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Run-time guarantees play an important role in the area of embedded systems and
especially hard real-time systems. These systems are typically subject to stringent tim-
ing constraints, which often result from the interaction with the surrounding physical
environment. It is essential that the computations are completed within their associ-
ated time bounds; otherwise severe damages may result, or the system may be unus-
able. Therefore, a schedulability analysis has to be performed which guarantees that
all timing constraints will be met. Schedulability analyses require upper bounds for the
execution times of all tasks in the system to be known. These bounds must besafe,
i.e., they may never underestimate the real execution time.Furthermore, they should
betight, i.e., the overestimation should be as small as possible.

In modern microprocessor architectures, caches, pipelines, and all kinds of specu-
lation are key features for improving (average-case) performance. Unfortunately, they
make the analysis of the timing behaviour of instructions very difficult, since the ex-
ecution time of an instruction depends on the execution history. A lack of precision
in the predicted timing behaviour may lead to a waste of hardware resources, which
would have to be invested in order to meet the requirements. For products which are
manufactured in high quantities, e.g., in the automobile ortelecommunications markets
this would result in intolerable expenses.

Subject of this chapter are one particular approach and the subtasks involved in
computing safe and precise bounds on the execution times forreal-time systems.

0.1 Introduction

Hard real-time systems are subject to stringent timing constraints which are dictated by
the surrounding physical environment. We assume that a real-time system consists of
a number of tasks, which realize the required functionality. A schedulability analysis
for this set of tasks and a given hardware has to be performed in order to guarantee
that all the timing constraints of these tasks will be met (“timing validation”). Exist-
ing techniques for schedulability analysis require upper bounds for the execution times
of all the system’s tasks to be known. These upper bounds are commonly called the
worst-case execution times(WCETs), a misnomer that causes a lot of confusion and
will therefore not be adopted in this presentation. In analogy, lower bounds on the exe-
cution time have been namedbest-case execution times, (BCET). These upper bounds
(and lower bounds) have to besafe, i.e., they must never underestimate (overestimate)
the real execution time. Furthermore, they should betight, i.e., the overestimation
(underestimation) should be as small as possible.

Figure 0.1 depicts the most important concepts of our domain. The system shows a
certain variation of execution times depending on the inputdata or different behaviour
of the environment. In general, the state space is too large to exhaustively explore
all possible executions and so determine the exact worst-case and best-case execution
times. Some abstraction of the system is necessary to make a timing analysis of the
system feasible. These abstractions loose information, and thus are responsible for the
distance between WCETs and upper bounds and between BCETs and lower bounds.
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Figure 1: Basic notions concerning timing analysis of systems.

How much is lost depends both on the methods used for timing analysis and on system
properties, such as the hardware architecture and the cleanness of the software. So, the
two distances mentioned above, termedupper predictabilityand lower predictability
can be seen as a measure for the timing predictability of the system. Experience has
shown that the two predictabilities can be quite different,cf. [HLTW03]. The methods
used to determine upper bounds and lower bounds are the same.We will concentrate
on the determination of upper bounds unless otherwise stated.

Methods to compute sharp bounds [PK89, PS91] for processorswith fixed execu-
tion times for each instruction have long been established.However, in modern micro-
processor architectures caches, pipelines, and all kinds of speculation are key features
for improving (average-case) performance. Caches are usedto bridge the gap between
processor speed and the access time of main memory. Pipelines enable acceleration by
overlapping the executions of different instructions. Theconsequence is that the exe-
cution time of individual instructions, and thus the contribution of one execution of an
instruction to the program’s execution time can vary widely. The interval of execution
times for one instruction is bounded by the execution times of the following two cases:

• The instruction goes “smoothly” through the pipeline; all loads hit the cache, no
pipeline hazard happens, i.e., all operands are ready, no resource conflicts with
other currently executing instructions exist.

• “Everything goes wrong”, i.e., instruction and/or operandfetches miss the cache,
resources needed by the instruction are occupied, etc.

Figure 2 shows the different paths through a multiply instruction of a PowerPC pro-
cessor. The instruction-fetch phase may find the instruction in the cache (cache hit), in
which case it takes 1 cycle to load it. In the case of a cache miss, it may take something
like 30 cycles to load the memory block containing the instruction into the cache. The
instruction needs an arithmetic unit, which may be occupiedby a preceding instruction.
Waiting for the unit to become free may take up to 19 cycles. This latency would not
occur, if the instruction fetch had missed the cache, because the cache-miss penalty of
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Figure 2: Different paths through the execution of a multiply instruction. Unlabeled
transitions take 1 cycle.

30 cycles has allowed any preceding instruction to terminate its arithmetic operation.
The time it takes to multiply two operands depends on the sizeof the operands; for
small operands, one cycle is enough, for larger, three are needed. When the operation
has finished, it has to be retired in the order it appeared in the instruction stream. The
processor keeps a queue for instructions waiting to be retired. Waiting for a place in
this queue may take up to 6 cycles. On the dashed path, where the execution always
takes the fast way, its overall execution time is 4 cycles. However, on the dotted path,
where it always takes the slowest way, the overall executiontime is 41 cycles.

We will call any increase in execution time during an instruction’s execution a
timing accidentand the number of cycles by which it increases thetiming penalty
of this accident. Timing penalties for an instruction can add up to several hundred
processor cycles. Whether the execution of an instruction encounters a timing accident
depends on the execution state, e.g., the contents of the cache(s), the occupancy of other
resources, and thus on the execution history. It is therefore obvious that the attempt to
predict or exclude timing accidents needs information about the execution history.

For certain classes of architectures, namely those withouttiming anomalies, ex-
cluding timing accidents means decreasing the upper bounds. However, for those with
timing anomalies this assumption is not true.

0.1.1 Tool Architecture and Algorithm

A more or less standard architecture for timing-analysis tools has emerged [HWH95,
TFW00, Erm03]. Fig. 3 shows one instance of this architecture. A first phase, de-
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Figure 3: The architecture of theaiT timing-analysis tool.
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picted on the left, predicts the behaviour of processor components for the instructions
of the program. It usually consists of a sequence of static program analyses of the
program. They altogether allow to derive safe upper bounds for the execution times of
basic blocks. A second phase, the column on the right, computes an upper bound on
the execution times over all possible paths of the program. This is realized by map-
ping the control flow of the program to an Integer Linear Program and solving this by
appropriate methods. This architecture has been successfully used to determine pre-
cise upper bounds on the execution times of real-time programs running on processors
used in embedded systems [AFMW96, FMW99, FHL+01, TSH+03, HLTW03]. A
commercially available tool,aiT by AbsInt, cf.http://www.absint.de/wcet.htm,
was implemented and is used in the aeronautics and automotive industries.

The structure of the first phase,processor-behavior prediction, often calledmi-
croarchitecture analysis, may vary depending on the complexity of the processor ar-
chitecture. A first, modular approach would be the following:

1. Cache-behavior prediction determines statically and approximately the contents
of caches at each program point. For each access to a memory block, it is
checked, whether the analysis can safely predict a cache hit.

Information about cache contents can be forgotten after thecache analysis. Only
the miss/hit information is needed by the pipeline analysis,

2. Pipeline-behavior prediction analyzes, how instructions pass through the pipeline
taking cache-hit or miss information into account. The cache-miss penalty is as-
sumed for all cases, where a cache hit can not be guaranteed.

At the end of simulating one instruction, the pipeline analysis continues with
only those states that show the locally maximal execution times. All others can
be forgotten.

0.1.2 Timing Anomalies

Unfortunately, this approach is not safe for many processorarchitectures. Most pow-
erful microprocessors have so-calledtiming anomalies. Timing anomalies are contra-
intuitive influences of the (local) execution time of one instruction on the (global) ex-
ecution time of the whole program. The interaction of several processor features can
interact in such a way that a locally faster execution of an instruction can lead to a
globally longer execution time of the whole program.

For example, a cache miss contributes the cache-miss penalty to the execution time
of a program. It was, however, observed for the MCF 5307 [RSW02], that a cache
miss may actually speed up program execution. Since the MCF 5307 has a unified
cache and the fetch and execute pipelines are independent, the following can happen:
A data access that is a cache hit is served directly from the cache. At the same time,
the fetch pipeline fetches another instruction block from main memory, performing
branch prediction and replacing two lines ofdata in the cache. These may be reused
later on and cause two misses. If the data access was a cache miss, the instruction fetch
pipeline may not have fetched those two lines, because the execution pipeline may have
resolved a misprediction before those lines were fetched.
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The general case of a timing anomaly is the following. Different assumption about
the processor’s execution state, e.g. the fact that the instruction is or is not in the in-
struction cache, will result in a difference∆Tlocal of the execution time of the instruction
between these two cases. Either assumption may lead to a difference∆T of the global
execution time compared to the other one. We say that a timinganomaly occurs if
either

∆Tlocal < 0 i.e., the instruction executes faster, and

∆T < ∆Tlocal , the overall execution is accelerated by more than the acceleration
of the instruction, or

∆T > 0 , the program runs longer than before.

∆Tlocal > 0 i.e., the instruction takes longer to execute, and

∆T > ∆Tlocal i.e., the overall execution is extended by more than the delay of
the instruction, or

∆T < 0 i.e., the overall execution of the program takes less time to execute than
before.

The case∆Tlocal < 0∧∆T > 0 is a critical case for our timing analysis. It makes it
impossible to use local worst cases for the calculation of the program’s execution time.
The analysis has to follow all possible paths as will be explained in Section 0.3.

0.1.3 Contexts

The contribution of an individual instruction to the total execution time of a program
may vary widely depending on the execution history. For example, the first interation
of a loop typically loads the caches, and later iterations profit from the loaded memory
blocks being in the caches. In this case, the execution of an instruction in a first iteration
encounters one or more cache misses and pays with the cache-miss penalty. Later
executions, however, will execute much faster because theyhit the cache. A similar
observation holds for dynamic branch predictors. They may need a few iterations until
they stabilize and predict correctly.

Therefore, precision is increased if instructions are considered in their control–flow
context, i.e., the way control reached them. Contexts are associated with basic blocks,
i.e., maximally long straight-line code sequences that canbe only entered at the first
instruction and left at the last. They indicate through which sequence of function calls
and loop iterations control arrived at the basic block. Thus, when analyzing the cache
behavior of a loop, precision can be increased by regarding the first iteration of the
loop and all other iterations separately; more precisely, to unroll the loop once and then
analyze the resulting code.1

Definition 1 Let p be a program with set of functions P= {p1, p2, . . . , pn} and set of
loops L= {l1, l2, . . . , ln}. A word c over the alphabet P∪L× IN is called acontextfor

1Actually, this unrolling transformation need not be reallyperformed, but can be incorporated into the
iteration strategy of the analyzer. So, we talk of virtual unrolling the loops.
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a basic block b, if b can be reached by calling the functions and iterating through the
loops in the order given in c.

Even, if all loops have static loop bounds and recursion is also bounded, there
are in general too many contexts to consider them exhaustively. A heuristics is used
to keep relevant contexts apart and summarize the rest conservatively, if their influ-
ence on the behaviour of instructions does not significantlydiffer. Experience has
shown [TSH+03], that a few first iterations and recursive calls are sufficient to “sta-
bilize” the behavior information, as the above example indicates, and that the right
differentiation of contexts is decisive for the precision of the prediction [MAWF98].

A particular choice of contexts transforms the call and the control flow graph into
a context-extended control-flow graphby virtually unrolling the loops and virtually
inlining the functions as indicated by the contexts. The formal treatment of this concept
is quite involved and shall not be given here. It can be found in [The02].

0.2 Cache-Behaviour Prediction

Abstract Interpretation [CC77] is used to compute invariants about cache contents.
How the behavior of programs on processor pipelines is predicted follows in Sec-
tion 0.3.

0.2.1 Cache Memories

A cache can be characterized by three major parameters:

• capacityis the number of bytes it may contain.

• line size (also called block size) is the number of contiguous bytes that are
transferred from memory on a cache miss. The cache can hold atmost n =
capacity/line sizeblocks.

• associativityis the number of cache locations where a particular block mayre-
side.
n/associativityis the number ofsetsof a cache.

If a block can reside in any cache location, then the cache is calledfully associative. If
a block can reside in exactly one location, then it is calleddirect mapped. If a block can
reside in exactlyA locations, then the cache is calledA-way set associative. The fully
associative and the direct mapped caches are special cases of theA-way set associative
cache whereA = n andA = 1, resp.

In the case of an associative cache, a cache line has to be selected for replacement
when the cache is full and the processor requests further data. This is done according
to a replacement strategy. Common strategies areLRU (Least Recently Used),FIFO
(First In First Out), andrandom.

The set where a memory block may reside in the cache is uniquely determined by
the address of the memory block, i.e., the behavior of the sets is independent of each
other. The behavior of anA-way set associative cache is completely described by the
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behavior of itsn/A fully associative sets. This holds also for direct mapped caches
whereA = 1.

For the sake of space, we restrict our description to the semantics of fully as-
sociative caches with LRU replacement strategy. More complete descriptions that
explicitly describe direct mapped andA-way set associative caches can be found in
[Fer97, FMW99].

0.2.2 Cache Semantics

In the following, we consider a (fully associative) cache asa set of cache linesL =
{l1, . . . , ln} and the store as a set of memory blocksS= {s1, . . . ,sm}.
To indicate the absence of any memory block in a cache line, weintroduce a new
elementI ; S′ = S∪{I}.

Definition 2 (concrete cache state)
A (concrete) cache stateis a functionc : L → S′.
Cc denotes the set of all concrete cache states. The initial cache statecI maps all cache
lines toI .

If c(l i) = sy for a concrete cache statec, then i is the relative age of the mem-
ory block according to the LRU replacement strategy and not necessarily the physical
position in the cache hardware.

The updatefunction describes the effect on the cache of referencing a block in
memory. The referenced memory blocksx moves intol1 if it was in the cache already.
All memory blocks in the cache that had been used more recently thansx increase their
relative age by one, i.e., they are shifted by one position tothe next cache line. If the
referenced memory block was not yet in the cache, it is loadedinto l1 after all memory
blocks in the cache have been shifted and the ‘oldest’, i.e.,least recently used memory
block, has been removed from the cache if the cache was full.

Definition 3 (cache update)A cache update functionU : Cc×S→Cc determines the
new cache state for a given cache state and a referenced memory block.

Updates of fully associative caches with LRU replacement strategy are pictured as in
Figure 4.

Control Flow Representation We represent programs by control flow graphs con-
sisting of nodes and typed edges. The nodes representbasic blocks. A basic block is
a sequence (of fragments) of instructions in which control flow enters at the beginning
and leaves at the end without halt or possibility of branching except at the end. For
cache analysis, it is most convenient to have one memory reference per control flow
node. Therefore, our nodes may represent the different fragments of machine instruc-
tions that access memory. For non-precisely determined addresses of data references,
one can use a set of possibly referenced memory blocks. We assume that for each
basic block, the sequence of references to memory is known (This is appropriate for
instruction caches and can be too restricted for data cachesand combined caches. See
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Figure 4: Update of a concrete fully associative (sub-) cache.

[Fer97, AFMW96] for weaker restrictions.), i.e., there exists a mapping from control
flow nodes to sequences of memory blocks:L : V → S∗.

We can describe the effect of such a sequence on a cache with the help of the update
functionU. Therefore, we extendU to sequences of memory references by sequential
composition:U(c,〈sx1, . . . ,sxy〉) = U(. . . (U(c,sx1)) . . . ,sxy).

The cache state for a path(k1, . . . ,kp) in the control flow graph is given by apply-
ing U to the initial cache statecI and the concatenation of all sequences of memory
references along the path:U(cI ,L(k1). ... .L(kp)).

TheCollecting Semanticsof a program gathers at each program point the set of all
execution states, which the program may encounter at this point during some execution.
A semantics on which to base a cache analysis has to model cache contents as part of
the execution state. One could thus compute the collecting semantics and project the
execution states onto their cache components to obtain the set of all possible cache
contents for a given program point. However, the collectingsemantics is in general not
computable.

Instead, one restricts the standard semantics to only thoseprogram constructs,
which involve the cache, i.e., memory references. Only theyhave an effect on the
cache modelled by the cache update function,U. This coarser semantics may execute
program paths which are not executable in the start semantics. Therefore, theCollect-
ing Cache Semanticsof a program computes a superset of the set of all concrete cache
states occurring at each program point.

Definition 4 (Collecting Cache Semantics)TheCollecting Cache Semanticsof a pro-
gram is

Ccoll(p) = {U(cI ,L(k1). ... .L(kn)) | (k1, . . . ,kn) path in the CFG leading to p}

This collecting semantics would be computable, although often of enormous size.
Therefore, another step abstracts it into a compact representation, so called abstract
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cache states. Note that every information drawn from the abstract cache states allows
to safely deduce information about sets of concrete cache states, i.e., only precision
may be reduced in this two step process. Correctness is guaranteed.

Abstract Semantics The specification of a program analysis consists of the speci-
fication of an abstract domain and of the abstract semantic functions, mostly called
transfer functions. The least upper bound operator of the domain combines informa-
tion when control flow merges.

We present two analyses. Themust analysisdetermines a set of memory blocks
that are in the cache at a given program point whenever execution reaches this point.
The may analysisdetermines all memory blocks that may be in the cache at a given
program point. The latter analysis is used to determine the absence of a memory block
in the cache.

The analyses are used to compute a categorization for each memory reference de-
scribing its cache behavior. The categories are described in Table 1.

Category Abb. Meaning

always hit ah The memory reference will always result in a cache hit.
always miss am The memory reference will always result in a cache miss.
not classified nc The memory reference could neither be classified asah noram.

Table 1: Categorizations of memory references and memory blocks.

The domains for our abstract interpretations consist ofabstract cache states:

Definition 5 (abstract cache state)An abstract cache statêc : L → 2S maps cache
lines to sets of memory blocks.̂C denotes the set of all abstract cache states.

The position of a line in an abstract cache will, as in the caseof concrete caches,
denote the relative age of the corresponding memory blocks.Note, however, that the
domains of abstract cache states will have different partial orders and that the interpre-
tation of abstract cache states will be different in the different analyses.

The following functions relate concrete and abstract domains. Anextraction func-
tion, extr, maps a concrete cache state to an abstract cache state. Theabstraction
function, abstr, maps sets of concrete cache states to their best representation in the
domain of abstract cache states. It is induced by the extraction function. Thecon-
cretization function, concr, maps an abstract cache state to the set of all concrete cache
states represented by it. It allows to interpret abstract cache states. It is often induced
by the abstraction function, cf. [NNH99].

Definition 6 (extraction, abstraction, concretization functions) Theextraction func-
tion extr : Cc → Ĉ forms singleton sets from the images of the concrete cache states it
is applied to, i.e., extr(c)(l i) = {sx} if c(l i) = sx.

Theabstraction functionabstr: 2Cc → Ĉ is defined by abstr(C) =
⊔
{extr(c) | c∈C}

Theconcretization functionconcr: Ĉ→ 2Cc is defined by concr(ĉ) = {c | extr(c)⊑
ĉ}.
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So much of commonalities of all the domains to be designed. Note, that all the con-
structions are parameterized in⊔ and⊑.

The transfer functions, theabstract cache updatefunctions, all denotedÛ , will
describe the effects of a control flow node on an element of theabstract domain. They
will be composed of two parts,

1. “refreshing” the accessed memory block, i.e., insertingit into the youngest cache
line,

2. “aging” some other memory blocks already in the abstract cache.

Termination of the analyses There are only a finite number of cache lines and for
each program a finite number of memory blocks. This means, that the domain of
abstract cache states ˆc : L → 2S is finite. Hence, every ascending chain is finite. Addi-
tionally, the abstract cache update functions,Û , are monotonic. This guarantees that
all the analyses will terminate.

Must Analysis As explained above, the must analysis determines a set of memory
blocks that are in the cache at a given program point wheneverexecution reaches this
point. Good information, in the sense of valuable for the prediction of cache hits, is the
knowledge that a memory block is in this set. The bigger the set, the better. As we will
see, additional information will even tell how long it will at least stay in the cache. This
is connected to the “age” of a memory block. Therefore, the partial order on themust–
domain is as follows. Take an abstract cache state ˆc. Aboveĉ in the domain, i.e., less
precise, are states where memory blocks from ˆc are either missing or are older than in
ĉ. Therefore, the⊔-operator applied to two abstract cache states ˆc1 andĉ2 will produce
a state ˆc containing only those memory blocks contained in both, and will give them the
maximum of their ages in ˆc1 andĉ2 (see Figure 6). The positions of the memory blocks
in the abstract cache state are thus the upper bounds of theagesof the memory blocks
in the concrete caches occurring in the collecting cache semantics. Concretization of
an abstract cache state, ˆc, produces the set of all concrete cache states, which contain
all the memory blocks contained in ˆc with ages not older than in ˆc. Cache lines not
filled by these are filled with other memory blocks.
We use the abstract cache update function depicted in Figure5. Let us argue the cor-
rectness of this update function. The following theorem formulates the soundness of
the must-cache analysis.

Theorem 1 Let n be a program point,̂cin the abstract cache state at the entry to n, s a
memory line inĉin with age k.

(i) For each1≤ k≤ A there are at most k memory lines in lines1,2, . . . ,k
(ii) On all paths to n, s is in cache with age at most k.

The solution of the must analysis problem is interpreted as follows: Let ĉ be an
abstract cache state at some program point. Ifsx ∈ ĉ(l i) for a cache linel i thensx will
definitely be in the cache whenever execution reaches this program point. A reference
to sx is categorized asalways hit(ah). There is even a stronger interpretation of the fact
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thatsx ∈ ĉ(l i). sx will stay in the cache at least for the nextn− i references to memory
blocks that are not in the cache or areolder than the memory blocks in ˆc, wherebysa

is older thansb means:∃l i , l j : sa ∈ ĉ(l i),sb ∈ ĉ(l j), i > j.

May Analysis To determine, if a memory blocksx will never be in the cache, we
compute the complimentary information, i.e., sets of memory blocks thatmaybe in the
cache. “Good” information is that a memory block is not in this set, because this mem-
ory block can be classified as definitely not in the cache whenever execution reaches
the given program point. Thus, the smaller the sets are, the better. Additionally, the
older blocks will reach the desired situation to be removed from the cache faster than
the younger ones. Therefore, the partial order on this domain is as follows. Take some
abstract cache state ˆc. Aboveĉ in the domain, i.e., less precise, are those states which
contain additional memory blocks or where memory blocks from ĉ are younger than in
ĉ. Therefore, the⊔-operator applied to two abstract cache states ˆc1 andĉ2 will produce
a state ˆc containing those memory blocks contained in ˆc1 or ĉ2 and will give them the
minimum of their ages in ˆc1 andĉ2 (see Figure 7).

The positions of the memory blocks in the abstract cache state are thus the lower
bounds of theagesof the memory blocks in the concrete caches occurring in the col-
lecting cache semantics.

The solution of the may analysis problem is interpreted as follows: The fact that
sx is in the abstract cache ˆc means thatsx may be in the cache during some execution
when the program point is reached. Ifsx is not in ĉ(l i) for any l i then it will definitely
be not in the cache on any execution. A reference tosx is categorized asalways miss
(am).

0.3 Pipeline Analysis

Pipeline analysis attempts to find out how instructions movethrough the pipeline. In
particular, it determines how many cycles they spend in the pipeline. This largely de-
pends on the timing accidents the instructions suffer. Timing accidents during pipelined
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executions can be of several kinds. Cache misses during instruction or data load stall
the pipeline for as many cycles as the cache miss penalty indicates. Functional units
that an instruction needs may be occupied. Queues into whichthe instruction may
have to be moved may be full, and prefetch queues, from which instructions have to be
loaded, may be empty. The bus needed for a pipeline phase may be occupied by a dif-
ferent phase of another instruction. Again, for a architectures without timing anomalies
we can use a simplified picture, in which the task is to find out which timing accidents
can be safely excluded, because each excluded accident allows to decrease the bound
for the execution time. Accidents that can not be safely excluded are assumed to hap-
pen.

A cache analysis as described in Section 0.2 has annotated the instructions with
cache-hit information. This information is used to excludepipeline stalls at instruction
or data fetches.

We will explain pipeline analysis in a number of steps starting with concrete-
pipeline execution. A pipeline goes through a number of pipeline phases and consumes
a number of cycles when it executes a sequence of instructions; in general, a different
number of cycles for different initial execution states. The execution of the instruc-
tions in the sequence overlaps in the instruction pipeline as far as the data dependences
between instructions permit it and if the pipeline conditions are statisfied. Each exe-
cution of a sequence of instructions starting in some initial state produces onetrace,
i.e., sequence of execution states. The length of the trace is the number of cycles this
execution takes.

Thus, concrete execution can be viewed as applying a function
function exec(b : basic block, s : pipeline state) t : trace
that executes the instruction sequence of basic blockb starting in concrete pipeline
statesproducing a tracet of concrete states.last(t) is the final state when executingb.
It is the initial state for the successor block to be executednext.

So far, we talked aboutconcreteexecution on aconcretepipeline. Pipeline anal-
ysis regardsabstractexecution of sequences of instructions onabstract(models of)
pipelines. The execution of programs on abstract pipelinesproducesabstract traces,
i.e., sequences ofabstractstates, where some information contained in the concrete
states may be missing. There are several types of missing information.

• The cache analysis in general has incomplete information about cache contents.

• The latency of an arithmetic operation, if it depends on the operand sizes, may
be unknown. It influences the occupancy of pipeline units.

• The state of a dynamic branch predictor changes over iterations of a loop and
may be unknown for a particular iteration.

• Data dependences can not safely be excluded because effective addresses of
operands are not always statically known.

Simple Architectures without Timing Anomalies

In a first step, we assume a simple processor architecture, with in-order execution and
without timing anomalies, i.e., architectures, where local worst cases contribute to the
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program’s global execution time, cf. 0.1.2. Also, it is safeto assume the local worst
cases for unknown information. For both of them the corresponding timing penalties
are added. For example, the cache miss penalty has to be addedfor instruction fetch
of an instruction in the two cases, that a cache miss is predicted or that neither a cache
miss nor a cache hit can be predicted.

The result of the abstract execution of an instruction sequence for a given initial
abstract state is again one trace; however, possibly of a greater length and thus an
upper bound properly bounding the execution time from above. Because worst cases
were assumed for all uncertainties, this number of cycles isa safe upper bound for
all executions of the basic block starting in concrete states represented by this initial
abstract state.

The Algorithm for pipeline analysis is quite simple. It usesa function

function ˆexec(b : cache-annotated basic block, ŝ : abstract pipeline state)
t̂ : abstract trace

that executes the instruction sequence of basic blockb, annotated with cache informa-
tion, starting in the abstract pipeline state ˆsand producing a tracêt of abstract states.

This function is applied to each basic blockb in each of its contexts and the empty
pipeline state ˆs0 corresponding to a flushed pipeline. Therefore, a linear traversal of the
cache-annotated context-extended Basic-Block Graph suffices. The result is a trace for
the instruction sequence of the block, whose length is an upper bound for the execution
time of the block in this context. Note, that it still makes sense to analyze a basic block
in several contexts because the cache information for them may be quite different.

Note, that this algorithm is simple and efficient, but not necessarily very precise.
Starting with a flushed pipeline at the beginning of the basicblock is safe, but it ignores
the potential overlap between consecutive basic blocks.

A more precise algorithm is possible. The problem is with basic blocks having
several predecessor blocks. Which of their final states should be selected as initial state
of the successor block? First solution involves working with sets of states for each pair
of basic block and context. Then, one analysis of each basic block and context would
be performed for each of the initial states. The resulting set of final states would be
passed on to successor blocks, and the maximum of the trace lengths would be taken
as upper bound for this basic block in this context.

Second solution would work with a single state per basic block and context and
would combine the set of predecessor final states conservatively to the initial state for
the successor.

Processors with Timing Anomalies

In the next step, we assume more complex processors, including those with out-of-
order execution. They typically have timing anomalies. Ourassumption above, i.e.,
that local worst cases contribute worst-case times to the global execution times, is
no more valid. This forces us to consider several paths, wherever uncertainty in the
abstract execution state does not allow to take a decision between several successor
states. Note, that the absence of information leads from thedeterministic concrete
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Figure 8: Different paths through the execution of a multiply instruction. Decisions
inside the boxes can not be deterministically taken based onthe abstract execution
state because of missing information.

pipeline to an abstract pipeline that is non-deterministic. This situation is depicted in
Fig. 8. It demonstrates two cases of missing information in the abstract state. First, the
abstract state lacks the information whether the instruction is in the I-cache. Pipeline
analysis has to follow both cases in case of instruction fetch, because it could turn out
that the I-cache miss, in fact, is not the global worst case. Secondly, the abstract state
does not contain information about the size of the operands.We also have to follow
both paths. The dashed paths have to be explored to obtain theexecution times for this
instruction. Depending on the architecture, we may be able to conservatively assume
the case of large operands and surpress some paths.

The algorithm has to combine cache and pipeline analysis because of the interfer-
ence between both, which actually is the reason for the existence of the timing anoma-
lies. For the cache analysis, it uses the abstract cache states discussed in Section 0.2.
For the pipeline part, it usesanalysis states, which are sets of abstract pipeline states,
i.e. sets of states of the abstract pipeline. The question arises whether an abstract
cache state is to be combined with an analysis state ˆssor an individual one with each
of the abstract pipeline states in ˆss. So, there could be one abstract cache state for ˆss
representing the concrete cache contents for all abstract pipeline states in ˆss, or there
could be one abstract cache state per abstract pipeline state in ŝs. The first choice saves
memory during the analysis, but loses precision. This is because different pipeline
states may cause different memory accesses and thus cache contents, which have to
be merged into the one abstract state thereby losing information. The second choice
is more precise but requires more memory during the analysis. We choose the second
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Figure 9: Possible pipeline states in a basic block

alternative and thus define a new domain ofanalysis stateŝA of the following type:

Â = 2Ŝ×Ĉ (1)

Ŝ= set of abstract pipeline states (2)

Ĉ = set of abstract cache states (3)

The Algorithm again uses a new function ˆexecc.
function ˆexecc (b : basic block, â : analysis state) T̂ : set of abstract trace,
which analyzes a basic blockb starting in an analysis state ˆa consisting of pairs of
abstract pipeline states and abstract cache states. As a result it will produce a set of
abstract traces.

The algorithm is as follows:
Algorithm Pipeline-Analysis
Perform fixpoint iteration over the context-extended Basic-Block Graph:
For each basic blockb in each of its contextsc, and for the initial analysis state ˆa,
compute ˆexecc(b, â) yielding a set of traces{t̂1, t̂2, . . . , t̂m}.
max({|t̂1|, |t̂2|, . . . , |t̂m|} is the bound for this basic block in this context.
The set of output states{last(t̂1), last(t̂2), . . . , last(t̂m)} will be passed on to the succes-
sor block(s) in contextc as initial states.

Basic blocks (in some context) having more than one predecessor receive the union
of the set of output states as initial states.

The abstraction we use as analysis states is asetof abstract pipeline states, since
the number of possible pipeline states for one instruction is not too big. Hence, our
abstraction computes an upper bound to the collecting semantics. The abstract update
for an analysis state ˆa is thus the application of the concrete update on each abstract
pipeline state in ˆa extended with the possibility of multiple successor statesin case of
uncertainties.

Figure 9 shows the possible pipeline states for a basic blockin this example. Such
pictures are shown byaiT tool upon special demand. The large dark grey boxes cor-
respond to the instructions of the basic block, and the smaller rectangles in them stand
for individual pipeline states. Their cyclewise evolutionis indicated by the strokes
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connecting them. Each layer in the trees corresponds to one CPU cycle. Branches in
the trees are caused by conditions that could not be statically evaluated, e.g. a memory
access with unknown address in presence of memory areas withdifferent access times.
On the other hand, two pipeline states fall together when details they differ in leave the
pipeline. This happened, for instance, at the end of the second instruction, reducing the
number of states from four to three.

The update function belonging to an edge(v,v′) of the control-flow graph updates
each abstract pipeline state separately. When the bus unit is updated, the pipeline
state may split into several successor states with different cache states. The initial
analysis state is a set of empty pipeline states plus a cache that represents a cache with
unknown content. There can be multiple concrete pipeline states in the initial states,
since the adjustment of internal to external clock of the processor is not known in the
beginning and every possibility (aligned, one cycle apart,etc) has to be considered.
Thus prefetching must start from scratch, but pending bus requests are ignored. To
obtain correct results, they must be taken into account by adding a fixed penalty to the
calculated upper bounds.

0.3.1 Pipeline Modeling

The basis for pipeline analysis is a model of an abstract version of the processor
pipeline, which is conservative with respect to the timing behavior, i.e., times pre-
dicted by the abstract pipeline must never be lower than those observed in concrete
executions. Some terminology is needed to avoid confusion.Processors haveconcrete
pipelines, which may be described in some formal language, e.g. VHDL. If this is the
case, there exists aformal modelof the pipeline. Our abstraction step, by which we
eliminate many components of a concrete pipeline that are not relevant for the tim-
ing behavior lead us to anabstract pipeline. This may again be described in a formal
language, e.g. VHDL, and thus have a formal model. Deriving an abstract pipeline is
a complex task. It is demonstrated for the Motorola ColdFireprocessor, a processor
quite popular in the aeronautics and the submarine industry. The presentation follows
closely that of [LTH02]2.

The ColdFire MCF 5307 Pipeline

The pipeline of the ColdFire MCF 5307 consists of afetch pipelinethat fetches instruc-
tions from memory (or the cache), and anexecution pipelinethat executes instructions,
cf. Figure 10. Fetch and execution pipelines are connected and as far as speed is con-
cerned decoupled by a FIFO instruction buffer that can hold at most 8 instructions.

The MCF 5307 accesses memory through a bus hierarchy. The fast pipelined K-bus
connects the cache and an internal 4KB SRAM area to the pipeline. Accesses to this
bus are performed by the IC1/IC2 and the AGEX and DSOC stages of the pipeline. On
the next level, the M-Bus connects the K-Bus to the internal peripherals. This bus runs
at the external bus frequency, while the K-Bus is clocked with the faster internal core

2The model of the abstract pipeline of the MCF 5307 has been derived by hand. A computer-supported
derivation would have been preferable. Ways to develop thisare subject of actual research.
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clock. The M-Bus connects to the external bus, which accesses off-chip peripherals
and memory.

Thefetch pipelineperforms branch prediction in the IED stage, redirecting fetching
long before the branch reaches the execution stages. The fetch pipeline is stalled if the
instruction buffer is full, or if the execution pipeline needs the bus for a memory access.
All these stalls cause the pipeline to wait for one cycle. After that, the stall condition is
checked again.

The fetch pipeline is also stalled if the memory block to be fetched is not in the
cache (cache miss). The pipeline must wait until the memory block is loaded into the
cache and forwarded to the pipeline. The instructions that are already in the later stages
of the fetch pipeline are forwarded to the instruction buffer.

Theexecution pipelinefinishes the decoding of instructions, evaluates their operands,
and executes the instructions. Each kind of operation follows a fixed schedule. This
schedule determines, how many cycles the operation needs and in which cycles mem-
ory is accessed3. The execution time varies between 2 cycles and several dozen cycles.
Pipelining admits a maximum overlap of 1 cycle between consecutive instructions: the
last cycle of each instruction may overlap with the first of the next one. In this first cy-
cle, no memory access and no control-flow alteration happen.Thus, cache and pipeline
cannot be affected by two different instructions in the samecycle. The execution of an
instruction is delayed if memory accesses lead to cache misses. Misaligned accesses
lead to small time penalties of 1–3 cycles. Store operationsare delayed if the distance
to the previous store operation is less than 2 cycles. (This does not hold if the previous
store operation was issued by aMOVEM instruction.) The start of the next instruction
is delayed if the instruction buffer is empty.

0.3.2 Formal Models of Abstract Pipelines

An abstract pipeline can be seen as a big finite state machine,which makes a transition
on every clock cycle. The states of the abstract pipeline, although greatly simplified
still contain all timing relevant information of the processor. The number of transitions
it takes from the beginning of the execution of an instruction until its end gives the
execution time of that instruction.

The abstract pipeline although greatly reduced by leaving out irrelevant compo-
nents still is a really big finite state machine, but it has structure. Its states can be
naturally decomposed into components according to the architecture. This makes it
easier to specify, verify, and implement a model of an abstract pipeline. In the formal
approach presented here, an abstract pipeline state consists of severalunits with in-
nerstatesthat communicate with one another and the memory viasignals, and evolve
cycle-wise according to their inner state and the signals received. Thus, the means of
decomposition are units and signals.

Signals may beinstantaneous, meaning that they are received in the same cycle
as they are sent, ordelayed, meaning that they are received one cycle after they have
been sent. Signals may carry data, e.g. a fetch address. Notethat these signals are only

3In fact, there are some instructions likeMOVEM whose execution schedule depends on the value of an
argument as immediate constant. These instructions can be taken into account by special means.
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part of the formal pipeline model. They may or may not correspond to real hardware
signals. The instantaneous signals between units are used to transport information
between the units. The state transitions are coded in the evolution rules local to each
unit.

Figure 11 shows the formal pipeline model for the ColdFire MCF 5307. It consists
of the following units: IAG (instruction address generation), IC1 (instruction fetch
cycle 1), IC2 (instruction fetch cycle 2), IED (instructionearly decode), IB (instruction
buffer), EX (execution unit), SST (store stall timer). In addition, there is abus unit
modeling the busses that connect the CPU, the static RAM, thecache, and the main
memory. The signals between these units are shown as arrows.Most units directly
correspond to a stage in the real pipeline. However, the SST unit is used to model the
fact that two stores must be separated by at least two clock cycles. It is implemented
as a (virtual) counter. The two stages of the execution pipeline are modeled by a single
stage, EX, because instructions can only overlap by one cycle.

The inner states and emitted signals of the units evolve in each cycle. The com-
plexity of this state update varies from unit to unit. It can be as simple as a small table,
mapping pending signals and inner state to a new state and signals to be emitted, e.g.
for the IAG unit and the IC1 unit. It can be much more complicated, if multiple depen-
dencies have to be considered, e.g. the instruction reconstruction and branch prediction
in the IED stage. In this case, the evolution is formulated inpseudo code. Full details
on the model can be found in [The04].

0.3.3 Pipeline States

Abstract Pipeline States are formed by combining the inner states of IAG, IC1, IC2,
IED, IB, EX, SST, and bus unit plus additional entries for pending signals into one
overall state. This overall state evolves from one cycle to the next. Practically, the
evolution of the overall pipeline state can be implemented by updating the functional
units one by one in an order that respects the dependencies introduced by input signals
and the generation of these signals.

Update Function for Pipeline States.

For pipeline modeling, one needs a function that describes the evolution of the concrete
pipeline state while traveling along an edge(v,v′) of the control-flow graph. This
function can be obtained by iterating the cycle-wise updatefunction of the previous
paragraph.

An initial concrete pipeline state atv has an empty execution unit EX. It is updated
until an instruction is sent from IB to EX. Updating of the concrete pipeline state con-
tinues using the knowledge that the successor instruction is v′ until EX has become
empty again. The number of cycles needed from the beginning until this point can be
taken as the time needed for the transition fromv to v′ for this concrete pipeline state.
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fi

if v1 then
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Figure 12: A program snippet, the corresponding control flowgraph, and the ILP vari-
ables generated.

0.4 Path Analysis Using Integer Linear Programming

The structure of a program and the set of program paths can be mapped to an ILP in
a very natural way. A set of constraints describes the control flow of the program.
Solving these constraints yields very precise results [TFW00]. However, requirements
for precision of the results demand analyzing basic blocks in different contexts, i.e., in
different ways, how control reached them. This makes the control quite complex, so
that the mapping to an ILP may be very complex [The02].

A problem formulated in an ILP consists of two parts: the costfunction and con-
straints on the variables used in the cost function. Our costfunction represents the
number of CPU cycles. Correspondingly, it has to be maximised. Each variable in
the cost function represents the execution count of one basic block of the program
and is weighted by the execution time of that basic block. Additionally, variables are
used corresponding to the traversal counts of the edges in the control flow graph, see
Figure 12.

The integer constraints describing how often basic blocks are executed relative to
each other can be automatically generated from the control flow graph 13. However,
additional information about the program provided by the user is usually needed, as the
problem of finding the worst case program path is unsolvable in the general case. Loop
and recursion bounds cannot always be inferred automatically and must therefore be
provided by the user.

The ILP approach for program path analysis has the advantagethat users are able
to describe in precise terms virtually anything they know about the program by adding
integer constraints. The system first generates the obviousconstraints automatically
and then adds user supplied constraints to tighten the WCET bounds.
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Figure 13: Control flow joins and splits and flow-preservation laws

0.5 Other Ingredients

0.5.1 Value Analysis

A static method for data-cache behavior prediction needs toknow effective memory ad-
dresses of data, in order to determine where a memory access goes. However, effective
addresses are only available at run time. Interval analysisas described by Cousot and
Halbwachs [CH78] can help here. It can compute intervals foraddress-valued objects
like registers and variables. An interval computed for suchan object at some program
point bounds the set of potential values the object may have when program execution
reaches this program point. Such an analysis, inaiT calledvalue analysishas shown to
be able to determine many effective addresses in disciplined code statically [TSH+03].

0.5.2 Control Flow Specification and Analysis

Any information about the possible flow of control of the program may increase the
precision of the subsequent analyses. Control flow analysismay attempt to exclude
infeasible paths, determine execution frequencies of paths or the relation between exe-
cution frequencies of different paths or subpaths etc.

The purpose of control flow analysis is to determine the dynamic behavior of the
program. This includes information about what functions are called and with which
arguments, how many times loops iterate, if there are dependencies between successive
if-statements, etc. The main focus of flow analysis has been thedetermination of loop
bounds, since the bounding of loops is a necessary step in order to find an execution
time bound for a program.

Control-flow analysis can be performed manually or automatically. Automatic
analyses have been based on various techniques, like symbolic execution, abstract in-
terpretation, and pattern recognition on parse trees. The best precision is achieved by
using interprocedural analysis techniques, but this has tobe traded off with the ex-
tra computation time and memory required. All automatic techniques allow a user to
complement the results and guide the analysis using manual annotations, since this is
sometimes necessary in order to obtain reasonable results.

Since the flow analysis in general is performed separately from the path analysis,
it does not know the execution times of individual program statements, and must thus
generate a safe (over)approximation includingall possible program executions. The
path analysis will later select the path from the set of possible program paths that corre-
sponds to the upper bound using the time information computed by processor behavior
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prediction.
Control flow specification is preferrably done on the source level. Concepts based

on source-level constructs are used in [EG97, Erm03].

0.5.3 Frontends for Executables

Any reasonably precise timing analysis takes fully linked executable programs as input.
Source programs do not contain information about program and data allocation, which
is essential for the described methods to predict the cache behavior.

Executables must be analyzed to reconstruct the original control flow of the pro-
gram. This may be a difficult task depending on the instruction set of the processor
and the code generation of the used compiler. A generic approach to this problem is
described in [The00, The01, The02].

0.6 Related Work

It is not possible in general to obtain upper bounds on running times for programs.
Otherwise, one could solve the halting problem. However, real-time systems only use
a restricted form of programming, which guarantees that programs always terminate.
That is, recursion is not allowed (or explicitly bounded) and the maximal iteration
counts of loops are known in advance.

A worst-case running time of a program could easily be determined if the worst-
case input for the program were known. This is in general not the case. The alternative,
to execute the program with all possible inputs, is often prohibitively expensive. As a
consequence, approximations for the worst-case executiontime are determined. Two
classes of methods to obtain bounds can be distinguished:

• Dynamicmethods employ real program executions to obtain approximations.
These approximations areunsafeas they only compute the maximum of a subset
of all executions.

• Staticmethods only need the program itself, maybe extended with some addi-
tional information (like loop bounds).

0.6.1 A (Partly) Dynamic Method

A traditional method, still used in industry, combines measuring and static methods.
Here, small snippets of code are measured for their execution time, then asafety margin
is applied and the results for code pieces are combined according to the structure of the
whole task. E.g. if a tasks first executes a snippetA and then a snippetB, the resulting
time is that measured forA, tA, added to that measured forB, tB: t = tA + tB. This
reduces the amount of measurements that have to be made, as code snippets tend to be
reused a lot in control software and only the different snippets need to be measured. It
adds, however, the need for an argumentation about the correctness of the composition
step of the measured snippet times. This typically relies oncertain implicit assumptions
about the worst-case initial execution state for these measurements. For example, the
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snippets are measured with an empty cache at the beginning ofthe measurement under
the assumption that this is the worst-case cache state. In [The04] it is shown that this
assumption can be wrong. The problem of unknown worst-case input exists for this
method as well, and it is still infeasible to measure execution times for all input values.

0.6.2 Purely Static Methods

The Timing Schema Approach

In the timing-schemata approach [Sha89], bounds for the execution times of a com-
posed statement are computed from the bounds of the constituents. One timing schema
is given for each type of statement. Basis are known times of the atomic statements.
These are assumed to be constant and available from a manual or are assumed to be
computed in a preceding phase. A bound for the whole program is obtained by com-
bining results according to the structure of the program.

The precision can be very bad because of some implicit assumptions underlying
this method. Timing schemes assume compositionality of bounds for execution times,
i.e. they compute bounds for execution times of composed constructs from already
computed bounds of the constituents. However, as we have seen, the execution times
of the constituents depend heavily on the execution history.

Symbolic Simulation

Another static method simulates the execution of the program on an abstract model of
the processor. The simulation is performed without input; the simulator thus has to be
capable to deal with partly unkown execution states. This method combines flow anal-
ysis, processor-behavior prediction, and path analysis inone integrated phase [LS99,
Lun02]. One problem with this approach is that analysis timeis proportional to the
actual execution time of the program with a usually large factor for doing a simulation.

WCET Determination by ILP

Li, Malik, and Wolfe proposed an ILP-based approach to WCET determination [LM95,
LMW95a, LMW95b, LMW96]. Cache and pipeline behavior prediction are formulated
as a single linear program. The i960KB is investigated, a 32-bit microprocessor with a
512 byte direct mapped instruction cache and a fairly simplepipeline. Only structural
hazards need to be modeled, thus keeping the complexity of the integer linear program
moderate compared to the expected complexity of a model for amodern microproces-
sor. Variable execution times, branch prediction, and instruction prefetching are not
considered at all. Using this approach for super-scalar pipelines does not seem very
promising, considering the analysis times reported in one of the articles.

One of the severe problems is the exponential increase of thesize of the ILP in
the number of competingl -blocks. l-blocksare maximally long contiguous sequences
of instructions in a basic block mapped to the same cache set.Two l -blocks mapped
to the same cache setcompeteif they do not have the same address tag. For a fixed
cache architecture, the number of competingl -blocks grows linearly with the size of
the program. Differentiation by contexts, absolutely necessary to achieve precision,
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increases this number additionally. Thus, the size of the ILP is exponential in the size
of the program. Even though the problem is claimed to be a network-flow problem the
size of the ILP is killing the approach. Growing associativity of the cache increases the
number of competingl -blocks. Thus, also increasing cache-architecture complexity
plays against this approach.

Nonetheless, their method of modeling the control flow as an ILP, the so-called
Implicit Path Enumeration, is elegant and can be efficient if the size of the ILP is kept
small. It has been adopted by many groups working in this area.

Timing Analysis by Static Program Analysis

The method described in this chapter uses a sequence of static program analyses for
determining the program’s control flow and its data accessesand for predicting the
processor’s behavior for the given program.

An early approach to timing analysis using data-flow analysis methods can be found
in [AMWH94, MWH94]. Jakob Engblom showed how to precompute parts of a tim-
ing analyzer to speed up the actual timing analysis for architectures without timing
anomalies [Eng02].

[WETW04] gives an overview of existing tools for timing analysis, both commer-
cially available tools and academic prototypes.

0.7 State of the Art and Future Extensions

The timing-analysis technology described in this chapter is realized in theaiT tool and
is used in the aeronautics and automotive industries. Several benchmarks have shown
that precision of the predicted upper bounds is in the order of 10% [TSH+03]. To obtain
such a precision, however, requires competent users since the available knowledge
about the program’s control flow may be difficult to specify.

The computational effort is high, but acceptable. Future optimizations will reduce
this effort. As often in static program analysis, there is a trade-off between precision
and effort. Precision can be reduced if the effort is intolerable.

The only really drawback of the described technology is the huge effort for pro-
ducing abstract processor models. Work is under way to support this activity through
transformations on the VHDL level.
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