deterministic synchronous agent
� The inverse of the conservative approximation is defined

everywhere

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 56

Additional slides
� Computing mirrors when they don’t exist

29

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 57

Mirrors don’t always exist
� Mirrors may not exist for two reasons

� Parallel composition is unable to characterize the
refinement relation

� The model fails to have maximally compatible agents

� An extended model is required
� Agents that contain more information
� The original model is embedded in the extended

model
� The larger model improves our understanding of the

original (much like real and complex numbers)

(c) 2007, Roberto Passerone Motives Winter School, Feb 19-23 2007 58

Extension of I/O agents
� Locked I/O agents
� p = (I, O, L)

� p1 || p2 = ((I1 ∪ I2) – (O1 ∪ O2), O1 ∪ O2, L1 ∪ L2)
iff (O1 ∪ L1) ∩ (O2 ∪ L2) = ∅ , I1 ∩ L2 = ∅ , I2 ∩ L1 = ∅

� mirror(p) = (O, I, A - (I ∪ O∪ L))
� Embedding : (I, O) → (I, O, ∅)

p

mirror(p)

