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Abstract. We study observation-based strategies for two-player turn-based
games on graphs with omega-regular objectives. An observation-based strategy
relies on imperfect information about the history of a play,namely, on the past
sequence of observations. Such games occur in the synthesisof a controller that
does not see the private state of the plant. Our main results are twofold. First,
we give a fixed-point algorithm for computing the set of states from which a
player can win with a deterministic observation-based strategy for any omega-
regular objective. The fixed point is computed in the latticeof antichains of state
sets. This algorithm has the advantages of being directed bythe objective and of
avoiding an explicit subset construction on the game graph.Second, we give an
algorithm for computing the set of states from which a playercan win with proba-
bility 1 with a randomized observation-based strategy for aBüchi objective. This
set is of interest because in the absence of perfect information, randomized strate-
gies are more powerful than deterministic ones. We show thatour algorithms are
optimal by proving matching lower bounds.

1 Introduction

Two-player games on graphs play an important role in computer science. In particular,
thecontroller synthesisproblem asks, given a model for a plant, to construct a model for
a controller such that the behaviors resulting from the parallel composition of the two
models respects a given specification (e.g., are included inanω-regular set). Controllers
can be synthesized as winning strategies in a graph game whose vertices represent the
plant states, and whose players represent the plant and the controller [18, 17]. Other
applications of graph games include realizability and compatibility checking, where
the players represent parallel processes of a system, or itsenvironment [1, 11, 6].

Most results about two-player games played on graphs make the hypothesis ofper-
fect information. In this setting, the controller knows, during its interaction with the
plant, the exact state of the plant. In practice, this hypothesis is often not reasonable.
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For example, in the context of hybrid systems, the controller acquires information about
the state of the plant using sensors with finite precision, which return imperfect infor-
mation about the state. Similarly, if the players representindividual processes, then a
process has only access to the public variables of the other processes, not to their private
variables [19, 2].

Two-player games ofimperfect informationare considerably more complicated than
games of perfect information. First, decision problems forimperfect-information games
usually lie in higher complexity classes than their perfect-information counter-parts [19,
14, 2]. The algorithmic difference is often exponential, due to a subset construction that,
similar to the determinization of finite automata, turns an imperfect-information game
into an equivalent perfect-information game. Second, because of the determinization,
no symbolic algorithms are known to solve imperfect-information games. This is in
contrast to the perfect-information case, where (often) simple and elegant fixed-point
algorithms exist [12, 8]. Third, in the context of imperfectinformation, deterministic
strategies are sometimes insufficient. A game isturn-basedif in every state one of the
players chooses a successor state. While deterministic strategies suffice to win turn-
based games of perfect information, turn-based games of imperfect information require
randomized strategies to win with probability 1 (see Example 1). Fourth, winning strate-
gies for imperfect-information games need memory even for simple objectives such as
safety and reachability (for an example see the technical-report version of this paper).
This is again in contrast to the perfect-information case, where turn-based safety and
reachability games can be won with memoryless strategies.

The contributions of this paper are twofold. First, we provide a symbolic fixed-point
algorithm to solve games of imperfect information for arbitrary ω-regular objectives.
The novelty is that our algorithm is symbolic; it does not carry out an explicit subset
construction. Instead, we compute fixed points on the lattice of antichains of state sets.
Antichains of state sets can be seen as a symbolic and compactrepresentation for⊆-
downward-closed sets of sets of states.1 This solution extends our recent result [10]
from safety objectives to allω-regular objectives. To justify the correctness of the algo-
rithm, we transform games of imperfect information into games of perfect information
while preserving the existence of winning strategies for every Borel objective. The re-
duction is only part of the proof, not part of the algorithm. For the special case of parity
objectives, we obtain a symbolic EXPTIME algorithm for solving parity games of im-
perfect information. This is optimal, as the reachability problem for games of imperfect
information is known to be EXPTIME-hard [19].

Second, we study randomized strategies and winning with probability 1 for
imperfect-information games. To our knowledge, for these games no algorithms (sym-
bolic or not) are present in the literature. Following [7], we refer to winning with prob-
ability 1 asalmost-surewinning (almostwinning, for short), in contrast tosurewinning
with deterministic strategies. We provide a symbolic EXPTIME algorithm to compute
the set of almost-winning states for games of imperfect information with Büchi objec-
tives (reachability objectives can be obtained as a specialcase, and for safety objectives

1 We recently used this symbolic representation of⊆-downward-closed sets of state sets to pro-
pose a new algorithm for solving the universality problem ofnondeterministic finite automata.
First experiments show a very promising performance; see [9] for details.



almost winning and sure winning coincide). Our solution is again justified by a reduc-
tion to games of perfect information. However, for randomized strategies the reduction
is different, and considerably more complicated. We prove our algorithm to be optimal,
showing that computing the almost-winning states for reachability games of imperfect
information is EXPTIME-hard. The problem of computing the almost-winning states for
coBüchi objectives under imperfect information in EXPTIME remains an open problem.

The structure of the paper is simple: Section 2 presents the definitions; Section 3
gives the algorithm for the case of sure winning with deterministic strategies; Section 4,
for the case of almost winning with randomized strategies; and Section 5 provides the
lower bounds.

Related work.In [17], Pnueli and Rosner study the synthesis of reactive modules. In
their framework, there is no game graph; instead, the environment and the objective
are specified using anLTL formula. In [14], Kupferman and Vardi extend these results
in two directions: they considerCTL∗ objectives and imperfect information. Again, no
game graph, but a specification formula is given to the synthesis procedure. We believe
that our setting, where a game graph is given explicitly, is more suited to fully and
uniformly understand the role of imperfect information. For example, Kupferman and
Vardi assert that imperfect information comes at no cost, because if the specification is
given as aCTL (or CTL∗) formula, then the synthesis problem is complete for EXP-
TIME (resp., 2EXPTIME), just as in the perfect-informationcase. These hardness results,
however, depend on the fact that the specification is given compactly as a formula. In
our setting, with an explicit game graph, reachability games of perfect information are
PTIME-complete, whereas reachability games of imperfect information are EXPTIME-
complete [19]. None of the above papers provide symbolic solutions, and none of them
consider randomized strategies.

It is known that for Partially Observable Markov Decision Processes (POMDPs)
with boolean rewards and limit-average objectives the quantitative analysis (whether
the value is greater than a specified threshold) is EXPTIME-complete [15]. However,
almost winning is a qualitative question, and our hardness result for almost winning
of imperfect-information games does not follow from the known results on POMDPs.
We propose in Section 5 a new proof of the hardness for sure winning of imperfect-
information games with reachability objectives, and we extend the proof to almost win-
ning as well. To the best of our knowledge, this is the first hardness result that applies
to the qualitative analysis of almost winning in imperfect-information games.

A class ofsemiperfect-information games, where one player has imperfect informa-
tion and the other player has perfect information, is studied in [4]. That class is simpler
than the games studied here; it can be solved in NP∩ coNP for parity objectives.

2 Definitions

A game structure(of imperfect information) is a tupleG = 〈L, l0, Σ, ∆,O, γ〉, whereL
is a finite set of states,l0 ∈ L is the initial state,Σ is a finite alphabet,∆ ⊆ L×Σ ×L

is a set of labeled transitions,O is a finite set of observations, andγ : O → 2L\∅
maps each observation to the set of states that it represents. We require the following
two properties onG: (i) for all ` ∈ L and allσ ∈ Σ, there exists̀ ′ ∈ L such that



(`, σ, `′) ∈ ∆; and(ii) the set{γ(o) | o ∈ O} partitionsL. We say thatG is a game
structure ofperfect informationif O = L andγ(`) = {`} for all ` ∈ L. We often omit
(O, γ) in the description of games of perfect information. Forσ ∈ Σ ands ⊆ L, let
PostGσ (s) = {`′ ∈ L | ∃` ∈ s : (`, σ, `′) ∈ ∆}.

Plays.In a game structure, in each turn, Player1 chooses a letter inΣ, and Player2
resolves nondeterminism by choosing the successor state. Aplay in G is an infinite
sequenceπ = `0σ0`1 . . . σn−1`nσn . . . such that(i) `0 = l0, and(ii) for all i ≥ 0, we
have(`i, σi, `i+1) ∈ ∆. Theprefix up tò n of the playπ is denoted byπ(n); its length
is |π(n)| = n + 1; and its last element isLast(π(n)) = `n. Theobservation sequence
of π is the unique infinite sequenceγ−1(π) = o0σ0o1 . . . σn−1onσn . . . such that for
all i ≥ 0, we havè i ∈ γ(oi). Similarly, theobservation sequenceof π(n) is the prefix
up toon of γ−1(π). The set of infinite plays inG is denotedPlays(G), and the set of
corresponding finite prefixes is denotedPrefs(G). A state` ∈ L is reachablein G if
there exists a prefixρ ∈ Prefs(G) such thatLast(ρ) = `. For a prefixρ ∈ Prefs(G), the
coneCone(ρ) = { π ∈ Plays(G) | ρ is a prefix ofπ } is the set of plays that extendρ.
Theknowledgeassociated with a finite observation sequenceτ = o0σ0o1σ1 . . . σn−1on

is the setK(τ) of states in which a play can be after this sequence of observations, that
is, K(τ) = {Last(ρ) | ρ ∈ Prefs(G) andγ−1(ρ) = τ}. For σ ∈ Σ, ` ∈ L, and
ρ, ρ′ ∈ Prefs(G) with ρ′ = ρ · σ · `, let o` ∈ O be the unique observation such that
` ∈ γ(o`). ThenK(γ−1(ρ′)) = PostGσ (K(γ−1(ρ))) ∩ γ(o`).

Strategies.A deterministic strategyin G for Player1 is a functionα : Prefs(G) →
Σ. For a finite setA, a probability distribution onA is a functionκ : A → [0, 1]
such that

∑

a∈A κ(a) = 1. We denote the set of probability distributions onA by
D(A). Given a distributionκ ∈ D(A), let Supp(κ) = {a ∈ A | κ(a) > 0} be the
supportof κ. A randomized strategyin G for Player1 is a functionα : Prefs(G) →
D(Σ). A (deterministic or randomized) strategyα for Player1 is observation-based
if for all prefixesρ, ρ′ ∈ Prefs(G), if γ−1(ρ) = γ−1(ρ′), thenα(ρ) = α(ρ′). In the
sequel, we are interested in the existence of observation-based strategies for Player1. A
deterministic strategyin G for Player2 is a functionβ : Prefs(G) × Σ → L such that
for all ρ ∈ Prefs(G) and allσ ∈ Σ, we have(Last(ρ), σ, β(ρ, σ)) ∈ ∆. A randomized
strategyin G for Player2 is a functionβ : Prefs(G) × Σ → D(L) such that for all
ρ ∈ Prefs(G), all σ ∈ Σ, and all` ∈ Supp(β(ρ, σ)), we have(Last(ρ), σ, `) ∈ ∆. We
denote byAG, AO

G, andBG the set of all Player-1 strategies, the set of all observation-
based Player-1 strategies, and the set of all Player-2 strategies inG, respectively. All
results of this paper can be proved also if strategies dependon state sequences only, and
not on the past moves of a play.

Theoutcomeof two deterministic strategiesα (for Player1) andβ (for Player2) in
G is the playπ = `0σ0`1 . . . σn−1`nσn . . . ∈ Plays(G) such that for alli ≥ 0, we have
σi = α(π(i)) and`i+1 = β(π(i), σi). This play is denotedoutcome(G, α, β). The
outcomeof two randomized strategiesα (for Player1) andβ (for Player2) in G is the
set of playsπ = `0σ0`1 . . . σn−1`nσn . . . ∈ Plays(G) such that for alli ≥ 0, we have
α(π(i))(σi) > 0 andβ(π(i), σi)(`i+1) > 0. This set is denotedoutcome(G, α, β). The
outcome setof the deterministic (resp. randomized) strategyα for Player1 in G is the
setOutcomei(G, α) of playsπ such that there exists a deterministic (resp. randomized)



strategyβ for Player2 with π = outcome(G, α, β) (resp.π ∈ outcome(G, α, β)). The
outcome sets for Player 2 are defined symmetrically.

Objectives.An objectivefor G is a setφ of infinite sequences of observations and input
letters, that is,φ ⊆ (O × Σ)ω. A play π = `0σ0`1 . . . σn−1`nσn . . . ∈ Plays(G)
satisfiesthe objectiveφ, denotedπ |= φ, if γ−1(π) ∈ φ. Objectives are generally Borel
measurable: a Borel objective is a Borel set in the Cantor topology on(O × Σ)ω [13].
We specifically consider reachability, safety, Büchi, coBüchi, and parity objectives, all
of them Borel measurable. The parity objectives are a canonical form to express all
ω-regular objectives [21]. For a playπ = `0σ0`1 . . . , we write Inf(π) for the set of
observations that appear infinitely often inγ−1(π), that is,Inf(π) = {o ∈ O | `i ∈
γ(o) for infinitely manyi’s}.

Given a setT ⊆ O of target observations, thereachabilityobjectiveReach(T )
requires that an observation inT be visited at least once, that is,Reach(T ) =
{ `0σ0`1σ1 . . . ∈ Plays(G) | ∃k ≥ 0 · ∃o ∈ T : `k ∈ γ(o) }. Dually, the
safetyobjectiveSafe(T ) requires that only observations inT be visited. Formally,
Safe(T ) = { `0σ0`1σ1 . . . ∈ Plays(G) | ∀k ≥ 0 · ∃o ∈ T : `k ∈ γ(o) }. The
Büchi objectiveBuchi(T ) requires that an observation inT be visited infinitely of-
ten, that is,Buchi(T ) = { π | Inf(π) ∩ T 6= ∅ }. Dually, thecoBüchi objective
coBuchi(T ) requires that only observations inT be visited infinitely often. Formally,
coBuchi(T ) = { π | Inf(π) ⊆ T }. Ford ∈ N, let p : O → { 0, 1, . . . , d } be aprior-
ity function, which maps each observation to a nonnegative integer priority. Theparity
objectiveParity(p) requires that the minimum priority that appears infinitely often be
even. Formally,Parity(p) = { π | min{ p(o) | o ∈ Inf(π) } is even}. Observe that by
definition, for all objectivesφ, if π |= φ andγ−1(π) = γ−1(π′), thenπ′ |= φ.

Sure winning and almost winning.A strategyλi for Playeri in G is sure winningfor an
objectiveφ if for all π ∈ Outcomei(G, λi), we haveπ |= φ. Given a game structureG
and a statè of G, we writeG` for the game structure that results fromG by changing
the initial state tò , that is, ifG = 〈L, l0, Σ, ∆,O, γ〉, thenG` = 〈L, `, Σ, ∆,O, γ〉.
An eventis a measurable set of plays, and given strategiesα andβ for the two players,
the probabilities of events are uniquely defined [22]. For a Borel objectiveφ, we denote
by Prα,β

` (φ) the probabilityφ is satisfied in the gameG` given the strategiesα andβ.
A strategyα for Player1 in G is almost winningfor the objectiveφ if for all random-
ized strategiesβ for Player2, we havePrα,β

l0
(φ) = 1. The set ofsure-winning(resp.

almost-winning) statesof a game structureG for the objectiveφ is the set of states̀
such that Player1 has a deterministic sure-winning (resp. randomized almost-winning)
observation-based strategy inG` for the objectiveφ.

Theorem 1 (Determinacy).[16] For all perfect-information game structuresG and all
Borel objectivesφ, either there exists a deterministic sure-winning strategy for Player1
for the objectiveφ, or there exists a deterministic sure-winning strategy forPlayer2 for
the complementary objectivePlays(G) \ φ.

Notice that deterministic strategies suffice for sure winning a game: given a ran-
domized strategyα for Player1, let αD be the deterministic strategy such that for
all ρ ∈ Prefs(G), the strategyαD(ρ) chooses an input letter fromSupp(α(ρ)).



`1

`2

`′
2

`3

`′
3

`4 a, b

a, b

a, b

a

a

b

b

a, b

a, b

o1 o2 o3 o4

Fig. 1.Game structureG.

ThenOutcome1(G, αD) ⊆ Outcome1(G, α), and thus, ifα is sure winning, then so
isαD. The result also holds for observation-based strategies and for perfect-information
games. However, for almost winning, randomized strategiesare more powerful than de-
terministic strategies as shown by Example 1.

Example 1.Consider the game structure shown in Fig. 1. The observations
o1, o2, o3, o4 are such thatγ(o1) = {`1}, γ(o2) = {`2, `

′
2}, γ(o3) = {`3, `

′
3}, and

γ(o4) = {`4}. The transitions are shown as labeled edges in the figure, andthe initial
state is̀ 1. The objective of Player1 is Reach({o4}), to reach statè4. We argue that the
game is not sure winning for Player1. Let α be any deterministic strategy for Player1.
Consider the deterministic strategyβ for Player2 as follows: for allρ ∈ Prefs(G) such
thatLast(ρ) ∈ γ(o2), if α(ρ) = a, then in the previous roundβ chooses the statè2,
and if α(ρ) = b, then in the previous roundβ chooses the statè′2. Givenα andβ,
the playoutcome(G, α, β) never reaches̀4. However, the gameG is almost winning
for Player1. Consider the randomized strategy that playsa andb uniformly at random
at all states. Every time the game visits observationo2, for any strategy for Player2,
the game visits̀3 and`′3 with probability 1

2 , and hence also reaches`4 with probabil-
ity 1

2 . It follows that against all Player2 strategies the play eventually reaches`4 with
probability 1.

Remarks.First, the hypothesis that the observations form a partition of the state space
can be weakened to a covering of the state space, where observations can overlap. In that
case, Player2 chooses both the next state of the game` and the next observationo such
that ` ∈ γ(o). The definitions related to plays, strategies, and objectives are adapted
accordingly. Such a game structureG with overlapping observations can be encoded
by an equivalent game structureG′ of imperfect information, whose state space is the
set of pairs(`, o) such that̀ ∈ γ(o). The set of labeled transitions∆′ of G′ is defined
by ∆′ = { ((`, o), σ, (`′, o′)) | (`, σ, `′) ∈ ∆ } andγ′−1(`, o) = o. The gamesG and
G′ are equivalent in the sense that for every Borel objectiveφ, there exists a sure (resp.
almost) winning strategy for Playeri in G forφ if and only if there exists such a winning
strategy for Playeri in G′ for φ.

Second, it is essential that the objective is expressed in terms of the observations.
Indeed, the games of imperfect information with a nonobservable winning condition are
more complicated to solve. For instance, the universality problem for Büchi automata



can be reduced to such games, but the construction that we propose in Section 3 cannot
be used. More involved constructions à la Safra are needed [20].

3 Sure Winning

First, we show that a game structureG of imperfect information can be encoded by a
game structureGK of perfect information such that for every Borel objectiveφ, there
exists a deterministic observation-based sure-winning strategy for Player1 in G for φ if
and only if there exists a deterministic sure-winning strategy for Player1 in GK for φ.
We obtainGK using a subset construction. Each state inGK is a set of states ofG which
represents the knowledge of Player1. In the worst case, the size ofGK is exponentially
larger than the size ofG. Second, we present a fixed-point algorithm based on antichains
of set of states [10], whose correctness relies on the subsetconstruction, but avoids the
explicit construction ofGK.

3.1 Subset construction for sure winning

Given a game structure of imperfect informationG = 〈L, l0, Σ, ∆,O, γ〉, we define the
knowledge-based subset constructionof G as the following game structure of perfect
information:GK = 〈L, {l0}, Σ, ∆K〉, whereL = 2L\{∅}, and(s1, σ, s2) ∈ ∆K iff
there exists an observationo ∈ O such thats2 = PostGσ (s1) ∩ γ(o) ands2 6= ∅. Notice
that for alls ∈ L and allσ ∈ Σ, there exists a sets′ ∈ L such that(s, σ, s′) ∈ ∆K.

A (deterministic or randomized) strategy inGK is called aknowledge-basedstrat-
egy. For all setss ∈ L that are reachable inGK, and all observationso ∈ O, either
s ⊆ γ(o) or s ∩ γ(o) = ∅. By an abuse of notation, we define theobservation se-
quenceof a playπ = s0σ0s1 . . . σn−1snσn . . . ∈ Plays(GK) as the infinite sequence
γ−1(π) = o0σ0o1 . . . σn−1onσn . . . of observations such that for alli ≥ 0, we have
si ⊆ γ(oi); this sequence is unique. The playπ satisfiesan objectiveφ ⊆ (O × Σ)ω

if γ−1(π) ∈ φ. The proof of the following theorem can be found in the technical-report
version for this paper.

Theorem 2 (Sure-winning reduction). Player 1 has a deterministic observation-
based sure-winning strategy in a game structureG of imperfect information for a Borel
objectiveφ if and only if Player1 has a deterministic sure-winning strategy in the game
structureGK of perfect information forφ.

3.2 Two interpretations of theµ-calculus

Form the results of Section 3.1, we can solve a gameG of imperfect information with
objectiveφ by constructing the knowledge-based subset constructionGK and solving
the resulting game of perfect information for the objectiveφ using standard methods.
For the important class ofω-regular objectives, there exists a fixed-point theory —theµ-
calculus— for this purpose [8]. When run onGK, these fixed-point algorithms compute
sets of sets of states of the gameG. An important property of those sets is that they are
downward closedwith respect to set inclusion: if Player1 has a deterministic strategy



to win the gameG when her knowledge is a sets, then she also has a deterministic
strategy to win the game when her knowledge iss′ with s′ ⊆ s. And thus, ifs is a sure-
winning state ofGK, then so iss′. Based on this property, we devise a new algorithm
for solving games of perfect information.

An antichainof nonempty sets of states is a setq ⊆ 2L \∅ such that for alls, s′ ∈ q,
we haves 6⊂ s′. Let C be the set of antichains of nonempty subsets ofL, and consider
the following partial order onC: for all q, q′ ∈ C, let q v q′ iff ∀s ∈ q · ∃s′ ∈ q′ :
s ⊆ s′. For q ⊆ 2L \ ∅, define the set ofmaximalelements ofq by dqe = {s ∈ q |
s 6= ∅ and∀s′ ∈ q : s 6⊂ s′}. Clearly, dqe is an antichain. The least upper bound
of q, q′ ∈ C is q t q′ = d{s | s ∈ q or s ∈ q′}e, and their greatest lower bound is
q u q′ = d{s ∩ s′ | s ∈ q ands′ ∈ q′}e. The definition of these two operators extends
naturally to sets of antichains, and the greatest element ofC is > = {L} and the least
element is⊥ = ∅. The partially ordered set〈C,v,t,u,>,⊥〉 forms a complete lattice.
We view antichains of state sets as a symbolic representation of ⊆-downward-closed
sets of state sets.

A game latticeis a complete latticeV together with apredecessor operatorCPre :
V → V . Given a game structureG = 〈L, l0, Σ, ∆,O, γ〉 of imperfect information,
and its knowledge-based subset constructionGK = 〈L, {l0}, Σ, ∆K〉, we consider two
game lattices: thelattice of subsets〈S,⊆,∪,∩,L, ∅〉, whereS = 2L andCPre : S → S
is defined byCPre(q) = {s ∈ L | ∃σ ∈ Σ · ∀s′ ∈ L : if (s, σ, s′) ∈ ∆K, thens′ ∈ q};
and thelattice of antichains〈C,v,t,u, {L}, ∅〉, with the operatordCPree : C → C
defined bydCPree(q) = d{s ∈ L | ∃σ ∈ Σ ·∀o ∈ O·∃s′ ∈ q : Postσ(s)∩γ(o) ⊆ s′}e.

Theµ-calculus formulasare generated by the grammar

ϕ ::= o | x | ϕ ∨ ϕ | ϕ ∧ ϕ | pre(ϕ) | µx.ϕ | νx.ϕ

for atomic propositionso ∈ O and variablesx. We can define¬o as a shortcut for
∨

o′∈O\{o} o′. A variable isfree in a formulaϕ if it is not in the scope of a quantifier
µx or νx. A formula ϕ is closedif it contains no free variable. Given a game lattice
V , a valuationE for the variables is a function that maps every variablex to an ele-
ment inV . For q ∈ V , we writeE [x 7→ q] for the valuation that agrees withE on all
variables, except thatx is mapped toq. Given a game latticeV and a valuationE , each
µ-calculus formulaϕ specifies an element[[ϕ]]VE of V , which is defined inductively by
the equations shown in the two tables. Ifϕ is a closed formula, then[[ϕ]]V =[[ϕ]]VE for
any valuationE . The following theorem recalls that perfect-information games can be
solved by evaluating fixed-point formulas in the lattice of subsets.

Theorem 3 (Symbolic solution of perfect-information games). [8] For every ω-
regular objectiveφ, there exists a closedµ-calculus formulaµForm(φ), called thechar-
acteristic formulaof φ, such that for all game structuresG of perfect information, the
set of sure-winning states ofG for φ is [[µForm(φ)]]S .

Downward closure.Given a setq ∈ S, thedownward closureof q is the setq↓ = {s ∈
L | ∃s′ ∈ q : s ⊆ s′}. Observe that in particular, for allq ∈ S, we have∅ 6∈ q↓ and
dqe↓ = q↓. The setsq↓, for q ∈ S, are thedownward-closedsets. A valuationE for the
variables in the latticeS of subsets isdownward closedif every variablex is mapped
to a downward-closed set, that is,E(x) = E(x)↓.
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Lemma 1. For all downward-closed setsq, q′ ∈ S, we havedq ∩ q′e = dqe u dq′e and
dq ∪ q′e = dqe t dq′e.

Lemma 2. For all µ-calculus formulasϕ and all downward-closed valuationsE in the
lattice of subsets, the set[[ϕ]]SE is downward closed.

Lemma 3. For all µ-calculus formulasϕ, and all downward-closed valuationsE in the
lattice of subsets, we have

⌈

[[ϕ]]SE
⌉

=[[ϕ]]CdEe, wheredEe is a valuation in the lattice of
antichains defined bydEe(x) = dE(x)e for all variablesx.

Consider a game structureG of imperfect information and a parity objectiveφ. From
Theorems 2 and 3 and Lemma 3, we can decide the existence of a deterministic
observation-based sure-winning strategy for Player1 in G for φ without explicitly con-
structing the knowledge-based subset constructionGK, by instead evaluating a fixed-
point formula in the lattice of antichains.

Theorem 4 (Symbolic solution of imperfect-information games).Let G be a game
structure of imperfect information with initial statel0. For everyω-regular objectiveφ,
Player 1 has a deterministic observation-based strategy inG for φ if and only if
{l0} v[[µForm(φ)]]C .

Corollary 1. Let G be a game structure of imperfect information, letp be a priority
function, and let̀ be a state ofG. Whether̀ is a sure-winning state inG for the parity
objectiveParity(p) can be decided inEXPTIME.

Corollary 1 is proved as follows: for a parity objectiveφ, an equivalentµ-calculus
formulaϕ can be obtained, where the size and the fixed-point quantifieralternations of
ϕ is polynomial inφ. Thus givenG andφ, we can evaluateϕ in GK in EXPTIME.

4 Almost Winning

Given a game structureG of imperfect information, we first construct a game structure
H of perfect information by a subset construction (differentfrom the one used for sure
winning), and then establish certain equivalences betweenrandomized strategies inG
andH . Finally, we show how the reduction can be used to obtain a symbolic EXPTIME

algorithm for computing almost-winning states inG for Büchi objectives. An EXP-
TIME algorithm for almost winning for coBüchi objectives underimperfect information
remains unknown.



4.1 Subset construction for almost winning

Given a game structure of imperfect informationG = 〈L, l0, Σ, ∆,O, γ〉, we construct
game structure of perfect informationH = Pft(G) = 〈Q, q0, Σ, ∆H〉 as follows:Q =
{ (s, `) | ∃o ∈ O : s ⊆ γ(o) and` ∈ s }; the initial state isq0 = ({ l0 }, l0); the
transition relation∆H ⊆ Q × Σ × Q is defined by((s, `), σ, (s′, `′)) ∈ ∆H iff there
is an observationo ∈ O such thats′ = PostGσ (s) ∩ γ(o) and(`, σ, `′) ∈ ∆. Intuitively,
whenH is in state(s, `), it corresponds toG being in statè and the knowledge of
Player1 beings. Two statesq = (s, `) andq′ = (s′, `′) of H areequivalent, written
q ≈ q′, if s = s′. Two prefixesρ = q0σ0q1 . . . σn−1qn andρ′ = q′0σ

′
0q

′
1 . . . σ′

n−1q
′
n

of H areequivalent, writtenρ ≈ ρ, if for all 0 ≤ i ≤ n, we haveqi ≈ q′i, and for all
0 ≤ i ≤ n − 1, we haveσi = σ′

i. Two playsπ, π′ ∈ Plays(H) areequivalent, written
πH ≈ π′

H , if for all i ≥ 0, we haveπ(i) ≈ π′(i). For a stateq ∈ Q, we denote by
[q]≈ = { q′ ∈ Q | q ≈ q′ } the≈-equivalence class ofq. We define equivalence classes
for prefixes and plays similarly.

Equivalence-preserving strategies and objectives.A strategyα for Player1 in H is
positionalif it is independent of the prefix of plays and depends only on the last state,
that is, for allρ, ρ′ ∈ Prefs(H) with Last(ρ) = Last(ρ′), we haveα(ρ) = α(ρ′). A
positional strategyα can be viewed as a functionα : Q → D(Σ). A strategyα for
Player1 in H is equivalence-preservingif for all ρ, ρ′ ∈ Prefs(H) with ρ ≈ ρ′, we
haveα(ρ) = α(ρ′). We denote byAH , AP

H , andA≈
H the set of all Player-1 strategies,

the set of all positional Player-1 strategies, and the set ofall equivalence-preserving
Player-1 strategies inH , respectively. We writeA≈(P )

H = A≈
H ∩ AP

H for the set of
equivalence-preserving positional strategies.

An objectiveφ for H is a subset of(Q×Σ)ω, that is, the objectiveφ is a set of plays.
The objectiveφ is equivalence-preservingif for all playsπ ∈ φ, we have[π]≈ ⊆ φ.

Relating prefixes and plays.We define a mappingh : Prefs(G) → Prefs(H) that maps
prefixes inG to prefixes inH as follows: givenρ = `0σ0`1σ1 . . . σn−1`n, let h(ρ) =
q0σ0q1σ1 . . . σn−1qn, where for all0 ≤ i ≤ n, we haveqi = (si, `i), and for all
0 ≤ i ≤ n − 1, we havesi = K(γ−1(ρ(i))). The following properties hold:(i)
for all ρ, ρ′ ∈ Prefs(G), if γ−1(ρ) = γ−1(ρ′), thenh(ρ) ≈ h(ρ′); and (ii) for all
ρ, ρ′ ∈ Prefs(H), if ρ ≈ ρ′, thenγ−1(h−1(ρ)) = γ−1(h−1(ρ′)). The mappingh :
Plays(G) → Plays(H) for plays is defined similarly, and has similar properties.

Relating strategies for Player1. We define two strategy mappingsh : AH → AG and
g : AG → AH . Given a Player-1 strategyαH in H , we construct a Player-1 strategy
αG = h(αH) in G as follows: for allρ ∈ Prefs(G), let αG(ρ) = αH(h(ρ)). Similarly,
given a Player-1 strategyαG in G, we construct a Player-1 strategyαH = g(αG) in H

as follows: for allρ ∈ Prefs(H), let αH(ρ) = αG(h−1(ρ)). The following properties
hold: (i) for all strategiesαH ∈ AH , if αH is equivalence-preserving, thenh(αH) is
observation-based; and(ii) for all strategiesαG ∈ AG, if αG is observation-based, then
g(αG) is equivalence-preserving.

Relating strategies for Player2. Observe that for allq ∈ Q, all σ ∈ Σ, and all` ∈ L,
we have|{ q′ = (s′, `) | (q, σ, q′) ∈ ∆H }| ≤ 1. Given a Player-2 strategyβH in H , we
construct a Player-2 strategyβG = h(βH) as follows: for allρ ∈ Prefs(G), all σ ∈ Σ,



and all` ∈ L, letβG(ρ, σ)(`) = βH(h(ρ), σ)(s, `), where(s, `) ∈ PostHσ (Last(h(ρ))).
Similarly, given a Player-2 strategyβG in G, we construct a Player-2 strategyβH =
g(βG) in H as follows: for allρ ∈ Prefs(H), all σ ∈ Σ, and allq ∈ Q with q = (s, `),
let βH(ρ, σ)(q) = βG(h−1(ρ), σ)(`).

Lemma 4. For all ρ ∈ Prefs(H), for every equivalence-preserving strategyα of
Player 1 inH , and for every strategyβ of Player 2 inH , we havePrα,β

q0
(Cone(ρ)) =

Pr
h(α),h(β)
l0

(h−1(Cone(ρ))).

Lemma 5. For all ρ ∈ Prefs(G), for every observational strategyα of Player 1
in G, and for every strategyβ of Player 2 in G, we havePrα,β

l0
(Cone(ρ)) =

Prg(α),g(β)
q0

(h(Cone(ρ))).

Theorem 5 (Almost-winning reduction). Let G be a game structure of imperfect
information, and letH = Pft(G) be the game structure of perfect information.
For all Borel objectivesφ for G, all observation-based Player-1 strategiesα in G,
and all Player-2 strategiesβ in G, we havePrα,β

l0
(φ) = Prg(α),g(β)

q0
(h(φ)). Dually,

for all equivalence-preserving Borel objectivesφ for H , all equivalence-preserving
Player-1 strategiesα in H , and all Player-2 strategiesβ in H , we havePrα,β

q0
(φ) =

Pr
h(α),h(β)
l0

(h−1(φ)).

The proof is as follows: by the Caratheódary unique-extension theorem, a probability
measure defined on cones has a unique extension to all Borel objectives. The theorem
then follows from Lemma 4.

Corollary 2. For every Borel objectiveφ for G, we have∃αG ∈ AO
G · ∀βG ∈ BG :

PrαG,βG

`0
(φ) = 1 if and only if∃αH ∈ A≈

H · ∀βH ∈ BH : PrαH ,βH

q0
(h(φ)) = 1.

4.2 Almost winning for Büchi objectives

Given a game structureG of imperfect information, letH = Pft(G) be the game
structure of perfect information. Given a setT ⊆ O of target observations, let
BT = { (s, l) ∈ Q | ∃o ∈ T : s ⊆ γ(o) }. Thenh(Buchi(T )) = Buchi(BT ) =
{ πH ∈ Plays(H) | Inf(πH) ∩ BT 6= ∅ }. We first show that almost winning inH
for the Büchi objectiveBuchi(BT ) with respect to equivalence-preserving strategies is
equivalent to almost winning with respect to equivalence-preserving positional strate-
gies. Formally, forBT ⊆ Q, let Q≈

AS
= { q ∈ Q | ∃α ∈ A≈

H · ∀β ∈ BH · ∀q′ ∈ [q]≈ :

Prα,β
q′ (Buchi(BT )) = 1 }, andQ

≈(P )
AS

= { q ∈ Q | ∃α ∈ A
≈(P )
H · ∀β ∈ BH · ∀q′ ∈

[q]≈ : Prα,β
q′ (Buchi(BT )) = 1 }. We will prove thatQ≈

AS
= Q

≈(P )
AS

. Lemma 6 follows
from the construction ofH from G, and yields Lemma 7.

Lemma 6. For all q ∈ Q, all q1 ∈ [q]≈, and allσ ∈ Σ, if (q1, σ, q′1) ∈ ∆H , then for
all q′2 ∈ [q′1]≈, there existsq2 ∈ [q1]≈ such that(q2, σ, q′2) ∈ ∆H .

Lemma 7. Given an equivalence-preserving Player-1 strategyα ∈ AH , a prefixρ ∈
Prefs(H), and a stateq ∈ Q, if there exists a Player-2 strategyβ ∈ BH such that
Prα,β

q (Cone(ρ)) > 0, then for every prefixρ′ ∈ Prefs(H) with ρ ≈ ρ′, there exist a

Player-2 strategyβ′ ∈ BH and a stateq′ ∈ [q]≈ such thatPrα,β′

q′ (Cone(ρ′)) > 0.
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Fig. 2.Game structureH (for G of Fig. 1).

Observe thatQ \ Q≈
AS

= { q ∈ Q | ∀α ∈ A≈
H · ∃β ∈ BH · ∃q′ ∈ [q]≈ :

Prα,β
q′ (Buchi(BT )) < 1 }. It follows from Lemma 7 that if a play starts inQ≈

AS
and

reachesQ\Q≈
AS

with positive probability, then for all equivalence-preserving strategies
for Player1, there is a Player2 strategy that ensures that the Büchi objectiveBuchi(BT )
is not satisfied with probability 1.

Notation.For a stateq ∈ Q andY ⊆ Q, let Allow(q, Y ) = { σ ∈ Σ | PostHσ (q) ⊆ Y }.
For a stateq ∈ Q andY ⊆ Q, let Allow([q]≈, Y ) =

⋂

q′∈[q]≈
Allow(q′, Y ).

Lemma 8. For all q ∈ Q≈
AS

, we haveAllow([q]≈, Q≈
AS

) 6= ∅.

Lemma 9. Given a stateq ∈ Q≈
AS

, let α ∈ AH be an equivalence-preserving Player-1
strategy such that for all Player-2 strategiesβ ∈ BH and all statesq′ ∈ [q]≈, we have
Prα,β

q′ (Buchi(BT )) = 1. Letρ = q0σ0q1 . . . σn−1qn be a prefix inPrefs(H) such that
for all 0 ≤ i ≤ n, we haveqi ∈ Q≈

AS
. If there is a Player-2 strategyβ ∈ BH and a state

q′ ∈ [q]≈ such thatPrα,β
q′ (Cone(ρ)) > 0, thenSupp(α(ρ)) ⊆ Allow([q]≈, Q≈

AS
).

Notation.We inductively define theranksof states inQ≈
AS

as follows: letRank(0) =
BT ∩ Q≈

AS
, and for allj ≥ 0, let Rank(j + 1) = Rank(j) ∪ { q ∈ Q≈

AS
| ∃σ ∈

Allow([q]≈, Q≈
AS

) : PostHσ (q) ⊆ Rank(j) }. Let j∗ = min{ j ≥ 0 | Rank(j) =
Rank(j + 1) }, and letQ∗ = Rank(j∗). We say that the setRank(j + 1) \ Rank(j)
contains thestates of rankj + 1, for all j ≥ 0.

Example 2.Given the game structureG of imperfect information from Fig. 1, the game
structureH = Pft(G) of perfect information is shown in Fig. 2. All states are almost
winning for the Büchi objectiveBuchi({({`4}, `4)}). The ranks of the states are shown
next to the states. The positional strategy that plays botha andb with equal probability
is almost winning at all states. For the statesq with ranks 1, 3, and 4, if the rank ofq
is j, thenPostHa (q) ⊆ Rank(j − 1) andPostHb (q) ⊆ Rank(j − 1). For the states with
rank 2, if q = ({ `2, `

′
2 }, `2), thenPostHb (q) ⊆ Rank(1); and if q = ({ `2, `

′
2 }, `′2),

thenPostHa (q) ⊆ Rank(1).

Lemma 10. Q∗ = Q≈
AS

.

Proof. By definition, Q∗ ⊆ Q≈
AS

. We now prove thatQ≈
AS

⊆ Q∗. Assume to-
wards a contradiction thatX = Q≈

AS
\ Q∗ 6= ∅. For all statesq ∈ X and allσ ∈



Allow([q]≈, Q≈
AS

), we havePostHσ (q) ∩ X 6= ∅, because otherwiseq would have been
in Q∗. Hence, for allq ∈ X and allσ ∈ Allow([q]≈, Q≈

AS
), there exists aq′ ∈ X such

that(q, σ, q′) ∈ ∆H . Fix a strategyβ for Player2 as follows: for a stateq ∈ X and the
input letterσ ∈ Allow([q]≈, Q≈

AS
), choose a successorq′ ∈ X such that(q, σ, q′) ∈ ∆H .

Consider a stateq ∈ X and an equivalence-preserving almost-winning strategyα for
Player1 from q for the objectiveBuchi(BT ). By Lemma 9, for every prefixρ satisfying
the condition of Lemma 9, we haveSupp(α(ρ)) ⊆ Allow([Last(ρ)]≈, Q≈

AS
). It follows

thatPrα,β
q (Safe(X)) = 1. SinceBT ∩ Q≈

AS
⊆ Q∗, it follows thatBT ∩ X = ∅. Hence

Prα,β
q (Reach(BT )) = 0, and thereforePrα,β

q (Buchi(BT )) = 0. This contradicts the
fact thatα is an almost-winning strategy. �

Equivalence-preserving positional strategy.Consider the equivalence-preserving posi-
tional strategyαp for Player 1 inH , which is defined as follows: for a stateq ∈ Q≈

AS
,

choose all moves inAllow([q]≡, Q≈
AS

) uniformly at random.

Lemma 11. For all statesq ∈ Q≈
AS

and all Player-2 strategiesβ in H , we have
Prαp,β

q (Safe(Q≈
AS

)) = 1 andPrαp,β
q (Reach(BT ∩ Q≈

AS
)) = 1.

Proof. By Lemma 10, we haveQ∗ = Q≈
AS

. Let z = |Q∗|. For a stateq ∈ Q≈
AS

, we have
PostHσ (q) ⊆ Q≈

AS
for all σ ∈ Allow([q]≈, Q≈

AS
). It follows for all statesq ∈ Q≈

AS
and all

strategiesβ for Player2, we havePrαp,β
q (Safe(Q≈

AS
)) = 1.

For a stateq ∈ (Rank(j + 1) \ Rank(j)), there existsσ ∈ Allow([q]≈, Q≈
AS

) such
thatPostHσ (q) ⊆ Rank(j). For a setY ⊆ Q, let ♦j(Y ) denote the set of prefixes that
reachY within j steps. It follows that for all statesq ∈ Rank(j +1) and all strategiesβ
for Player 2, we havePrαp,β

q (♦1(Rank(j))) ≥ 1
|Σ| . Let B = BT ∩ Q≈

AS
. By induction

on the ranks it follows that for all statesq ∈ Q∗ and all strategiesβ for Player 2:

Prαp,β
q (♦z(Rank(0))) = Prαp,β

q (♦z(B)) ≥
( 1

|Σ|

)z

= r > 0.

Form > 0, we havePrαp,β
q (♦m·z(B)) ≥ 1 − (1 − r)m. Thus:

Prαp,β
q (Reach(B)) = lim

m→∞
Prαp,β

q (♦m·z(B)) ≥ lim
m→∞

1 − (1 − r)m = 1.

The lemma follows. �

Lemma 11 implies that, given the Player-1 strategyαp, the setQ≈
AS

is never left,
and the states inBT ∩ Q≈

AS
are reached with probability 1. Since this happens for

every state inQ≈
AS

, it follows that the setBT ∩ Q≈
AS

is visited infinitely often with
probability 1, that is, the Büchi objectiveBuchi(BT ) is satisfied with probability 1.
This analysis, together with the fact that[q0]≈ is a singleton and Corollary 2, proves

thatQ≈
AS

= Q
≈(P )
AS

. Theorem 6 follows.

Theorem 6 (Positional almost winning for Büchi objectivesunder imperfect infor-
mation). Let G be a game structure of imperfect information, and letH = Pft(G)
be the game structure of perfect information. For all setsT of observations, there ex-
ists an observation-based almost-winning strategy for Player 1 inG for the objective
Buchi(T ) iff there exists an equivalence-preserving positional almost-winning strategy
for Player 1 inH for the objectiveBuchi(BT ).



Symbolic algorithm.We present a symbolic quadratic-time (in the size ofH) algorithm
to compute the setQ≈

AS
. ForY ⊆ Q andX ⊆ Y , let Apre(Y, X) = { q ∈ Y | ∃σ ∈

Allow([q]≈, Y ) : PostHσ (q) ⊆ X } andSpre(Y ) = { q ∈ Y | Allow([q]≈, Y ) 6= ∅ }.
Note thatSpre(Y ) = Apre(Y, Y ). Letφ = νY.µX.

(

Apre(Y, X)∨(BT ∧Spre(Y )
)

and
let Z =[[φ]]. It can be shown thatZ = Q≈

AS
.

Theorem 7 (Complexity of almost winning for Büchi objectives under imperfect
information). Let G be a game structure of imperfect information, letT be a set of
observations, and let̀ be a state ofG. Whether̀ is an almost-winning state inG for
the B̈uchi objectiveBuchi(T ) can be decided inEXPTIME.

The facts thatZ = Q≈
AS

and thatH is exponential in the size ofG yield Theorem 7.
The arguments for the proofs of Theorem 6 and 7 do not directlyextend to coBüchi
or parity objectives. In fact, Theorem 6 does not hold for parity objectives in general,
for the following reason: in concurrent games with parity objectives with more than
two priorities, almost-winning strategies may require infinite memory; for an example,
see [5]. Such concurrent games are reducible to semiperfect-information games [4],
and semiperfect-information games are reducible to the imperfect-information games
we study. Hence a reduction to finite game structures of perfect information in order
to obtain randomized positional strategies is not possiblewith respect to almost win-
ning for general parity objectives. Theorem 6 and Theorem 7 may hold for coBüchi
objectives, but there does not seem to be a simple extension of our arguments for Büchi
objectives to the coBüchi case. The results that correspond to Theorems 6 and 7 for
coBüchi objectives are open.

Direct symbolic algorithm.As in Section 3.2, the subset structureH does not have
to be constructed explicitly. Instead, we can evaluate a fixed-point formula on a well-
chosen lattice. The fixed-point formula to compute the setQ≈

AS
is evaluated on the

lattice 〈2Q,⊆,∪,∩, Q, ∅〉. It is easy to show that the sets computed by the fixed-point
algorithm are downward closed for the following order onQ: for (s, `), (s′, `′) ∈ Q,
let (s, `) � (s′, `′) iff ` = `′ ands ⊆ s′. Then, we can define an antichain overQ as
a set of pairwise�-incomparable elements ofQ, and compute the almost-sure winning
states in the lattice of antichains overQ, without explicitly constructing the exponential
game structureH .

5 Lower Bounds

We show that deciding the existence of a deterministic (resp. randomized) observation-
based sure-winning (resp. almost-winning) strategy for Player1 in games of imperfect
information is EXPTIME-hard already for reachability objectives. The result for sure
winning follows from [19], but our new proof extends to almost winning as well.

Sure winning.To show the lower bound, we use a reduction from the membership prob-
lem for polynomial-space alternating Turing machines. Analternating Turing machine
(ATM) is a tupleM = 〈Q, q0, g, Σi, Σt, δ, F 〉, whereQ is a finite set of control states;
q0 ∈ Q is the initial state;g : Q → {∧,∨}; Σi = {0, 1} is the input alphabet;Σt =
{0, 1, 2} is the tape alphabet and2 is theblanksymbol;δ ⊆ Q×Σt×Q×Σt×{−1, 1}



is the transition relation; andF ⊆ Q is the set of accepting states. We say thatM is
a polynomial-spaceATM if there exists a polynomialp(·) such that for every wordw,
the tape space used byM on inputw is bounded byp(|w|). Without loss of generality,
we assume that the initial control state of the machine is a∨-state, and that transitions
connect∨-states to∧-states, and vice versa. A wordw is acceptedby the ATM M if
there exists a run tree ofM on w all of whose leaf nodes are accepting configurations
(i.e., configurations containing an accepting state); see [3] for details. Themembership
problemis to decide if a given wordw is accepted by a given polynomial-space ATM
(M, p). This problem is EXPTIME-hard [3].

Sketch of the reduction.Given a polynomial-space ATMM and a wordw, we construct
a game structure of imperfect information, of size polynomial in the size of(M, w), to
simulate the execution ofM on w. Player1 makes choices in∨-states, and Player2
makes choices in∧-states. Player1 is responsible for maintaining the symbol under the
tape head. His objective is to reach an accepting configuration of the ATM.

Each turn proceeds as follows. In an∨-state, by choosing a letter(t, a) in the al-
phabet of the game, Player1 reveals(i) the transitiont of the ATM that he has chosen
(this way he also reveals the symbol that is currently under the tape head), and(ii) the
symbola under the next position of the tape head. If Player1 lies about the current
or the next symbol under the tape head, then he should lose thegame; otherwise the
game proceeds. The machine is now in an∧-state and Player1 has no choice: he an-
nounces a special symbolε and Player2, by resolving the nondeterminism onε, chooses
a transition of the ATM that is compatible with the current symbol under the tape head
revealed by Player1 at the previous turn. The state of the ATM is updated and the game
proceeds. The transition chosen by Player2 is visible in the next state of the game, and
thus Player1 can update his knowledge about the configuration of the ATM. Player1
wins whenever an accepting configuration of the ATM is reached.

The difficulty is to ensure that Player1 loses when he announces a wrong symbol
under the tape head. As the number of configurations of the polynomial-space ATM is
exponential, we cannot directly encode the full configuration of the ATM in the states
of the game. To overcome this difficulty, we use the power of imperfect information as
follows. Initially, Player2 chooses a positionk, where1 ≤ k ≤ p(|w|), on the tape.
The chosen numberk, as well as the symbolσ ∈ {0, 1, 2} that lies in the tape cell with
numberk, are maintained all along the game in the nonobservable portion of the game
states. The pair(σ, k) is thus private to Player2, and invisible to Player1. Thus, at any
point in the game, Player2 can check whether Player1 is lying when announcing the
content of cell numberk, and go to a sink state if Player1 cheats (no other states can be
reached from there). Since Player1 does not know which cell is monitored by Player2
(sincek is private), to avoid losing, he must not lie about any of the tape cells, and thus
he must faithfully simulate the machine. Then, he wins the game if and only if the ATM
accepts the wordsw.

Almost winning.To establish the lower bound for almost winning, we can use the same
reduction. Randomization cannot help Player 1 in this game.Indeed, at any point in the
game, if Player 1 takes a chance in either not faithfully simulating the ATM or lying
about the symbol under the tape head, then the sink state is reached. In these cases, the



probability to reach the sink state is positive, and so the probability to win the game is
strictly less than one.

Theorem 8 (Lower bounds).Let G be a game structure of imperfect information, let
T be a set of observations, and let` be a state ofG. Deciding whether̀ is a sure-
winning state inG for the reachability objectiveReach(T ) is EXPTIME-hard. Deciding
whether̀ is an almost-winning state inG for Reach(T ) is alsoEXPTIME-hard.
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