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Abstract. We study observation-based strategies for two-player-based
games on graphs with omega-regular objectives. An obsernvhased strategy
relies on imperfect information about the history of a plagmely, on the past
sequence of observations. Such games occur in the syntliesiontroller that
does not see the private state of the plant. Our main residtsamfold. First,
we give a fixed-point algorithm for computing the set of safiem which a
player can win with a deterministic observation-basedtegsafor any omega-
regular objective. The fixed point is computed in the latt€antichains of state
sets. This algorithm has the advantages of being directelebgbjective and of
avoiding an explicit subset construction on the game gr&gleond, we give an
algorithm for computing the set of states from which a playser win with proba-
bility 1 with a randomized observation-based strategy fBilahi objective. This
set is of interest because in the absence of perfect infasmandomized strate-
gies are more powerful than deterministic ones. We showatinaalgorithms are
optimal by proving matching lower bounds.

1 Introduction

Two-player games on graphs play an important role in comaaience. In particular,
thecontroller synthesigroblem asks, given a model for a plant, to construct a maxdlel f
a controller such that the behaviors resulting from the lfireomposition of the two
models respects a given specification (e.g., are includaddnregular set). Controllers
can be synthesized as winning strategies in a graph gameswiedtices represent the
plant states, and whose players represent the plant andtiiber [18,17]. Other
applications of graph games include realizability and catifyility checking, where
the players represent parallel processes of a system,amitonment [1, 11, 6].

Most results about two-player games played on graphs makeyghothesis oper-
fect information In this setting, the controller knows, during its intefantwith the
plant, the exact state of the plant. In practice, this hyesithis often not reasonable.
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For example, in the context of hybrid systems, the contraléguires information about
the state of the plant using sensors with finite precisioncivheturn imperfect infor-
mation about the state. Similarly, if the players represeditzidual processes, then a
process has only access to the public variables of the otheegses, not to their private
variables [19, 2].

Two-player games amperfect informatiomre considerably more complicated than
games of perfectinformation. First, decision problemsrfgerfect-information games
usually lie in higher complexity classes than their peFiaébrmation counter-parts [19,
14, 2]. The algorithmic difference is often exponentialedoi a subset construction that,
similar to the determinization of finite automata, turns mpérfect-information game
into an equivalent perfect-information game. Second, beea@f the determinization,
no symbolic algorithms are known to solve imperfect-infation games. This is in
contrast to the perfect-information case, where (oftemps and elegant fixed-point
algorithms exist [12, 8]. Third, in the context of imperféctormation, deterministic
strategies are sometimes insufficient. A gamelia-basedf in every state one of the
players chooses a successor state. While deterministitegtes suffice to win turn-
based games of perfect information, turn-based games @frfiegt information require
randomized strategies to win with probability 1 (see Exanipl Fourth, winning strate-
gies for imperfect-information games need memory evenifopke objectives such as
safety and reachability (for an example see the technégadit version of this paper).
This is again in contrast to the perfect-information caseem turn-based safety and
reachability games can be won with memoryless strategies.

The contributions of this paper are twofold. First, we pde/a symbolic fixed-point
algorithm to solve games of imperfect information for amrniy w-regular objectives.
The novelty is that our algorithm is symbolic; it does notrgasut an explicit subset
construction. Instead, we compute fixed points on the &tifcantichains of state sets.
Antichains of state sets can be seen as a symbolic and comgpaesentation fof-
downward-closed sets of sets of stateEhis solution extends our recent result [10]
from safety objectives to alb-regular objectives. To justify the correctness of the algo
rithm, we transform games of imperfect information into ganof perfect information
while preserving the existence of winning strategies farg\Borel objective. The re-
duction is only part of the proof, not part of the algorithror Ehe special case of parity
objectives, we obtain a symbolicxBTIME algorithm for solving parity games of im-
perfect information. This is optimal, as the reachabilitgldem for games of imperfect
information is known to be ErPTIME-hard [19].

Second, we study randomized strategies and winning wittbgldity 1 for
imperfect-information games. To our knowledge, for theamgs no algorithms (sym-
bolic or not) are present in the literature. Following [7E vefer to winning with prob-
ability 1 asalmost-suravinning (@lmostwinning, for short), in contrast teurewinning
with deterministic strategies. We provide a symbolicPEIME algorithm to compute
the set of almost-winning states for games of imperfectrmgttion with Biichi objec-
tives (reachability objectives can be obtained as a speasa, and for safety objectives

1 We recently used this symbolic representatioeflownward-closed sets of state sets to pro-
pose a new algorithm for solving the universality problenmefideterministic finite automata.
First experiments show a very promising performance; sgiof@letails.



almost winning and sure winning coincide). Our solutiondsia justified by a reduc-
tion to games of perfect information. However, for randoslistrategies the reduction
is different, and considerably more complicated. We praweatgorithm to be optimal,
showing that computing the almost-winning states for rabdhy games of imperfect
information is ExPTIME-hard. The problem of computing the almost-winning stabes f
coBlichi objectives under imperfect information iR IME remains an open problem.

The structure of the paper is simple: Section 2 presentséfinitibns; Section 3
gives the algorithm for the case of sure winning with deteistic strategies; Section 4,
for the case of almost winning with randomized strategias; @ection 5 provides the
lower bounds.

Related worklIn [17], Pnueli and Rosner study the synthesis of reactivdutes. In
their framework, there is no game graph; instead, the enment and the objective
are specified using ddrL formula. In [14], Kupferman and Vardi extend these results
in two directions: they conside€fTL* objectives and imperfect information. Again, no
game graph, but a specification formula is given to the sygigtrocedure. We believe
that our setting, where a game graph is given explicitly, &rensuited to fully and
uniformly understand the role of imperfect informationrEexample, Kupferman and
Vardi assert that imperfect information comes at no costabse if the specification is
given as aCTL (or CTL*) formula, then the synthesis problem is complete fapPE
TIME (resp., 2XPTIME), just as in the perfect-information case. These hardesstts,
however, depend on the fact that the specification is givempeatly as a formula. In
our setting, with an explicit game graph, reachability gamgperfect information are
PTIME-complete, whereas reachability games of imperfect infdiom are XPTIME-
complete [19]. None of the above papers provide symboligtenis, and none of them
consider randomized strategies.

It is known that for Partially Observable Markov DecisioroBesses (POMDPS)
with boolean rewards and limit-average objectives the tjizive analysis (whether
the value is greater than a specified threshold)x® BME-complete [15]. However,
almost winning is a qualitative question, and our hardnesalt for almost winning
of imperfect-information games does not follow from the Wmoresults on POMDPs.
We propose in Section 5 a new proof of the hardness for sureingrof imperfect-
information games with reachability objectives, and wesagtthe proof to almost win-
ning as well. To the best of our knowledge, this is the firsthass result that applies
to the qualitative analysis of almost winning in imperf@disrmation games.

A class ofsemiperfecinformation games, where one player has imperfectinferma
tion and the other player has perfect information, is stdig4]. That class is simpler
than the games studied here; it can be solved imNIBNP for parity objectives.

2 Definitions

A game structuréof imperfect informatiojis a tupleG = (L, 1y, X, A, O, ~), whereL
is a finite set of stateg, € L is the initial state X is a finite alphabet)d C L x ¥ x L
is a set of labeled transition€) is a finite set of observations, and: O — 2L\(
maps each observation to the set of states that it repres®#ateequire the following
two properties orGG: (i) for all £ € L and allo € X, there existd’ € L such that



(¢,0,0") € A; and(ii) the set{y(o) | o € O} partitionsL. We say thatG is a game
structure ofperfect informationf O = L and~(¢) = {¢} for all ¢ € L. We often omit
(O, ~) in the description of games of perfect information. lboe X ands C L, let
PostC(s)={¢' e L |3 € s: (L,0,0') € A}.

Plays.In a game structure, in each turn, Playechooses a letter iV, and Player
resolves nondeterminism by choosing the successor stagpdaydin G is an infinite
sequence = {yooly ...0n_10n0, ... such that(i) ¢y = Iy, and(ii) for all i > 0, we
have(?;,0;,¢;11) € A. Theprefix up tol,, of the playr is denoted byr(n); its length
is |m(n)] = n + 1; and its last element isast(w(n)) = ¢,. Theobservation sequence
of 7 is the unique infinite sequenee ! (r) = 090001 . ..o 10,0, ... such that for
alli > 0, we havel; € v(o;). Similarly, theobservation sequenad = (n) is the prefix
up too,, of y~1(7). The set of infinite plays i7 is denotedPlays(G), and the set of
corresponding finite prefixes is denoteeefs(G). A statel € L is reachablein G if
there exists a prefig € Prefs(G) such thatlast(p) = ¢. For a prefixp € Prefs(G), the
coneCone(p) = { m € Plays(G) | pis a prefix ofr } is the set of plays that extend
Theknowledgessociated with a finite observation sequeneeoyog0101 ... 0,10,

is the setK(7) of states in which a play can be after this sequence of obsengathat
is, K(t) = {Last(p) | p € Prefs(G)andy~!(p) = 7}. Foroc € X, ¢ € L, and
p,p' € Prefs(G) with o’ = p- o - £, leto, € O be the unique observation such that
0 € y(0r). ThenK(y~1(p")) = PostS (K(v~(p))) N ¥(0s).

StrategiesA deterministic strategyn G for Player1 is a functiona : Prefs(G) —
Y. For a finite setA, a probability distribution oA is a functionk : A — [0,1]
such thaty ., x(a) = 1. We denote the set of probability distributions dnby
D(A). Given a distributiors € D(A), let Supp(k) = {a € A | k(a) > 0} be the
supportof . A randomized strategin G for Playerl is a functiona : Prefs(G) —
D(X). A (deterministic or randomized) strategyfor Player1 is observation-based
if for all prefixesp, p’ € Prefs(G), if v~ 1(p) = v~ 1(p), thena(p) = a(p’). In the
sequel, we are interested in the existence of observatiseebstrategies for PlayerA
deterministic strategin G for Player2 is a functions : Prefs(G) x X' — L such that
for all p € Prefs(G) and allo € X, we have(Last(p), o, 5(p, o)) € A. A randomized
strategyin G for Player2 is a functions : Prefs(G) x X — D(L) such that for all
p € Prefs(G), allo € X, and allf € Supp(B(p, o)), we have(Last(p),o,£) € A. We
denote byAq, A9, andBg the set of all Playet-strategies, the set of all observation-
based Playet-strategies, and the set of all Playestrategies in, respectively. All
results of this paper can be proved also if strategies depesthte sequences only, and
not on the past moves of a play.

Theoutcomeof two deterministic strategies (for Playerl) andg (for Player2) in
G is the playr = ¢yooly ... 0pn_1n0, ... € Plays(G) such that for ali > 0, we have
o; = a(m(i)) andl;11 = B(xn(i),o;). This play is denotedutcome(G, «, 3). The
outcomeof two randomized strategies(for Playerl) andg (for Player2) in G is the
set of playst = ¢yooly ... 0n—14,0, ... € Plays(G) such that for alk > 0, we have
a(m(i))(o;) > 0andB(w (i), o;)(¢ix1) > 0. This setis denotesutcome(G, a, 5). The
outcome sedf the deterministic (resp. randomized) strategfor Playerl in G is the
setOutcome; (G, «) of playsw such that there exists a deterministic (resp. randomized)



strategys for Player2 with 7 = outcome(G, a, 8) (resp.w € outcome(G, «, 3)). The
outcome sets for Player 2 are defined symmetrically.

ObjectivesAn objectivefor G is a setp of infinite sequences of observations and input
letters, that isgp C (O x X)“. Aplay 7 = lyooly...0n—14n0y ... € Plays(G)
satisfieghe objectivep, denotedr = ¢, if v~ (7) € ¢. Objectives are generally Borel
measurable: a Borel objective is a Borel set in the Cantaslogy on(O x X))« [13].
We specifically consider reachability, safety, Biichi, 8oBi, and parity objectives, all
of them Borel measurable. The parity objectives are a caabform to express all
w-regular objectives [21]. For a play = {poo¢ ..., we write Inf(7) for the set of
observations that appear infinitely oftenyn!(x), thatis,Inf(7) = {o € O | ¢; €
~(o) for infinitely manyi’'s}.

Given a set7 C O of target observations, theachability objective Reach(7)
requires that an observation I be visited at least once, that iBeach(7) =
{ lyoplro1... € Plays(G) | Ik > 0-3o € T : ¢ € ~(o) }. Dually, the
safetyobjective Safe(7") requires that only observations ih be visited. Formally,
Safe(T) = {[000@10’1... S PIays(G) | Vk > 0-do € T : 4 € ’7(0) } The
Buichi objective Buchi(7") requires that an observation 1 be visited infinitely of-
ten, that is,Buchi(7) = {« | Inf(x) N T # 0 }. Dually, thecoBichi objective
coBuchi(7) requires that only observations i be visited infinitely often. Formally,
coBuchi(7) = {n | Inf(x) C T }.Ford € N,letp: O — {0,1,...,d} be aprior-
ity function which maps each observation to a nonnegative integeryridhe parity
objectiveParity(p) requires that the minimum priority that appears infinitefien be
even. FormallyParity(p) = { 7 | min{ p(o) | o € Inf() } is even}. Observe that by
definition, for all objectives, if = = ¢ andy~—!(7) = v~ 1(x’), thenn’ |= ¢.

Sure winning and almost winning.strategy\; for Playeri in G is sure winningor an
objectiveg if for all 7 € Outcome; (G, \;), we haver |= ¢. Given a game structui@
and a staté of G, we write G, for the game structure that results fr@iby changing
the initial state tc, that is, if G = (L,ly, X, A, O,~), thenG, = (L, £, X, A, O, ).
An eventis a measurable set of plays, and given strategiasd for the two players,
the probabilities of events are uniquely defined [22]. FopaeBobjectivep, we denote
by Prj"ﬂ(¢) the probabilityy is satisfied in the gam@, given the strategies andg.
A strategya for Playerl in G is almost winningor the objectivey if for all random-
ized strategieg for Player2, we havePrjf;ﬁ(qS) = 1. The set ofsure-winning(resp.
almost-winning statesof a game structuré&’ for the objectivep is the set of stateé
such that Playet has a deterministic sure-winning (resp. randomized akwirsting)
observation-based strategyGh for the objectivep.

Theorem 1 (Determinacy)[16] For all perfect-information game structurésand all
Borel objectives), either there exists a deterministic sure-winning stratieg Playerl
for the objectives, or there exists a deterministic sure-winning strategyMtayer2 for
the complementary objectiWays(G) \ ¢.

Notice that deterministic strategies suffice for sure wigna game: given a ran-
domized strategyy for Player1, let o” be the deterministic strategy such that for
all p € Prefs(G), the strategya” (p) chooses an input letter frorGupp(a(p)).



Fig. 1. Game structuré;.

ThenOutcome; (G, aP) C Outcome; (G, a), and thus, ifo is sure winning, then so
isa”. The result also holds for observation-based strategigéomperfect-information
games. However, for almost winning, randomized strategjiesnore powerful than de-
terministic strategies as shown by Example 1.

Example 1.Consider the game structure shown in Fig. 1. The obsenstion
01,02,03,04 ale such thaty(ol) = {[1}, ’7(02) = {ég,élz}, ’}/(03) = {83,5{3}, and
~v(04) = {€4}. The transitions are shown as labeled edges in the figurethanditial
state if1. The objective of Player is Reach({o4}), to reach staté,. We argue that the
game is not sure winning for PlayérLet « be any deterministic strategy for Playier
Consider the deterministic strateg@yfor Player2 as follows: for allp € Prefs(G) such
thatLast(p) € v(02), if a(p) = a, then in the previous round chooses the statg,
and if a(p) = b, then in the previous round chooses the stat. Given« and g,
the playoutcome(G, o, 3) never reacheé,. However, the gamé& is almost winning
for Playerl. Consider the randomized strategy that playsdb uniformly at random
at all states. Every time the game visits observatignfor any strategy for PlayeZ,
the game visitgs and ¢4 with probability%, and hence also reachéswith probabil-
ity % It follows that against all Player strategies the play eventually reackgsvith
probability 1.

RemarksFirst, the hypothesis that the observations form a pantibibthe state space
can be weakened to a covering of the state space, where atisaswcan overlap. In that
case, Playe? chooses both the next state of the garaad the next observatiansuch
that¢ € (o). The definitions related to plays, strategies, and objestare adapted
accordingly. Such a game structusewith overlapping observations can be encoded
by an equivalent game structuf® of imperfect information, whose state space is the
set of pairg¢, o) such that’ € (o). The set of labeled transitiond’ of G’ is defined
by A" = { ((¢,0),0,(¢',0)) | (¢,0,0') € A} andy'~!(¢,0) = o. The games and
G’ are equivalent in the sense that for every Borel objectijvhere exists a sure (resp.
almost) winning strategy for Playém G for¢ if and only if there exists such a winning
strategy for Playei in G’ for ¢.

Second, it is essential that the objective is expressedinstef the observations.
Indeed, the games of imperfect information with a nonokege/winning condition are
more complicated to solve. For instance, the universalibplem for Buchi automata



can be reduced to such games, but the construction that ywegedn Section 3 cannot
be used. More involved constructions a la Safra are neetfid |

3 Sure Winning

First, we show that a game structureof imperfect information can be encoded by a
game structur&™® of perfect information such that for every Borel objectivethere
exists a deterministic observation-based sure-winnitagesyy for Playet in G for ¢ if
and only if there exists a deterministic sure-winning stggtfor Playerl in GX for ¢.
We obtainGK using a subset construction. Each stat€'fnis a set of states @ which
represents the knowledge of Playetn the worst case, the size 6K is exponentially
larger than the size @f. Second, we present a fixed-point algorithm based on amtisha
of set of states [10], whose correctness relies on the sabastruction, but avoids the
explicit construction of7¥.

3.1 Subset construction for sure winning

Given a game structure of imperfectinformati@n= (L, ly, X', A, O, ), we define the
knowledge-based subset constructirnG as the following game structure of perfect
information:GX = (£, {lo}, ¥, AK), where£ = 25\{0}, and(sy,0,s2) € AK iff
there exists an observatiore O such thats; = Post%(s;) N ~(0) ands; # . Notice
that for alls € £ and allo € X, there exists a set € £ such tha(s, o, s") € AX.

A (deterministic or randomized) strategy @ is called aknowledge-basestrat-
egy. For all sets € £ that are reachable i6¥, and all observations € O, either
s C v(o) or snN~(o) = 0. By an abuse of notation, we define thbservation se-
quenceof a playm = 500051 ...0n_15,0, ... € Plays(GX) as the infinite sequence
v~ Yx) = 090001 ...0n_10,0, ... Of Observations such that for all> 0, we have
s; C ~(0;); this sequence is unique. The playsatisfiesan objectivep C (O x X)¥
if y~1(7) € ¢. The proof of the following theorem can be found in the techhieport
version for this paper.

Theorem 2 (Sure-winning reduction). Player 1 has a deterministic observation-
based sure-winning strategy in a game struct@iref imperfect information for a Borel
objectivey if and only if Playerl has a deterministic sure-winning strategy in the game
structureGX of perfect information forp.

3.2 Two interpretations of the u-calculus

Form the results of Section 3.1, we can solve a géhtd imperfect information with
objective by constructing the knowledge-based subset construétfband solving
the resulting game of perfect information for the objectivasing standard methods.
For the important class aof-regular objectives, there exists a fixed-point theory —the
calculus— for this purpose [8]. When run 6i, these fixed-point algorithms compute
sets of sets of states of the gateAn important property of those sets is that they are
downward closeavith respect to set inclusion: if Playérhas a deterministic strategy



to win the gam&5 when her knowledge is a set then she also has a deterministic
strategy to win the game when her knowledg# iwith s’ C s. And thus, ifs is a sure-
winning state ofGK, then so iss’. Based on this property, we devise a new algorithm
for solving games of perfect information.

An antichainof nonempty sets of states is a g&t 2\ () such that for alk, s’ € ¢,
we haves ¢ s'. LetC be the set of antichains of nonempty subset& aind consider
the following partial order o€: for all ¢,¢' € C,letq C ¢ iff Vs € ¢-3s' € ¢ :
s C s'. Forqg C 2L\ 0, define the set ofnaximalelements of; by [¢] = {s € ¢ |
s # Pandvs' € q : s ¢ s'}. Clearly, [¢] is an antichain. The least upper bound
of g, € CisqU ¢ = [{s|s€qorseq}], and their greatest lower bound is
gng =[{sns'|seqgands € ¢}]. The definition of these two operators extends
naturally to sets of antichains, and the greatest elemefii®fT = {L} and the least
elementisl = (). The partially ordered s€€, C, LI,N, T, L) forms a complete lattice.
We view antichains of state sets as a symbolic representafia-downward-closed
sets of state sets.

A game latticas a complete lattic&” together with gpredecessor operatdtPre :
V — V. Given a game structur@ = (L,ly, X, A, O,~) of imperfect information,
and its knowledge-based subset construafin= (L, {ly}, ¥, AX), we consider two
game lattices: thiattice of subset$S, C, U, N, £, (), whereS = 2% andCPre : S — S
is defined byCPre(q) = {s € L | 3o € ¥ -Vs' € L: if (s,0,5") € AKX thens’ € ¢};
and thelattice of antichaing(C, C, L, M, {L}, #), with the operatofCPre] : C — C
defined by[CPre|(¢) = [{s € L | o € X-Vo € O-Ts’ € q: Post,(s)Ny(0) C s'}].

The u-calculus formulasire generated by the grammar

pu=ol|lx|pVol|lpAp|pre(p) | pr.p|ve.e

for atomic proposition® € O and variables:. We can define-o as a shortcut for
Vocon(oy o'+ A variable isfreein a formulay if it is not in the scope of a quantifier
pz or ve. A formula ¢ is closedif it contains no free variable. Given a game lattice
V, avaluation& for the variables is a function that maps every variabl® an ele-
ment inV. Forq € V, we write€[xz +— ¢] for the valuation that agrees withon all
variables, except thatis mapped tg. Given a game lattic¥ and a valuatioif, each
p-calculus formulap specifies an elemeifip]¥ of V, which is defined inductively by
the equations shown in the two tableslis a closed formula, thefip]V =[¢]¥ for
any valuatior¢. The following theorem recalls that perfect-informaticanges can be
solved by evaluating fixed-point formulas in the lattice olfsets.

Theorem 3 (Symbolic solution of perfect-information gamey [8] For every w-
regular objectivep, there exists a closed-calculus formulauForm(¢), called thechar-
acteristic formuleof ¢, such that for all game structures of perfect information, the
set of sure-winning states 6ffor ¢ is [uForm(¢)]°.

Downward closureGiven a sety € S, thedownward closuref g is the seiy| = {s €

L] 3s" € qg:s C s'}. Observe that in particular, for ajl € S, we have)) ¢ ¢| and
[q]] = ql. The setg|, for ¢ € S, are thedownward-closedets. A valuatiorf for the
variables in the lattices of subsets islownward closedf every variabler is mapped
to a downward-closed set, that &) = £(x)].



Lattice of subsets Lattice of antichains
[o]E={s € £]s C (o)} [o]¢= {~(0)}
[2]§= £(x) [1¢= £(x)
s {  foalf=lplE {R} T2l o1 { Jealé=lerlé {R} [eal
[pre()]E= CPre([¢]?) [pre()]§= [CPre](l$)
{iheli= {{Hala=Tel8ma}| | {L}eeté={{Hala=Ip1¢0 0}

Lemma 1. For all downward-closed setg ¢’ € S, we havelq¢ N ¢'] = [¢] M [¢'] and
[qUq']=TqlUlq].

Lemma 2. For all p-calculus formulag and all downward-closed valuatiosin the
lattice of subsets, the spp]¢ is downward closed.

Lemma 3. For all u-calculus formulag, and all downward-closed valuatiogsin the
lattice of subsets, we havdy]g| =[], where[£] is a valuation in the lattice of

antichains defined bj¢] (z) = [£(x)] for all variables:.

Consider a game structuée of imperfect information and a parity objective From
Theorems 2 and 3 and Lemma 3, we can decide the existence dkeandéstic
observation-based sure-winning strategy for PlayierG for ¢ without explicitly con-
structing the knowledge-based subset construaibnby instead evaluating a fixed-
point formula in the lattice of antichains.

Theorem 4 (Symbolic solution of imperfect-information gares).Let G be a game
structure of imperfect information with initial statg. For everyw-regular objectivep,
Player 1 has a deterministic observation-based strategyGirfor ¢ if and only if

{lo} CluForm(9)]°.

Corollary 1. Let G be a game structure of imperfect information, ebe a priority
function, and let be a state ofy. Whether is a sure-winning state it for the parity
objectiveParity(p) can be decided iEXPTIME.

Corollary 1 is proved as follows: for a parity objective an equivalenju-calculus
formulay can be obtained, where the size and the fixed-point quardlfiEnnations of
¢ is polynomial ing. Thus giveni' and¢, we can evaluate in GX in EXPTIME.

4 Almost Winning

Given a game structui@ of imperfect information, we first construct a game struetur
H of perfect information by a subset construction (differieain the one used for sure
winning), and then establish certain equivalences betweetiomized strategies i@
andH. Finally, we show how the reduction can be used to obtain syimEXPTIME
algorithm for computing almost-winning states @ for Biichi objectives. An Ep-
TIME algorithm for almost winning for coBlichi objectives undteperfect information
remains unknown.



4.1 Subset construction for almost winning

Given a game structure of imperfect informatién= (L, ly, X, A, O, ~), we construct
game structure of perfect informatidh = Pft(G) = (Q, qo, X, Ag) as follows:Q =
{(s,0) | 3o € O : s C y(o)andl € s }; the initial state isjo = ({ lo },lo); the
transition relationAy C Q x X x Q is defined by((s, ¢), 0, (s',¢")) € Ag iff there
is an observation € O such thats’ = PostS (s) N ~(0) and(¢, 0, ') € A. Intuitively,
when H is in state(s, ¢), it corresponds td> being in state/ and the knowledge of
Playerl beings. Two statesy = (s,¢) andq’ = (s',¢') of H areequivalentwritten
g~ ¢, ifs=s" Two prefixesp = qoo0q1 ...0n—1q, @andp’ = q\oiq] ...on_14,
of H areequivalentwrittenp ~ p, if forall 0 < ¢ < n, we havey; ~ ¢}, and for all
0 <i<n-—1,we haver; = o,. Two playsr, 7’ € Plays(H) areequivalenfwritten
T ~ 7y, ifforall ¢ > 0, we haver(i) ~ #/(i). For a statey € (), we denote by
lqdl~ ={qd € Q]| q= q }the=-equivalence class gf We define equivalence classes
for prefixes and plays similarly.

Equivalence-preserving strategies and objectivestrategya for Playerl in H is
positionalif it is independent of the prefix of plays and depends onlyranlast state,
that is, for allp, p’ € Prefs(H) with Last(p) = Last(p’), we havea(p) = a(p’). A
positional strategyx can be viewed as a functian : Q — D(X). A strategya for
Playerl in H is equivalence-preservinig for all p,p’ € Prefs(H) with p ~ p’, we
havea(p) = a(p’). We denote byd, AL, and. A% the set of all Player-1 strategies,
the set of all positional Player-1 strategies, and the setlladquivalence-preserving
Player-1 strategies i/, respectively. We WriteAfI(P ) = A% N AL for the set of
equivalence-preserving positional strategies.

An objective for H is a subset of@Q x X)¢, that is, the objectivé is a set of plays.
The objectivep is equivalence-preservirigfor all plays~ € ¢, we havern]y C ¢.

Relating prefixes and playg/e define a mapping : Prefs(G) — Prefs(H) that maps
prefixes inG to prefixes inH as follows: giverp = (yool101 ... 0n—_1ln, leth(p) =

q000q101 - - - On—14n, Where for all0 < ¢ < n, we haveq, = (s;,¥;), and for all
0 < i < n-—1,we haves; = K(y1(p(i))). The following properties hold(:)

for all p,p’ € Prefs(G), if v~1(p) = v~ (o), thenh(p) ~ h(p'); and (i) for all

p,p' € Prefs(H), if p ~ p/, theny=1(h=1(p)) = v~ 1(h~1(p")). The mapping: :

Plays(G) — Plays(H) for plays is defined similarly, and has similar properties.

Relating strategies for Playdr. We define two strategy mappings Ay — Ag and

g : Ac — Apg. Given a Player-1 strategyy in H, we construct a Player-1 strategy
ag = h(am) in G as follows: for allp € Prefs(G), letag(p) = an(h(p)). Similarly,
given a Player-1 strategyc in G, we construct a Player-1 strategy; = g(ag) in H

as follows: for allp € Prefs(H), letan(p) = ag(h™(p)). The following properties
hold: (7) for all strategiesvy € Ay, if ay is equivalence-preserving, thétiay ) is
observation-based; ariéh) for all strategiesvi € Ag, if ag is observation-based, then
g(ag) is equivalence-preserving.

Relating strategies for PlayeX. Observe that foralf € Q, allo € X', and alll € L,
we havel{ ¢ = (¢',¢) | (¢,0,q¢) € Ax }| < 1. Given a Player-2 strategyy in H, we
construct a Player-2 strategy; = h(8y) as follows: for allp € Prefs(G), allo € X,



andalll € L, let B (p, o) (£) = Br(h(p), o) (s, £), where(s, £) € Post? (Last(h(p))).
Similarly, given a Player-2 strategy: in GG, we construct a Player-2 strategy; =
9(Be) in H as follows: for allp € Prefs(H), all o € X, and allg € Q with ¢ = (s,£),

let B (p,0)(q) = Ba(h=*(p),0)(0).

Lemmad4. For all p € Prefs(H), for every equivalence-preserving strategyof
Player 1 inH, and for every strategy of Player 2 inH, we havat’rg‘(;ﬁ(Cone(p)) =

Prf (@)1 (=1 (Cone(p))).

Lemmas. For all p € Prefs(G), for every observational strategy of Player 1
in G, and for every strategy? of Player 2 in G, we havePrf;’ﬁ(Cone(p)) =
Pr2()-99) (h(Cone(p))).

Theorem 5 (Almost-winning reduction). Let G be a game structure of imperfect
information, and letH = Pft(G) be the game structure of perfect information.
For all Borel objectivesyp for G, all observation-based Player-1 strategiesin G,
and all Player-2 strategie® in G, we havePrlO;ﬂ(QS) = Prgga”g(ﬁ) (h(¢)). Dually,
for all equivalence-preserving Borel objectiveésfor H, all equivalence-preserving
Player-1 strategies in H, and all Player-2 strategieg in H, we havePr;“(;Bw) =

Pr;lo(a%h(ﬁ) (h—l (9)).

The proof is as follows: by the Carathebddary unique-extentheorem, a probability
measure defined on cones has a unique extension to all Bqeetiobs. The theorem
then follows from Lemma 4.

Corollary 2. For every Borel objective for G, we havedag € AZ, - V6s € Bg :
Pr?fﬁcw) = lifandonlyif3ay € A% -V08x € By - Prg‘OH’ﬂH(hw)) =1.

4.2  Almost winning for Blichi objectives

Given a game structur& of imperfect information, letd = Pft(G) be the game
structure of perfect information. Given a sé&t C O of target observations, let
Br ={(s,]) e Q| Jo €T :s C ~(o) }. Thenh(Buchi(T)) = Buchi(Br) =
{mu € Plays(H) | Inf(mg) N By # 0 }. We first show that almost winning if/

for the Buichi objectivBuchi(B7) with respect to equivalence-preserving strategies is
equivalent to almost winning with respect to equivalenoesprving positional strate-
gies. Formally, forBr C @, letQxs = {¢€ Q | 3a € A - VB € By - V¢ € [g]~ :
Pr%? (Buchi(Br)) = 1}, andQis”) = {q € Q | 3a € A7) B € By - V¢ €

[q)~ : Pr;",’ﬂ(Buchi(BT)) =1}. We will prove thatQ7ys = Q:S(P). Lemma 6 follows
from the construction off from G, and yields Lemma 7.

Lemma6. Forall ¢ € Q, all ¢1 € [g]~, and allo € X, if (¢1,0,q]) € Ap, then for
all ¢ € [q}]~, there existgs € [¢1]~ such that(gs, 0,¢}) € Ap.

Lemma 7. Given an equivalence-preserving Player-1 strategy Ay, a prefixp €
Prefs(H), and a stateg € @, if there exists a Player-2 strategy € By such that
Prg"ﬂ(Cone(p)) > 0, then for every prefiy’ € Prefs(H) with p = p/, there exist a

Player-2 strategyd’ € By and a state;’ € [¢]~ such thafPrZ‘/'ﬂ,(Cone(p’)) > 0.
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Fig. 2. Game structuréd (for G of Fig. 1).
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Observe that) \ Qxs = {¢ € Q | Va € A} - 38 € By -3¢ € [¢l~ :
Prg‘,ﬁ(Buchi(BT)) < 1}. It follows from Lemma 7 that if a play starts Qs and
reaches) \ Q% with positive probability, then for all equivalence-pregag strategies
for Playerl, there is a Playe strategy that ensures that the Biichi objecHvehi(B7)
is not satisfied with probability 1.

Notation.For a statgy € Q andY C @, letAllow(q,Y) = {0 € X' | Post! (¢) C Y }.

For a state) € Q andY C @, letAllow([g]~,Y) = (,/¢(y. Allow(q", Y).

Lemma 8. For all ¢ € Q7s, we haveAllow([q]~, Q7s) # 0.

Lemma 9. Given a statey € Q7s, leta € Ay be an equivalence-preserving Player-1
strategy such that for all Player-2 strategi@sc By and all statesy’ € [¢]~, we have
Pr?fﬁ(Buchi(BT)) = 1. Letp = qoooq1 - - - on—1q, be a prefix inPrefs(H) such that
forall 0 < i < n,we havey; € Q5. If there is a Player-2 strategy € By and a state
¢ € [q]~ such thafPrg‘/B(Cone(p)) > 0, thenSupp(a(p)) C Allow([g]~, QXs)-

Notation.We inductively define theanksof states inQ7%s as follows: letRank(0)
Br N Q% and for allj > 0, let Rank(j + 1) = Rank(j) U{q € Qs | o
Allow([g]~, Q%s) : Post?(q) C Rank(j) }. Let 7* = min{ j > 0 | Rank(j) =
Rank(j + 1) }, and letQ* = Rank(j*). We say that the seRank(j + 1) \ Rank(j)
contains thestates of rankj 4 1, for all j > 0.

m 1

Example 2.Given the game structur@ of imperfect information from Fig. 1, the game
structureH = Pft(G) of perfect information is shown in Fig. 2. All states are afho
winning for the Buichi objectivBuchi({ ({{4}, ¢4) }). The ranks of the states are shown
next to the states. The positional strategy that plays baihdb with equal probability

is almost winning at all states. For the stagewith ranks 1, 3, and 4, if the rank qf

is j, thenPost? (¢) C Rank(j — 1) andPost;’ (¢) C Rank(j — 1). For the states with
rank 2, ifqg = ({ £2,0, },45), thenPost;’ (q) C Rank(1); and ifq = ({ £2,0, },05),
thenPost (¢) C Rank(1).

Lemma 10. Q* = Q7.

Proof. By definition, Q* C Q%s. We now prove that)ys C @Q*. Assume to-
wards a contradiction that = Qs \ Q* # 0. For all states; € X and allo €



Allow([¢]~, QRs), we havePostf(q) N X # (b, because otherwisewould have been
in Q*. Hence, for ally € X and allo € Allow([¢]~, Q7). there exists @ € X such
that(q,0,q’) € Ap. Fix a strategy3 for Player2 as follows: for a statg € X and the
inputletters € Allow([q]~, QRs), choose a successgre X suchthatq,o,q’) € Ag.
Consider a state € X and an equivalence-preserving almost-winning stratedgr
Playerl from ¢ for the objectiveBuchi(B7). By Lemma 9, for every prefix satisfying
the condition of Lemma 9, we hagipp(a(p)) C Allow([Last(p)]~, Qxs)- It follows
thatPr{” (Safe(X)) = 1. SinceBr N Q% € Q*, it follows that By N X = (). Hence
Pr&?(Reach(Br)) = 0, and thereford®r("” (Buchi(Br)) = 0. This contradicts the
fact thata is an almost-winning strategy. ]

Equivalence-preserving positional strate@onsider the equivalence-preserving posi-
tional strategyw? for Player 1 inH, which is defined as follows: for a stajec Q7s,
choose all moves iAllow([q]=, Q%) uniformly at random.

Lemma 11. For all statesq € Q% and all Player-2 strategiegl in H, we have
Pro" " (Safe(Q7%)) = 1 andPr2”#(Reach(Br N Q7)) = 1.

Proof. By Lemma 10, we hav@* = Q7. Letz = |Q*|. For a statg € Qs, we have
Post? (¢) C Q> forall o € Allow([g]~, Q3%)- It follows for all states; € Q75 and all
strategieg’ for Player2, we havePrg‘p’ﬁ(Safe(QfS)) =1.

For a statey € (Rank(j + 1) \ Rank(j)), there existsr € Allow([¢]~, QRs) Such
thatPost’ (¢) C Rank(j). For a seft” C Q, let 7 (Y) denote the set of prefixes that
reachY” within j steps. It follows that for all statesc Rank(j + 1) and all strategies
for Player 2, we havPrZ‘p’ﬂ(Ol(Rank(j))) > |—§‘ Let B = By N Q%s- By induction
on the ranks it follows that for all statese Q* and all strategieg for Player 2:

aP, z _ aP, z 1y\? _
P12 (0% (Rank(0))) = Pre”#(0*(B)) > (E) —r>0.

Form > 0, we havePrZ‘pﬁ(Om'z(B)) >1—(1—r)™ Thus:

Pry"#(Reach(B)) = lim Pry"(0™*(B)) > lim 1—(1—r)" =1.

m—00

The lemma follows. |

Lemma 11 implies that, given the Player-1 stratedy the setQ%s is never left,
and the states ilBr N Qs are reached with probability 1. Since this happens for
every state inQ)ys, it follows that the setBy N Q% is visited infinitely often with
probability 1, that is, the Buchi objectiBuchi(Br) is satisfied with probability 1.
This analysis, together with the fact thag]~ is a singleton and Corollary 2, proves
thatQys = Q<". Theorem 6 follows.

Theorem 6 (Positional almost winning for Bichi objectivesinder imperfect infor-
mation). Let G be a game structure of imperfect information, and #et= Pft(G)
be the game structure of perfect information. For all sétef observations, there ex-
ists an observation-based almost-winning strategy folyBtal in G for the objective
Buchi(7) iff there exists an equivalence-preserving positionaladtrwinning strategy
for Player 1 inH for the objectiveBuchi(B7).



Symbolic algorithmWe present a symbolic quadratic-time (in the sizéfQfalgorithm
to compute the sePys. ForY C Q andX C VY, letApre(Y,X) ={qgeY | Jo €
Allow([q]~,Y) : Post?(q) € X } andSpre(Y) = { ¢ € Y | Allow([g]~,Y) # 0 }.
Note thatSpre(Y) = Apre(Y,Y). Let¢ = vY.uX.(Apre(Y, X)V (B ASpre(Y')) and
let Z =[¢]. It can be shown tha = Q7xs.

Theorem 7 (Complexity of almost winning for Biichi objectives under imperfect
information). Let G be a game structure of imperfect information, %tbe a set of
observations, and let be a state of7. Whether/ is an almost-winning state i& for

the Bichi objectiveBuchi(7") can be decided iEXPTIME.

The facts thaZ = Q3 and thatH is exponential in the size @ yield Theorem 7.
The arguments for the proofs of Theorem 6 and 7 do not diresttgnd to coBuchi
or parity objectives. In fact, Theorem 6 does not hold foiitgasbjectives in general,
for the following reason: in concurrent games with parityealives with more than
two priorities, almost-winning strategies may requireriité memory; for an example,
see [5]. Such concurrent games are reducible to semipenfiectnation games [4],
and semiperfect-information games are reducible to theeifept-information games
we study. Hence a reduction to finite game structures of peifiéormation in order
to obtain randomized positional strategies is not possilifle respect to almost win-
ning for general parity objectives. Theorem 6 and Theoremay hrold for coBuchi
objectives, but there does not seem to be a simple extensar arguments for Biichi
objectives to the coBiichi case. The results that corraspomheorems 6 and 7 for
coBiuichi objectives are open.

Direct symbolic algorithmAs in Section 3.2, the subset structutedoes not have

to be constructed explicitly. Instead, we can evaluate alfp@int formula on a well-
chosen lattice. The fixed-point formula to compute the @gt is evaluated on the
lattice (29, C, U, N, Q, 0). It is easy to show that the sets computed by the fixed-point
algorithm are downward closed for the following order@nfor (s, ¢), (s',¢') € Q,

let (s,¢) < (¢/,¢) iff £ = ¢ ands C s’. Then, we can define an antichain o¢gias

a set of pairwise<-incomparable elements @f, and compute the almost-sure winning
states in the lattice of antichains ov@ywithout explicitly constructing the exponential
game structuré].

5 Lower Bounds

We show that deciding the existence of a deterministic (nesplomized) observation-
based sure-winning (resp. almost-winning) strategy fay®i1 in games of imperfect
information is ExPTIME-hard already for reachability objectives. The result fores
winning follows from [19], but our new proof extends to alrh@snning as well.

Sure winningTo show the lower bound, we use a reduction from the memlpgepshb-
lem for polynomial-space alternating Turing machines.alternating Turing machine
(ATM) is atupleM = (Q, 0,9, X%, 2+, 9, F'), whereQ is a finite set of control states;
qo € Q is the initial statey : @ — {A,V}; X; = {0,1} is the input alphabetl; =
{0, 1, 2} is the tape alphabet ar2zds theblanksymbol;d C Q x Xy x Q x Xy x {—1, 1}



is the transition relation; anfl’ C @ is the set of accepting states. We say thais

a polynomial-spac&TM if there exists a polynomigd(-) such that for every word,

the tape space used By on inputw is bounded by (|w|). Without loss of generality,
we assume that the initial control state of the machine\vsstate, and that transitions
connectv-states toA-states, and vice versa. A wotdis acceptecby the ATM M if
there exists a run tree @ff onw all of whose leaf nodes are accepting configurations
(i.e., configurations containing an accepting state); 3¢ details. Thenembership
problemis to decide if a given worav is accepted by a given polynomial-space ATM
(M, p). This problem is KpTIME-hard [3].

Sketch of the reductio&iven a polynomial-space ATM/ and a wordw, we construct

a game structure of imperfect information, of size polyralrin the size of M, w), to
simulate the execution ot/ on w. Playerl makes choices iv-states, and Player
makes choices in-states. Playet is responsible for maintaining the symbol under the
tape head. His objective is to reach an accepting configurafithe ATM.

Each turn proceeds as follows. In anrstate, by choosing a lettét, a) in the al-
phabet of the game, Playéreveals(i) the transitiort of the ATM that he has chosen
(this way he also reveals the symbol that is currently uridetape head), and:) the
symbola under the next position of the tape head. If Playdies about the current
or the next symbol under the tape head, then he should losgathe; otherwise the
game proceeds. The machine is now infastate and Player has no choice: he an-
nounces a special symhohnd Playee, by resolving the nondeterminism ejchooses
a transition of the ATM that is compatible with the currentrgyol under the tape head
revealed by Player at the previous turn. The state of the ATM is updated and theega
proceeds. The transition chosen by Playé visible in the next state of the game, and
thus Playerl can update his knowledge about the configuration of the ATlslyd? 1
wins whenever an accepting configuration of the ATM is redche

The difficulty is to ensure that Playérloses when he announces a wrong symbol
under the tape head. As the number of configurations of thenpalial-space ATM is
exponential, we cannot directly encode the full configoratf the ATM in the states
of the game. To overcome this difficulty, we use the power gfénfiect information as
follows. Initially, Player2 chooses a positioh, wherel < k < p(|wl|), on the tape.
The chosen numbdér, as well as the symbal € {0, 1,2} that lies in the tape cell with
numberk, are maintained all along the game in the nonobservablepart the game
states. The paifo, k) is thus private to Playet, and invisible to Playet. Thus, at any
point in the game, Player can check whether Playéris lying when announcing the
content of cell numbek, and go to a sink state if Playgicheats (no other states can be
reached from there). Since Playledoes not know which cell is monitored by Playzer
(sincek is private), to avoid losing, he must not lie about any of #ygetcells, and thus
he must faithfully simulate the machine. Then, he wins thag# and only if the ATM
accepts the words.

Almost winningTo establish the lower bound for almost winning, we can usesttime
reduction. Randomization cannot help Player 1 in this ganteed, at any point in the
game, if Player 1 takes a chance in either not faithfully $ating the ATM or lying
about the symbol under the tape head, then the sink statadsed. In these cases, the



probability to reach the sink state is positive, and so tiodability to win the game is
strictly less than one.

Theorem 8 (Lower bounds).Let G be a game structure of imperfect information, let
T be a set of observations, and lebe a state of7. Deciding whethel is a sure-
winning state in for the reachability objectivReach(7") is ExpPTIME-hard. Deciding
whether? is an almost-winning state i& for Reach(7) is alsoExPTIME-hard.
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