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Run-time guarantees play an important role in the area ofeladd systems and
especially hard real-time systems. These systems aratlypstibject to stringent tim-
ing constraints, which often result from the interactiothathe surrounding physical
environment. It is essential that the computations are d¢eteg within their associ-
ated time bounds; otherwise severe damages may resulte ayftem may be unus-
able. Therefore, a schedulability analysis has to be paddrwhich guarantees that
all timing constraints will be met. Schedulability analgsequire upper bounds for the
execution times of all tasks in the system to be known. Thesmds must beafe
i.e., they may never underestimate the real execution tiFoethermore, they should
betight, i.e., the overestimation should be as small as possible.

In modern microprocessor architectures, caches, pigelara all kinds of specu-
lation are key features for improving (average-case) perémce. Unfortunately, they
make the analysis of the timing behaviour of instructionsy\gfficult, since the ex-
ecution time of an instruction depends on the executiomhistA lack of precision
in the predicted timing behaviour may lead to a waste of hardwesources, which
would have to be invested in order to meet the requirememspfoducts which are
manufactured in high quantities, e.g., in the automobitel@communications markets
this would result in intolerable expenses.

Subject of this chapter are one particular approach andubht&asks involved in
computing safe and precise bounds on the execution timesdbtime systems.

0.1 Introduction

Hard real-time systems are subject to stringent timing waimgs which are dictated by
the surrounding physical environment. We assume that aimealsystem consists of
a number of tasks, which realize the required functionalityschedulability analysis
for this set of tasks and a given hardware has to be performedder to guarantee
that all the timing constraints of these tasks will be meinfing validation”). Exist-
ing techniques for schedulability analysis require upermals for the execution times
of all the system’s tasks to be known. These upper boundsoanenonly called the
worst-case execution tim€g/CETs), a misnomer that causes a lot of confusion and
will therefore not be adopted in this presentation. In aggltower bounds on the exe-
cution time have been namédst-case execution timg8CET). These upper bounds
(and lower bounds) have to Isafe i.e., they must never underestimate (overestimate)
the real execution time. Furthermore, they shouldipht, i.e., the overestimation
(underestimation) should be as small as possible.

Figure 0.1 depicts the most important concepts of our donfdia system shows a
certain variation of execution times depending on the imjat& or different behaviour
of the environment. In general, the state space is too largexhaustively explore
all possible executions and so determine the exact wosg-@ad best-case execution
times. Some abstraction of the system is necessary to makeng tanalysis of the
system feasible. These abstractions loose informatiahttars are responsible for the
distance between WCETs and upper bounds and between BCETevesr bounds.
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Figure 1: Basic notions concerning timing analysis of ayste

How much is lost depends both on the methods used for timiatysis and on system
properties, such as the hardware architecture and thengeainf the software. So, the
two distances mentioned above, termgiper predictabilityandlower predictability
can be seen as a measure for the timing predictability of yees. Experience has
shown that the two predictabilities can be quite differehtfHLTWO03]. The methods
used to determine upper bounds and lower bounds are the ¥seneill concentrate
on the determination of upper bounds unless otherwisedstate

Methods to compute sharp bounds [PK89, PS91] for procesgtrdixed execu-
tion times for each instruction have long been establishiedvever, in modern micro-
processor architectures caches, pipelines, and all kihsisezulation are key features
for improving (average-case) performance. Caches aretadmitige the gap between
processor speed and the access time of main memory. Pipeliable acceleration by
overlapping the executions of different instructions. Thasequence is that the exe-
cution time of individual instructions, and thus the comtition of one execution of an
instruction to the program’s execution time can vary widdlige interval of execution
times for one instruction is bounded by the execution tinfékefollowing two cases:

e The instruction goes “smoothly” through the pipeline; alidls hit the cache, no
pipeline hazard happens, i.e., all operands are ready,sooiree conflicts with
other currently executing instructions exist.

e “Everything goes wrong’, i.e., instruction and/or operéetdhes miss the cache,
resources needed by the instruction are occupied, etc.

Figure 2 shows the different paths through a multiply inginn of a PowerPC pro-
cessor. The instruction-fetch phase may find the instrodtidhe cachedache hi}, in
which case it takes 1 cycle to load it. In the case of a cachs, ihimay take something
like 30 cycles to load the memory block containing the ingian into the cache. The
instruction needs an arithmetic unit, which may be occupied preceding instruction.
Waiting for the unit to become free may take up to 19 cycless Tdtency would not
occur, if the instruction fetch had missed the cache, bectescache-miss penalty of
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Figure 2: Different paths through the execution of a mujtipistruction. Unlabeled
transitions take 1 cycle.

30 cycles has allowed any preceding instruction to terriitatarithmetic operation.
The time it takes to multiply two operands depends on the aizbe operands; for
small operands, one cycle is enough, for larger, three a¥date When the operation
has finished, it has to be retired in the order it appearedanrstruction stream. The
processor keeps a queue for instructions waiting to beecktivaiting for a place in
this queue may take up to 6 cycles. On the dashed path, wheexétution always
takes the fast way, its overall execution time is 4 cyclesweleer, on the dotted path,
where it always takes the slowest way, the overall exectitoa is 41 cycles.

We will call any increase in execution time during an instimit's execution a
timing accidentand the number of cycles by which it increases tinging penalty
of this accident. Timing penalties for an instruction cam agh to several hundred
processor cycles. Whether the execution of an instructicoenters a timing accident
depends on the execution state, e.g., the contents of the(®cthe occupancy of other
resources, and thus on the execution history. It is thegedbvious that the attempt to
predict or exclude timing accidents needs information abfmiexecution history.

For certain classes of architectures, namely those wittimihg anomalies, ex-
cluding timing accidents means decreasing the upper botitaigever, for those with
timing anomalies this assumption is not true.

0.1.1 Tool Architecture and Algorithm

A more or less standard architecture for timing-analysidstbhas emerged [HWH95,
TFWO00, Erm03]. Fig. 3 shows one instance of this architectuk first phase, de-
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picted on the left, predicts the behaviour of processor aomapts for the instructions
of the program. It usually consists of a sequence of statigiam analyses of the
program. They altogether allow to derive safe upper bouodthe execution times of
basic blocks. A second phase, the column on the right, cogsparnt upper bound on
the execution times over all possible paths of the prograhis iB realized by map-
ping the control flow of the program to an Integer Linear Pamgiand solving this by
appropriate methods. This architecture has been suctigasfed to determine pre-
cise upper bounds on the execution times of real-time progranning on processors
used in embedded systems [AFMW96, FMW99, FHll, TSH 03, HLTWO03]. A
commercially available toosiT by Absint, cf.http://www.absint.de/wcet .htm,
was implemented and is used in the aeronautics and aut@motivstries.

The structure of the first phasprocessor-behavior predictigroften calledmi-
croarchitecture analysjsmay vary depending on the complexity of the processor ar-
chitecture. A first, modular approach would be the following

1. Cache-behavior prediction determines statically ant@pmately the contents
of caches at each program point. For each access to a menumly, lifl is
checked, whether the analysis can safely predict a cache hit

Information about cache contents can be forgotten aftezdalbbe analysis. Only
the miss/hit information is needed by the pipeline analysis

2. Pipeline-behavior prediction analyzes, how instruttipass through the pipeline
taking cache-hit or miss information into account. The @aofiss penalty is as-
sumed for all cases, where a cache hit can not be guaranteed.

At the end of simulating one instruction, the pipeline asaycontinues with
only those states that show the locally maximal executimesi. All others can
be forgotten.

0.1.2 Timing Anomalies

Unfortunately, this approach is not safe for many proceasciitectures. Most pow-
erful microprocessors have so-callimiing anomalies Timing anomalies are contra-
intuitive influences of the (local) execution time of onetinstion on the (global) ex-
ecution time of the whole program. The interaction of seiMpracessor features can
interact in such a way that a locally faster execution of astrirction can lead to a
globally longer execution time of the whole program.

For example, a cache miss contributes the cache-miss pénétie execution time
of a program. It was, however, observed for the MCF 5307 [R3\Mhat a cache
miss may actually speed up program execution. Since the MK Bas a unified
cache and the fetch and execute pipelines are indepenbderigliowing can happen:
A data access that is a cache hit is served directly from thbecaAt the same time,
the fetch pipeline fetches another instruction block frominmmemory, performing
branch prediction and replacing two linesddtain the cache. These may be reused
later on and cause two misses. If the data access was a casd)ehmiinstruction fetch
pipeline may not have fetched those two lines, because #midrn pipeline may have
resolved a misprediction before those lines were fetched.
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The general case of a timing anomaly is the following. D#fgrassumption about
the processor’s execution state, e.g. the fact that theutt&in is or is not in the in-
struction cache, will result in a differenéd| .4 Of the execution time of the instruction
between these two cases. Either assumption may lead tceasthifeAT of the global
execution time compared to the other one. We say that a timnmnaly occurs if
either

ATiocal < 0 i.e., the instruction executes faster, and

AT < ATiocal , the overall execution is accelerated by more than the exatén
of the instruction, or

AT > 0 , the program runs longer than before.
ATiocal > 0 i.e., the instruction takes longer to execute, and

AT > ATioca 1.€., the overall execution is extended by more than theydefa
the instruction, or

AT <0 i.e., the overall execution of the program takes less tomexecute than
before.

The casé\Toca < OAAT > 0 is a critical case for our timing analysis. It makes it
impossible to use local worst cases for the calculation®@ptlogram’s execution time.
The analysis has to follow all possible paths as will be expldin Section 0.3.

0.1.3 Contexts

The contribution of an individual instruction to the totadeeution time of a program
may vary widely depending on the execution history. For gxanthe first interation
of a loop typically loads the caches, and later iteratiomdipirom the loaded memory
blocks being in the caches. In this case, the execution efsruiction in a first iteration
encounters one or more cache misses and pays with the casbeemalty. Later
executions, however, will execute much faster becauselihlighie cache. A similar
observation holds for dynamic branch predictors. They nemdra few iterations until
they stabilize and predict correctly.

Therefore, precision is increased if instructions are wared in their control—flow
contexti.e., the way control reached them. Contexts are assdaiéth basic blocks
i.e., maximally long straight-line code sequences thatlmonly entered at the first
instruction and left at the last. They indicate through watsequence of function calls
and loop iterations control arrived at the basic block. Thwsen analyzing the cache
behavior of a loop, precision can be increased by regardieditst iteration of the
loop and all other iterations separately; more preciselyntroll the loop once and then
analyze the resulting codé.

Definition 1 Let p be a program with set of functions-P{ps, pz,..., pn} and set of
loops L= {l4,l5,...,In}. Aword c over the alphabetPL x IN is called acontextfor

1Actually, this unrolling transformation need not be regiigrformed, but can be incorporated into the
iteration strategy of the analyzer. So, we talk of virtuataling the loops.



a basic block b, if b can be reached by calling the functions igerating through the
loops in the order given in c.

Even, if all loops have static loop bounds and recursion $s &lounded, there
are in general too many contexts to consider them exhalstideheuristics is used
to keep relevant contexts apart and summarize the rest m@tisely, if their influ-
ence on the behaviour of instructions does not significadiffer. Experience has
shown [TSH 03], that a few first iterations and recursive calls are siefficto “sta-
bilize” the behavior information, as the above exampledatis, and that the right
differentiation of contexts is decisive for the precisidrife prediction [MAWF98].

A particular choice of contexts transforms the call and thetiol flow graph into
a context-extended control-flow grafity virtually unrolling the loops and virtually
inlining the functions as indicated by the contexts. Thefaktreatment of this concept
is quite involved and shall not be given here. It can be fourdhe02].

0.2 Cache-Behaviour Prediction

Abstract Interpretation [CC77] is used to compute invagasbout cache contents.
How the behavior of programs on processor pipelines is ptedifollows in Sec-
tion 0.3.

0.2.1 Cache Memories
A cache can be characterized by three major parameters:
e capacityis the number of bytes it may contain.

e line size(also called block size) is the number of contiguous byted #re
transferred from memory on a cache miss. The cache can hattbsitn =
capacity/line sizeblocks.

e associativityis the number of cache locations where a particular block reay
side.
n/associativityis the number o§etsof a cache.

If a block can reside in any cache location, then the cachallisdfully associative If

a block can reside in exactly one location, then it is catlieelct mappedIf a block can
reside in exacthA locations, then the cache is call@eway set associativeT he fully
associative and the direct mapped caches are special ddBe®\eway set associative
cache wherd = nandA =1, resp.

In the case of an associative cache, a cache line has to lo¢eskler replacement
when the cache is full and the processor requests furthar dais is done according
to areplacement strategyCommon strategies ateRU (Least Recently UsedfIFO
(First In First Out), andandom

The set where a memory block may reside in the cache is uyigieeéérmined by
the address of the memory block, i.e., the behavior of theiséhdependent of each
other. The behavior of aA-way set associative cache is completely described by the
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behavior of itsn/A fully associative sets. This holds also for direct mappezhea
whereA=1.

For the sake of space, we restrict our description to the sgesaof fully as-
sociative caches with LRU replacement strategy. More cetapllescriptions that
explicitly describe direct mapped amdway set associative caches can be found in
[Fer97, FMW99].

0.2.2 Cache Semantics

In the following, we consider a (fully associative) cacheaaset of cache linek =
{l1,...,In} and the store as a set of memory blo&ks {si,...,sn}.

To indicate the absence of any memory block in a cache linejntveduce a new
element; S =SuU{l}.

Definition 2 (concrete cache state)

A (concrete) cache stais a functionc: L — S.

C. denotes the set of all concrete cache states. The initiakbcstater; maps all cache
lines tol.

If c(lj) = s, for a concrete cache state theni is the relative age of the mem-
ory block according to the LRU replacement strategy and eoessarily the physical
position in the cache hardware.

The updatefunction describes the effect on the cache of referencintpekiin
memory. The referenced memory blogkmoves intd if it was in the cache already.
All memory blocks in the cache that had been used more recaths, increase their
relative age by one, i.e., they are shifted by one positiahéonext cache line. If the
referenced memory block was not yet in the cache, it is loaated; after all memory
blocks in the cache have been shifted and the ‘oldest’ Jéast recently used memory
block, has been removed from the cache if the cache was full.

Definition 3 (cache update) A cache update functiow : C. x S— C; determines the
new cache state for a given cache state and a referenced snbiook.

Updates of fully associative caches with LRU replacemenategy are pictured as in
Figure 4.

Control Flow Representation We represent programs by control flow graphs con-
sisting of nodes and typed edges. The nodes représsit blocks A basic block is

a sequence (of fragments) of instructions in which contmVfénters at the beginning
and leaves at the end without halt or possibility of brangremcept at the end. For
cache analysis, it is most convenient to have one memoryerate per control flow
node. Therefore, our nodes may represent the differentifeats of machine instruc-
tions that access memory. For non-precisely determineckadés of data references,
one can use a set of possibly referenced memory blocks. Wenasthat for each
basic block, the sequence of references to memory is knowis {(§ appropriate for
instruction caches and can be too restricted for data caoitesombined caches. See
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[Fer97, AFMWO96] for weaker restrictions.), i.e., theresgia mapping from control
flow nodes to sequences of memory block§:V — S,

We can describe the effect of such a sequence on a cache a/tklihof the update
function?. Therefore, we exten@ to sequences of memory references by sequential
COMPOSItion:7/(C, (S, - - - 1Sx,)) = (... (%(C,;Sx,)) - - -, Sx,)-

The cache state for a patky, ..., kp) in the control flow graph is given by apply-
ing % to the initial cache statg and the concatenation of all sequences of memory
references along the patt(c, Z(kiy). ... L(kp)).

TheCollecting Semanticsf a program gathers at each program point the set of all

execution states, which the program may encounter at tis gharing some execution.
A semantics on which to base a cache analysis has to moded caatents as part of
the execution state. One could thus compute the collecéntastics and project the
execution states onto their cache components to obtainethef @ll possible cache
contents for a given program point. However, the collec§iegantics is in general not
computable.

Instead, one restricts the standard semantics to only thasgram constructs,
which involve the cache, i.e., memory references. Only thaye an effect on the
cache modelled by the cache update functi#n,This coarser semantics may execute
program paths which are not executable in the start sensaritieerefore, th€ollect-
ing Cache Semantiasd a program computes a superset of the set of all concreteecac
states occurring at each program point.

Definition 4 (Collecting Cache Semantics)TheCollecting Cache Semantio$a pro-
gram is

Ceol(p) = {%(c1, Z(ka). ... L(kn))| (Ki,-..,kn) pathinthe CFG leading to

This collecting semantics would be computable, althougdrodf enormous size.
Therefore, another step abstracts it into a compact repiesan, so called abstract
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cache states. Note that every information drawn from th&attscache states allows
to safely deduce information about sets of concrete caaiessti.e., only precision
may be reduced in this two step process. Correctness isrgaearh

Abstract Semantics The specification of a program analysis consists of the speci
fication of an abstract domain and of the abstract semantictifins, mostly called
transfer functions The least upper bound operator of the domain combinesn&or
tion when control flow merges.

We present two analyses. Theust analysigletermines a set of memory blocks
that are in the cache at a given program point whenever @recaches this point.
The may analysigletermines all memory blocks that may be in the cache at angive
program point. The latter analysis is used to determineliserace of a memory block
in the cache.

The analyses are used to compute a categorization for eatlomeeference de-
scribing its cache behavior. The categories are descnib@alle 1.

| Category | Abb.| Meaning |
always hit ah | The memory reference will always result in a cache hit.
always miss | am | The memory reference will always result in a cache miss.
not classified| nc | The memory reference could neither be classifieshasor am.

Table 1: Categorizations of memory references and memonkbl

The domains for our abstract interpretations consisthstract cache states

Definition 5 (abstract cache state)An abstract cache staté: L — 25 maps cache
lines to sets of memory block€. denotes the set of all abstract cache states.

The position of a line in an abstract cache will, as in the adssoncrete caches,
denote the relative age of the corresponding memory blodksée, however, that the
domains of abstract cache states will have different damtters and that the interpre-
tation of abstract cache states will be different in theadl#ht analyses.

The following functions relate concrete and abstract dosaAnextraction func-
tion, extr, maps a concrete cache state to an abstract cache stateab3tnaction
function abstr, maps sets of concrete cache states to their best repriéseritathe
domain of abstract cache states. It is induced by the eidrafiinction. Thecon-
cretization functionconcr, maps an abstract cache state to the set of all concrete cache
states represented by it. It allows to interpret abstraciieatates. It is often induced
by the abstraction function, cf. [NNH99].

Definition 6 (extraction, abstraction, concretization furctions) Theextraction func-
tion extr: C; — C forms singleton sets from the images of the concrete caalesst
is applied to, i.e., extec)(li) = {s«} if c(li) = s«
Theabstraction functioabstr: 2 — C is defined by absi€) = | |{extr(c) | ce C}
Theconcretization functiosoncr: € — 2% is defined by con¢é) = {c| extr(c) C

e,
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So much of commonalities of all the domains to be designede Nbat all the con-
structions are parameterizedirmnandC. A

The transfer functions, thabstract cache updatiinctions, all denotedr, will
describe the effects of a control flow node on an element ohlistract domain. They
will be composed of two parts,

1. “refreshing” the accessed memory block, i.e., inseiitiirgo the youngest cache
line,

2. “aging” some other memory blocks already in the abstrache.

Termination of the analyses There are only a finite number of cache lines and for
each program a finite number of memory blocks. This means,tiigadomain of
abstract cache states L — 25is finite. Hence, every ascending chain is finite. Addi-
tionally, the abstract cache update functio#s, are monotonic. This guarantees that
all the analyses will terminate.

Must Analysis As explained above, the must analysis determines a set ofonyem
blocks that are in the cache at a given program point wherestamution reaches this
point. Good information, in the sense of valuable for thedpiion of cache hits, is the
knowledge that a memory block is in this set. The bigger thetlse better. As we will
see, additional information will even tell how long it will Eeast stay in the cache. This
is connected to the “age” of a memory block. Therefore, thiéigdarder on thenust
domain is as follows. Take an abstract cache statsbdvec'in the domain, i.e., less
precise, are states where memory blocks fioane”either missing or are older than in
€. Therefore, thel-operator applied to two abstract cache stateendc; will produce

a statec tontaining only those memory blocks contained in both, aitidyjiwe them the
maximum of their ages in; ‘andc; (see Figure 6). The positions of the memory blocks
in the abstract cache state are thus the upper bounds afjfsef the memory blocks

in the concrete caches occurring in the collecting cacheaséns. Concretization of
an abstract cache statg,produces the set of all concrete cache states, which contai
all the memory blocks contained mwith ages not older than in. "Cache lines not
filled by these are filled with other memory blocks.

We use the abstract cache update function depicted in Figuret us argue the cor-
rectness of this update function. The following theoremmolates the soundness of
the must-cache analysis.

Theorem 1 Let n be a program point, the abstract cache state at the entryton, s a
memory line ingj, with age k.

(i) For eachl < k < A there are at most k memory lines in lineg, ...,k

(i) On all paths to n, s is in cache with age at most k.

The solution of the must analysis problem is interpretedodleviis: Let ¢ be an
abstract cache state at some program poirg, ¢f €(I;) for a cache lind; thens, will
definitely be in the cache whenever execution reaches tbgrgm point. A reference
to sy is categorized aalways hit(ah). There is even a stronger interpretation of the fact
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thats, € €(Ii). s will stay in the cache at least for the next i references to memory
blocks that are not in the cache or alder than the memory blocks io, iwherebys,
is older thars, means3l;,lj : sa € €(li), s € €(1j),i > j.

May Analysis To determine, if a memory blocg will never be in the cache, we
compute the complimentary information, i.e., sets of mgnhdocks thaimaybe in the
cache. “Good” information is that a memory block is not irsthét, because this mem-
ory block can be classified as definitely not in the cache wiamexecution reaches
the given program point. Thus, the smaller the sets are, eélterb Additionally, the
older blocks will reach the desired situation to be removethfthe cache faster than
the younger ones. Therefore, the partial order on this doimsais follows. Take some
abstract cache state Abovecin the domain, i.e., less precise, are those states which
contain additional memory blocks or where memory blocksféeare younger than in
€. Therefore, thel-operator applied to two abstract cache stateendc, will produce

a statec'containing those memory blocks containeajrof ¢, and will give them the
minimum of their ages ig;"andc; (see Figure 7).

The positions of the memory blocks in the abstract cache sta thus the lower
bounds of theagesof the memory blocks in the concrete caches occurring in tite ¢
lecting cache semantics.

The solution of the may analysis problem is interpreted #evis: The fact that
s, is in the abstract cachenmieans thas, may be in the cache during some execution
when the program point is reached slfis not inc{(l;) for anyl; then it will definitely
be not in the cache on any execution. A referencg is categorized aalways miss

(am).
0.3 Pipeline Analysis
Pipeline analysis attempts to find out how instructions ntbveugh the pipeline. In

particular, it determines how many cycles they spend in thelipe. This largely de-
pends on the timing accidents the instructions suffer. igeiccidents during pipelined



0.3. PIPELINE ANALYSIS 15

executions can be of several kinds. Cache misses duringatisin or data load stall
the pipeline for as many cycles as the cache miss penaltgatefi. Functional units
that an instruction needs may be occupied. Queues into whilinstruction may
have to be moved may be full, and prefetch queues, from whigthtuictions have to be
loaded, may be empty. The bus needed for a pipeline phase enagcoipied by a dif-
ferent phase of another instruction. Again, for a architesg without timing anomalies
we can use a simplified picture, in which the task is to find ohitciv timing accidents
can be safely excluded, because each excluded accidemnsaticdecrease the bound
for the execution time. Accidents that can not be safelylweell are assumed to hap-
pen.

A cache analysis as described in Section 0.2 has annotadddtiuctions with
cache-hitinformation. This information is used to exclydgeline stalls at instruction
or data fetches.

We will explain pipeline analysis in a number of steps startivith concrete-
pipeline executionA pipeline goes through a number of pipeline phases andicoes
a number of cycles when it executes a sequence of instrsgtioigeneral, a different
number of cycles for different initial execution states. eTéxecution of the instruc-
tions in the sequence overlaps in the instruction pipelei@aaas the data dependences
between instructions permit it and if the pipeline conditiare statisfied. Each exe-
cution of a sequence of instructions starting in some ingtiate produces onteace,
i.e., sequence of execution states. The length of the teaiteinumber of cycles this
execution takes.

Thus, concrete execution can be viewed as applying a functio
function exec(b : basic block s: pipeline staté t : trace
that executes the instruction sequence of basic blostarting in concrete pipeline
states producing a traceof concrete statesast(t) is the final state when executiihg
Itis the initial state for the successor block to be execagd.

So far, we talked abowtoncreteexecution on aoncretepipeline. Pipeline anal-
ysis regardsbstractexecution of sequences of instructions avstract(models of)
pipelines. The execution of programs on abstract pipelmeducesabstract traces
i.e., sequences abstractstates, where some information contained in the concrete
states may be missing. There are several types of missiognation.

e The cache analysis in general has incomplete informationtadache contents.

e The latency of an arithmetic operation, if it depends on therand sizes, may
be unknown. It influences the occupancy of pipeline units.

e The state of a dynamic branch predictor changes over ibesmbf a loop and
may be unknown for a particular iteration.

e Data dependences can not safely be excluded becauseweffadtiresses of
operands are not always statically known.
Simple Architectures without Timing Anomalies

In a first step, we assume a simple processor architectuttejiworder execution and
withouttiming anomaliesi.e., architectures, where local worst cases contrittie
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program’s global execution time, cf. 0.1.2. Also, it is stdeassume the local worst
cases for unknown information. For both of them the corradptg timing penalties
are added. For example, the cache miss penalty has to be fmidesitruction fetch
of an instruction in the two cases, that a cache miss is pstlar that neither a cache
miss nor a cache hit can be predicted.

The result of the abstract execution of an instruction segedor a given initial
abstract state is again one trace; however, possibly of @eréength and thus an
upper bound properly bounding the execution time from ab®exause worst cases
were assumed for all uncertainties, this number of cycles safe upper bound for
all executions of the basic block starting in concrete stadpresented by this initial
abstract state.

The Algorithm for pipeline analysis is quite simple. It ugefinction

function exec(b : cache-annotated basic blockS: abstract pipeline state
f : abstract trace

that executes the instruction sequence of basic Hipakinotated with cache informa-
tion, starting in the abstract pipeline statant producing a tradeof abstract states.

This function is applied to each basic bldekn each of its contexts and the empty
pipeline statesy corresponding to a flushed pipeline. Therefore, a lineaetsal of the
cache-annotated context-extended Basic-Block Grapttesffirhe result is a trace for
the instruction sequence of the block, whose length is aeuppund for the execution
time of the block in this context. Note, that it still makesse to analyze a basic block
in several contexts because the cache information for thagnba quite different.

Note, that this algorithm is simple and efficient, but notessarily very precise.
Starting with a flushed pipeline at the beginning of the bbakick is safe, but it ignores
the potential overlap between consecutive basic blocks.

A more precise algorithm is possible. The problem is withibasocks having
several predecessor blocks. Which of their final statesldhmuselected as initial state
of the successor block? First solution involves workindwsiéts of states for each pair
of basic block and context. Then, one analysis of each b&sokland context would
be performed for each of the initial states. The resultirigo$dinal states would be
passed on to successor blocks, and the maximum of the tnagthtewould be taken
as upper bound for this basic block in this context.

Second solution would work with a single state per basiclbkxed context and
would combine the set of predecessor final states consezlyato the initial state for
the successor.

Processors with Timing Anomalies

In the next step, we assume more complex processors, inglidose with out-of-
order execution. They typically have timing anomalies. @ssumption above, i.e.,
that local worst cases contribute worst-case times to thbagjlexecution times, is
no more valid. This forces us to consider several paths, evleeruncertainty in the
abstract execution state does not allow to take a decisitwiele@ several successor
states. Note, that the absence of information leads frondéterministic concrete
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Figure 8: Different paths through the execution of a mujtipistruction. Decisions
inside the boxes can not be deterministically taken basetherabstract execution
state because of missing information.

pipeline to an abstract pipeline that is non-deterministiais situation is depicted in
Fig. 8. It demonstrates two cases of missing informatioh&abstract state. First, the
abstract state lacks the information whether the instwads in the I-cache. Pipeline
analysis has to follow both cases in case of instructiorhfdiecause it could turn out
that the I-cache miss, in fact, is not the global worst cageo8dly, the abstract state
does not contain information about the size of the operaWdsalso have to follow
both paths. The dashed paths have to be explored to obtagxéeation times for this
instruction. Depending on the architecture, we may be abtmnhservatively assume
the case of large operands and surpress some paths.

The algorithm has to combine cache and pipeline analysiausecof the interfer-
ence between both, which actually is the reason for theengstof the timing anoma-
lies. For the cache analysis, it uses the abstract cacles stsicussed in Section 0.2.
For the pipeline part, it useanalysis stateswhich are sets of abstract pipeline states,
i.e. sets of states of the abstract pipeline. The questisesawhether an abstract
cache state is to be combined with an analysis stste dn individual one with each
of the abstract pipeline statessa So, there could be one abstract cache stategor
representing the concrete cache contents for all abstieline states irss or there
could be one abstract cache state per abstract pipelirarsti The first choice saves
memory during the analysis, but loses precision. This isabse different pipeline
states may cause different memory accesses and thus caukeatspwhich have to
be merged into the one abstract state thereby losing infavmaThe second choice
is more precise but requires more memory during the analydschoose the second
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Figure 9: Possible pipeline states in a basic block

alternative and thus define a new domairmpélysis stated of the following type:

A — Zéxé (1)
S= set of abstract pipeline states (2)
C = set of abstract cache states 3)

The Algorithm again uses a new functiereg.
function exeg (b : basic block &: analysis stat¢ T : set of abstract trace
which analyzes a basic blodkstarting in an analysis staeconsisting of pairs of
abstract pipeline states and abstract cache states. Asilaitesill produce a set of
abstract traces.

The algorithm is as follows:

Algorithm Pipeline-Analysis

Perform fixpoint iteration over the context-extended Ba&limck Graph:

For each basic blodiin each of its contexts, and for the initial analysis state ~
computeexég(b, d) yielding a set of traceffy, f, . .. ,tm}-

max({[t, |&2], ..., [tm|} is the bound for this basic block in this context.

The set of output statg$ast(f; ), last(fz), .. . , last(tm) } will be passed on to the succes-
sor block(s) in context as initial states.

Basic blocks (in some context) having more than one predecesceive the union
of the set of output states as initial states.

The abstraction we use as analysis statessistaf abstract pipeline states, since
the number of possible pipeline states for one instructionat too big. Hence, our
abstraction computes an upper bound to the collecting strsai he abstract update
for an analysis stata i thus the application of the concrete update on each abstra
pipeline state iraextended with the possibility of multiple successor statesase of
uncertainties.

Figure 9 shows the possible pipeline states for a basic biottkis example. Such
pictures are shown b&T tool upon special demand. The large dark grey boxes cor-
respond to the instructions of the basic block, and the emadctangles in them stand
for individual pipeline states. Their cyclewise evolutinindicated by the strokes
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connecting them. Each layer in the trees corresponds to Btedycle. Branches in

the trees are caused by conditions that could not be stgt@®alluated, e.g. a memory
access with unknown address in presence of memory areadii#tent access times.
On the other hand, two pipeline states fall together wheaildehey differ in leave the

pipeline. This happened, for instance, at the end of thergkicstruction, reducing the
number of states from four to three.

The update function belonging to an edge/) of the control-flow graph updates
each abstract pipeline state separately. When the bussunjpdated, the pipeline
state may split into several successor states with differache states. The initial
analysis state is a set of empty pipeline states plus a chehesipresents a cache with
unknown content. There can be multiple concrete pipeliatestin the initial states,
since the adjustment of internal to external clock of thecpssor is not known in the
beginning and every possibility (aligned, one cycle apett) has to be considered.
Thus prefetching must start from scratch, but pending bgaests are ignored. To
obtain correct results, they must be taken into account dingda fixed penalty to the
calculated upper bounds.

0.3.1 Pipeline Modeling

The basis for pipeline analysis is a model of an abstractiaersf the processor
pipeline, which is conservative with respect to the timirghavior, i.e., times pre-
dicted by the abstract pipeline must never be lower thanetlotsserved in concrete
executions. Some terminology is needed to avoid confu$toocessors hawencrete
pipelines, which may be described in some formal languageMHDL. If this is the
case, there existsfarmal modelof the pipeline. Our abstraction step, by which we
eliminate many components of a concrete pipeline that ateatevant for the tim-
ing behavior lead us to aabstract pipeline This may again be described in a formal
language, e.g. VHDL, and thus have a formal model. Derivimglastract pipeline is
a complex task. It is demonstrated for the Motorola Coldpirecessor, a processor
quite popular in the aeronautics and the submarine industrg presentation follows
closely that of [LTHO02{.

The ColdFire MCF 5307 Pipeline

The pipeline of the ColdFire MCF 5307 consists détch pipelinghat fetches instruc-
tions from memory (or the cache), anderecution pipelin¢ghat executes instructions,
cf. Figure 10. Fetch and execution pipelines are connectdda far as speed is con-
cerned decoupled by a FIFO instruction buffer that can hbld@st 8 instructions.
The MCF 5307 accesses memory through a bus hierarchy. Tih@gatned K-bus
connects the cache and an internal 4KB SRAM area to the pgehccesses to this
bus are performed by the IC1/IC2 and the AGEX and DSOC stafgls pipeline. On
the next level, the M-Bus connects the K-Bus to the intereailgherals. This bus runs
at the external bus frequency, while the K-Bus is clockedhhe faster internal core

2The model of the abstract pipeline of the MCF 5307 has beemedeby hand. A computer-supported
derivation would have been preferable. Ways to developat@subject of actual research.
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clock. The M-Bus connects to the external bus, which acsesBechip peripherals
and memory.

Thefetch pipelingoerforms branch prediction in the IED stage, redirectingfeg
long before the branch reaches the execution stages. Tdiefigeline is stalled if the
instruction buffer is full, or if the execution pipeline rdsethe bus for a memory access.
All these stalls cause the pipeline to wait for one cycleeAfhat, the stall condition is
checked again.

The fetch pipeline is also stalled if the memory block to bielied is not in the
cache (cache miss). The pipeline must wait until the memtwrgidis loaded into the
cache and forwarded to the pipeline. The instructions tteaalieady in the later stages
of the fetch pipeline are forwarded to the instruction buffe

Theexecution pipelinénishes the decoding of instructions, evaluates theirames,
and executes the instructions. Each kind of operationvialla fixed schedule. This
schedule determines, how many cycles the operation neelds arhich cycles mem-
ory is accessed The execution time varies between 2 cycles and severahdiyzges.
Pipelining admits a maximum overlap of 1 cycle between coutbee instructions: the
last cycle of each instruction may overlap with the first & trext one. In this first cy-
cle, no memory access and no control-flow alteration happlens, cache and pipeline
cannot be affected by two different instructions in the sage. The execution of an
instruction is delayed if memory accesses lead to cacheemiddisaligned accesses
lead to small time penalties of 1-3 cycles. Store operatimasielayed if the distance
to the previous store operation is less than 2 cycles. (Tdes dot hold if the previous
store operation was issued biW¥DVEM instruction.) The start of the next instruction
is delayed if the instruction buffer is empty.

0.3.2 Formal Models of Abstract Pipelines

An abstract pipeline can be seen as a big finite state machimiehh makes a transition
on every clock cycle. The states of the abstract pipelirtapagh greatly simplified
still contain all timing relevant information of the proses. The number of transitions
it takes from the beginning of the execution of an instructimtil its end gives the
execution time of that instruction.

The abstract pipeline although greatly reduced by leavingiroelevant compo-
nents still is a really big finite state machine, but it hasigure. Its states can be
naturally decomposed into components according to thetaothre. This makes it
easier to specify, verify, and implement a model of an abspgpeline. In the formal
approach presented here, an abstract pipeline state tsoabiseveralunits with in-
nerstatesthat communicate with one another and the memorsigaals and evolve
cycle-wise according to their inner state and the signalsived. Thus, the means of
decomposition are units and signals.

Signals may bénstantaneousmeaning that they are received in the same cycle
as they are sent, atelayed meaning that they are received one cycle after they have
been sent. Signals may carry data, e.g. a fetch addressthiddthese signals are only

3In fact, there are some instructions liMOVEM whose execution schedule depends on the value of an
argument as immediate constant. These instructions caakbe into account by special means.
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part of the formal pipeline model. They may or may not coroggpto real hardware
signals. The instantaneous signals between units are osednisport information
between the units. The state transitions are coded in tHeteworules local to each
unit.

Figure 11 shows the formal pipeline model for the ColdFire/VE307. It consists
of the following units: IAG (instruction address genera)iplC1 (instruction fetch
cycle 1), IC2 (instruction fetch cycle 2), IED (instructiearly decode), IB (instruction
buffer), EX (execution unit), SST (store stall timer). Indéibn, there is aus unit
modeling the busses that connect the CPU, the static RAMgdbbe, and the main
memory. The signals between these units are shown as aridast units directly
correspond to a stage in the real pipeline. However, the $8Tiswsed to model the
fact that two stores must be separated by at least two clodkeylt is implemented
as a (virtual) counter. The two stages of the execution pip@re modeled by a single
stage, EX, because instructions can only overlap by onecycl

The inner states and emitted signals of the units evolve ¢h egcle. The com-
plexity of this state update varies from unit to unit. It cands simple as a small table,
mapping pending signals and inner state to a new state andisitp be emitted, e.g.
for the IAG unit and the IC1 unit. It can be much more compkckif multiple depen-
dencies have to be considered, e.g. the instruction recmtisin and branch prediction
in the IED stage. In this case, the evolution is formulategsaudo code. Full details
on the model can be found in [The04].

0.3.3 Pipeline States

Abstract Pipeline States are formed by combining the intetes of IAG, IC1, IC2,

IED, IB, EX, SST, and bus unit plus additional entries for @iy signals into one
overall state. This overall state evolves from one cycleh®riext. Practically, the
evolution of the overall pipeline state can be implementedjbdating the functional
units one by one in an order that respects the dependentieduced by input signals
and the generation of these signals.

Update Function for Pipeline States.

For pipeline modeling, one needs a function that descrhmesvolution of the concrete
pipeline state while traveling along an ed@eV) of the control-flow graph. This
function can be obtained by iterating the cycle-wise updatetion of the previous
paragraph.

An initial concrete pipeline state sthas an empty execution unit EX. It is updated
until an instruction is sent from IB to EX. Updating of the coete pipeline state con-
tinues using the knowledge that the successor instrucsiehuntil EX has become
empty again. The number of cycles needed from the beginmitibthis point can be
taken as the time needed for the transition frota V' for this concrete pipeline state.
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Figure 12: A program snippet, the corresponding control fioaph, and the ILP vari-
ables generated.

0.4 Path Analysis Using Integer Linear Programming

The structure of a program and the set of program paths carapeed to an ILP in
a very natural way. A set of constraints describes the cbfiow of the program.
Solving these constraints yields very precise results [DBJ/However, requirements
for precision of the results demand analyzing basic blogldifferent contexts, i.e., in
different ways, how control reached them. This makes thérabquite complex, so
that the mapping to an ILP may be very complex [The02].

A problem formulated in an ILP consists of two parts: the dasttion and con-
straints on the variables used in the cost function. Our frosttion represents the
number of CPU cycles. Correspondingly, it has to be maxidhidgach variable in
the cost function represents the execution count of oneclidsck of the program
and is weighted by the execution time of that basic block. if\aldally, variables are
used corresponding to the traversal counts of the edge ioahtrol flow graph, see
Figure 12.

The integer constraints describing how often basic blocksaecuted relative to
each other can be automatically generated from the contnoldraph 13. However,
additional information about the program provided by theris usually needed, as the
problem of finding the worst case program path is unsolvatileé general case. Loop
and recursion bounds cannot always be inferred automigtaadl must therefore be
provided by the user.

The ILP approach for program path analysis has the advatitagesers are able
to describe in precise terms virtually anything they knowwtithe program by adding
integer constraints. The system first generates the obwionstraints automatically
and then adds user supplied constraints to tighten the WOERds.
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Figure 13: Control flow joins and splits and flow-preservatemws

0.5 Other Ingredients

0.5.1 Value Analysis

A static method for data-cache behavior prediction neekisdor effective memory ad-
dresses of data, in order to determine where a memory aceessigowever, effective
addresses are only available at run time. Interval anassidescribed by Cousot and
Halbwachs [CH78] can help here. It can compute intervalaftuiress-valued objects
like registers and variables. An interval computed for saigtobject at some program
point bounds the set of potential values the object may hdenvprogram execution
reaches this program point. Such an analysisiTrcalledvalue analysifias shown to
be able to determine many effective addresses in disciptinde statically [TSHO3].

0.5.2 Control Flow Specification and Analysis

Any information about the possible flow of control of the praign may increase the
precision of the subsequent analyses. Control flow analysig attempt to exclude
infeasible paths, determine execution frequencies ofspatithe relation between exe-
cution frequencies of different paths or subpaths etc.

The purpose of control flow analysis is to determine the dyindrehavior of the
program. This includes information about what functions ealled and with which
arguments, how many times loops iterate, if there are degperiels between successive
if-statements, etc. The main focus of flow analysis has beatetieemination of loop
bounds, since the bounding of loops is a necessary step @n twdind an execution
time bound for a program.

Control-flow analysis can be performed manually or autoradlfi. Automatic
analyses have been based on various techniques, like sgrelsetution, abstract in-
terpretation, and pattern recognition on parse trees. €kegrecision is achieved by
using interprocedural analysis techniques, but this hasettraded off with the ex-
tra computation time and memory required. All automatihtegues allow a user to
complement the results and guide the analysis using manunatations, since this is
sometimes necessary in order to obtain reasonable results.

Since the flow analysis in general is performed separately fhe path analysis,
it does not know the execution times of individual prograatestents, and must thus
generate a safe (over)approximation includaligpossible program executions. The
path analysis will later select the path from the set of gegirogram paths that corre-
sponds to the upper bound using the time information conajduggrocessor behavior
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prediction.
Control flow specification is preferrably done on the souexel. Concepts based
on source-level constructs are used in [EG97, Erm03].

0.5.3 Frontends for Executables

Any reasonably precise timing analysis takes fully linkee@itable programs as input.
Source programs do not contain information about prograsrdarea allocation, which
is essential for the described methods to predict the caghauior.

Executables must be analyzed to reconstruct the origingtaioflow of the pro-
gram. This may be a difficult task depending on the instrucsiet of the processor
and the code generation of the used compiler. A generic apprto this problem is
described in [The00, The01, The02].

0.6 Related Work

It is not possible in general to obtain upper bounds on rupntimes for programs.
Otherwise, one could solve the halting problem. Howevell-time systems only use
a restricted form of programming, which guarantees thagjanms always terminate.
That is, recursion is not allowed (or explicitly boundeddahe maximal iteration
counts of loops are known in advance.

A worst-case running time of a program could easily be detezthif the worst-
case input for the program were known. This is in generalmtase. The alternative,
to execute the program with all possible inputs, is ofterhfinitively expensive. As a
consequence, approximations for the worst-case exectiti@nare determined. Two
classes of methods to obtain bounds can be distinguished:

e Dynamicmethods employ real program executions to obtain apprdioms
These approximations ammsafeas they only compute the maximum of a subset
of all executions.

e Staticmethods only need the program itself, maybe extended witresaddi-
tional information (like loop bounds).

0.6.1 A (Partly) Dynamic Method

A traditional method, still used in industry, combines measy and static methods.
Here, small snippets of code are measured for their exectitie, then aafety margin
is applied and the results for code pieces are combined@iogao the structure of the
whole task. E.g. if a tasks first executes a snigpahd then a snippd, the resulting
time is that measured fok, ta, added to that measured fBr tg: t =t +tg. This
reduces the amount of measurements that have to be madeeasnippets tend to be
reused a lot in control software and only the different satpmeed to be measured. It
adds, however, the need for an argumentation about thectoess of the compaosition
step of the measured snippet times. This typically reliessstain implicit assumptions
about the worst-case initial execution state for these oreasents. For example, the
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snippets are measured with an empty cache at the beginnihg ofeasurement under
the assumption that this is the worst-case cache state.hiDH] it is shown that this
assumption can be wrong. The problem of unknown worst-agsat iexists for this
method as well, and it is still infeasible to measure execuiiimes for all input values.

0.6.2 Purely Static Methods
The Timing Schema Approach

In the timing-schemata approach [Sha89], bounds for thewtmn times of a com-
posed statement are computed from the bounds of the camdstuOne timing schema
is given for each type of statement. Basis are known timekeftomic statements.
These are assumed to be constant and available from a manar@ assumed to be
computed in a preceding phase. A bound for the whole progsasbtained by com-
bining results according to the structure of the program.

The precision can be very bad because of some implicit agsomspunderlying
this method. Timing schemes assume compositionality ohtdetdior execution times,
i.e. they compute bounds for execution times of composedtoacts from already
computed bounds of the constituents. However, as we hawve teeexecution times
of the constituents depend heavily on the execution history

Symbolic Simulation

Another static method simulates the execution of the progra an abstract model of
the processor. The simulation is performed without ingug; gimulator thus has to be
capable to deal with partly unkown execution states. Thithotcombines flow anal-
ysis, processor-behavior prediction, and path analysimaintegrated phase [LS99,
Lun02]. One problem with this approach is that analysis timproportional to the
actual execution time of the program with a usually largédiafor doing a simulation.

WCET Determination by ILP

Li, Malik, and Wolfe proposed an ILP-based approach to WCEfEdnination [LM95,
LMW95a, LMW95b, LMW96]. Cache and pipeline behavior preitin are formulated
as a single linear program. The i960KB is investigated, ®di8&icroprocessor with a
512 byte direct mapped instruction cache and a fairly sirpjgeline. Only structural
hazards need to be modeled, thus keeping the complexitgdhtager linear program
moderate compared to the expected complexity of a modelif@o@ern microproces-
sor. Variable execution times, branch prediction, andrircsion prefetching are not
considered at all. Using this approach for super-scalalipips does not seem very
promising, considering the analysis times reported in drikeparticles.

One of the severe problems is the exponential increase dditieeof the ILP in
the number of competinigblocks.|-blocksare maximally long contiguous sequences
of instructions in a basic block mapped to the same cacheTsat.|-blocks mapped
to the same cache sevmpetdf they do not have the same address tag. For a fixed
cache architecture, the number of competiiocks grows linearly with the size of
the program. Differentiation by contexts, absolutely rsseey to achieve precision,
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increases this number additionally. Thus, the size of tlieilexponential in the size
of the program. Even though the problem is claimed to be aar&eflow problem the
size of the ILP is killing the approach. Growing associdyiaf the cache increases the
number of competing-blocks. Thus, also increasing cache-architecture coxitple
plays against this approach.

Nonetheless, their method of modeling the control flow asldh the so-called
Implicit Path Enumerationis elegant and can be efficient if the size of the ILP is kept
small. It has been adopted by many groups working in this.area

Timing Analysis by Static Program Analysis

The method described in this chapter uses a sequence of gtagram analyses for
determining the program’s control flow and its data acceaseisfor predicting the
processor’s behavior for the given program.

An early approach to timing analysis using data-flow analygthods can be found
in [AMWH94, MWH94]. Jakob Engblom showed how to precompuete of a tim-
ing analyzer to speed up the actual timing analysis for &echires without timing
anomalies [Eng02].

[WETWO04] gives an overview of existing tools for timing agsils, both commer-
cially available tools and academic prototypes.

0.7 State of the Art and Future Extensions

The timing-analysis technology described in this chagteealized in thaiT tool and
is used in the aeronautics and automotive industries. 8evenchmarks have shown
that precision of the predicted upper boundsiis in the orfiEd% [TSH"03]. To obtain
such a precision, however, requires competent users diecaviailable knowledge
about the program’s control flow may be difficult to specify.

The computational effort is high, but acceptable. Futuréngipations will reduce
this effort. As often in static program analysis, there isaalé-off between precision
and effort. Precision can be reduced if the effort is intaide.

The only really drawback of the described technology is thgeheffort for pro-
ducing abstract processor models. Work is under way to stifie activity through
transformations on the VHDL level.
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