We are looking for **Post Doc Fellows** and **new Ph.D. Students** in Uppsala

Send me a message if you are interested

Wang Yi: yi@it.uu.se

Schedulability Analysis of Timed Systems

Wang Yi
Uppsala University

with contributions from
Tobias Amnell, Elena Fersma, John Håkansson,
Pavel Krčál, Leonid Mokrushin, and Paul Pettersson

Artist MOTIVES School, 2007, Trento, Italy

Real Time Systems

- Application software
- Scheduler (Resource management)
- Hardware
- RTOS
- Tasks
- Sensors
- Actuators

Networks of Real-Time Components
(abstract view)

Schedulability Analysis

- Whether all task instances can be executed within given deadlines

- Alternatively (more difficult) what are the worst-case response times?

- (Buffer over- and under-flow? The buffer size?)

The ABB Robot Controller

- ABB robot controller (2 500 000 loc)
- Real time tasks A,B,C,D
- Read inputs from channels, write output to channels
- Task priority order D>C>B>A (PPS)
- Buffer overflow/underflow, WOR
Networks of Real-Time Components
(abstract view)

Timed automata with FIFO channels [CAV’06, Pavel&Wang]

PROBLEM SETTING

TASK -- a piece of executable code characterized by

- Worst-Case Execution time: C (maybe [B, W])
- Priority: P
- Deadline: D
- Arrival Rate/pattern e.g. periodic

Scheduling Policy

- Decide which task to run
- e.g. EDF, FPS, FIFO, Rate-Monotonic etc.

Simple Task Arrival Patterns: Periodic

"Classic" Real Time Scheduling

Periodic tasks

well-developed techniques e.g. Rate-Monotonic Scheduling
In many applications:

- tasks may share many resources (not only CPU time)
- tasks may have complex control structures and interactions
- tasks may not be that "regular" (often non-periodic)

e.g. UML diagrams with SPT constraints

More Complex Arrival Patterns: Timed Traces

![Timed Trace Example]

(3.3, a), (3.4, b),
(6.5, a),
(3.6, a), (3.9, b),
(3.14, a), (3.14159, b)
...

Automata-based Approaches

Networks of timed automata whose transitions trigger tasks Pi’s

![Automata Diagram]

Scheduler/RTOS

Problem to solve:

\((A_1 || ... || A_n || \text{Scheduler}) \text{ satisfies } K\)

- \(K\) is a safety property (no deadline miss)
- \(\text{Scheduler}\) is an automaton encoding a given scheduling policy

OUTLINE

- A Model for Systems with Complex Task Structures [1998]
 - Timed automata with tasks
- Schedulability and (un)Decidability [Inf. & Com. 07]
 - Timed automata with bounded subtraction
- More Efficient Algorithms [TCS 06]
 - Schedulability analysis using 2 clocks
- TIMES tool demo
- Compositional Analysis: CATS tool [2007]
 - Keep the expressiveness for modeling
 - Perform analysis with approximation
- References/links

The MODEL

(Timed Automata with Tasks)
Timed Automata with Tasks

- Events
 - Discrete Transitions

- Timing constraints
 - Clocks / Guards / Resets
 - Complex arrival rates

- Tasks
 - Asynchronous execution
 - WCET, Deadline

Example: periodic tasks

\[\text{start} \]
\[c = 0 \]
\[c \geq 100 \]
\[x < 3 \]
\[a! \]
\[x := 0 \]

Timed Automata with Tasks

- Assume a set of tasks \(P_r \)
- A timed automaton with tasks is a tuple: \(<N,n_0,T,M> \)
 - \(N \) is a set of nodes
 - \(n_0 \) is the initial node
 - \(T \subseteq N \times (B(C) \times Act \times 2^C) \times N \) is the set of "edges"
 - \(C \) is a set of clocks
 - Act is a set of actions
 - \(B(C) \) is the set of clock constraints e.g. \(X < 10 \) etc.
 - \(M: N \rightarrow 2^{P_r} \) is a mapping which assigns each node a set of tasks

The Execution Platform

Thread 1

\[P_3 \]
\[P_2 \]
\[P_1 \]
\[P_2 \]

Task Queue

Thread 2: Scheduling Policy

Thread 3

Task Releases

\[A_1 \parallel \ldots \parallel A_n \]

\[\text{(the plant)} \]

The Execution Platform

Run of TAT

- (Idle, x=0, [\])
- 0.1 \rightarrow (Idle, x=0.1, [\])
- \rightarrow (RelP, x=0, [P(2,2)])
- 1.5 \rightarrow (RelP, x=1.5, [P(0,5.5),Q(2,2)])
- \rightarrow (RelQ, x=1.5, [Q(0,5.6.5)])
- 1.5 \rightarrow (RelQ, x=3, [Q(1,18.5)])
- \rightarrow (Idle, x=3, [Q(1,18.5)])
- \rightarrow (RelP, x=0, [P(2,8),Q(1,18.5)])
- 2 \rightarrow (RelP, x=2, [Q(1,16.5)])

States/Configurations of automata

A state is a triple: \((m, u, q)\)

Location (node) clock assignment (valuation) task queue
Sch and Run

- **Sch** is a function sorting task queues according to a given scheduler e.g. FPS, EDF, FIFO etc.

 Example: EDF \((P(2, 10), Q(4, 7)) = [Q(4, 7), P(2, 10)]\)

- **Run** is a function corresponding to running the first task of the queue for a given amount of time.

 Examples:
 - Run(0.5, [Q(4, 7), P(2, 10)]) = [Q(3.5, 6.5), P(2, 9.5)]
 - Run(5, [Q(4, 7), P(2, 10)]) = [P(1, 5)]

Semantics (as transition systems)

- **States:** \(<m, u, q>\)
 - \(m\) is a location
 - \(u\) is a clock assignment (valuation)
 - \(q\) is a queue of tasks (ready to run)

- **Transitions:**
 1. \((m, u, q) \xrightarrow{a} (n, r(u), \text{Sch}(M(n)::q))\) if \(g(u)\)
 2. \((m, u, q) \xrightarrow{d} (m, u+d, \text{Run}(d, q))\) where \(d\) is a real

OBS: \(q\) is growing (by actions) and shrinking (by delays)

"Zenoness" = Non-Schedulability

Schedulability of automata

A state is a triple: \((m, u, q)\)

- A state is schedulable if \(q\) is schedulable
- An automaton is schedulable if all reachable states are

Schedulability of Automata

Assume a scheduler \(\text{Sch}\):

- A state \((m, u, q)\) is schedulable with \(\text{Sch}\) if
 - \(\text{Sch}(q) = [P_1(c_1, d_1), P_2(c_2, d_2), \ldots, P_n(c_n, d_n)]\) and
 - \(c_1 + \ldots + c_i \leq d_i\) for all \(i \leq n\) (i.e., all deadlines met)
- An automaton is schedulable with \(\text{Sch}\) if all its reachable states are schedulable
- An automaton is schedulable with a class of scheduling policies if it is schedulable with every \(\text{Sch}\) in the class.
DECIDABILITY

Schedulability Analysis (Non-preemptive scheduling)

FACT [1998]
For Non-preemptive schedulers, the schedulability of an automaton can be checked by reachability analysis on ordinary timed automata.

Proof ideas (1):
Size of schedulable queues is bounded
- The maximal number of instances of \(P_i \) in a schedulable queue is bounded by \(M_i = \left\lfloor \frac{D_i}{C_i} \right\rfloor \)
- The maximal size of schedulable queues is bounded by \(M_1 + M_2 + \ldots + M_n \)
- To code the queue/scheduler, for each task instance, use 2 clocks:
 - \(c_i \) remembers the computing time
 - \(d_i \) remembers the deadline

\[
\begin{array}{c|c|c}
& (c_i, d_i) & \\
\hline
\end{array}
\]

Proof ideas (2):
The scheduler as an automaton

The scheduler automaton

Proof Ideas (3)
- Modify the original automaton \(M \): adding ‘release!’ to inform the scheduler
- Check reachability of the error state for \(M' \parallel \text{SCHEDULER} \)
How about preemptive scheduling?

- We may try the same ideas
 - Use clocks to remember computing times and deadlines
- BUT a running task may be stopped to run a more 'urgent' task
 - Thus we need stop-watches to remember "accumulated computing times"
- Then the schedulability problem is undecidable?
- This is wrong!!

Decidability Result [TACAS 2002]

FACT

For Preemptive schedulers, the schedulability of an
automaton can be checked by reachability analysis on
Bounded Subtraction Timed Automata (BSA).

NOTE

- Reachability for BSA is decidable
- Preemptive EDF is optimal; thus the general schedulability
 checking problem is decidable.

Timed automata with subtraction
i.e. Subtraction Automata, [McManis and Varaiya, CAV’94]

- Subtraction automata are timed automata
 extended with subtraction on clocks
- That is, in addition to reset x:=0, it is also
 allowed to update a clock
 x with x:= x-n where n is a natural number

Schedulability Checking as a reachability problem for
Bounded Subtraction Automata

- Model the scheduler as a subtraction automaton
 - Do not stop the computing clock c_i when a new task P_i is released
 - Let c_i, for P_i (preempted) run until the task P_i (with higher priority) finishes,
 then perform c_i:=c_i-C_i (note: c_i is the computing time for P_i).
Proof ideas (clocks are bounded):

- c_2 can never be negative.
- c_i is bounded by D_i.

Schedulability analysis using DBM’s

Complexity

- #clocks (needed) = 2 x #instances (maximal number of schedulable task instances) = 2 x $\sum_i \frac{D_i}{C_i}$

This is a huge number in the worst case
But the run-time complexity is not so bad!

It works anyway !!!

- #active tasks in the queue is normally small, and the run-time complexity is only related to #active clocks
- If Too many active tasks in the queue (i.e. Too many active clocks), the check will stop sooner and report "non-schedulable"
- AND the analysis can be done symbolically!

WE CAN DO BETTER! [TACAS 03, TCS 06]

For fixed priority scheduling strategies (FPS),
we need only 2 clocks (and ordinary timed automata)!
The 2-CLOCK ENCODING
(for fixed-priority scheduler)

Problem to solve

A1 || A2 || ... || An || FPScheduler

Check: the network will never reach a state where a deadline is violated

Main Idea

- Check the schedulability of tasks one by one according to priority order (highest priority first)
- This is similar to response time analysis in RMS

To code the scheduler, we need:

- 1 integer variable for each Pi:
 - r denotes the response time as in RMS (the total computing time needed before Pi finishes)
- 2 clocks for each Pi:
 - c remembers the accumulated computing time (so much has been computed so far)
 - d remembers the "deadline"

Intuition of the encoding:

\[R_i = C_i + \sum_{\text{prior}(P_j) > \text{prior}(P_i)} C_j \]

- Assume: priority(Pi) > priority(Pj) and Pi is analyzed

When Pi finishes, \(r = R_i \)

Note that it is not clear that c and r are bounded!
The “FPS scheduler”: analyzing Pi (we need the boundedness)

- \(c \) and \(r \) are bounded
 - \(c \) is bounded by \(M \)
 - \(r \) is bounded by \(r_{\text{max}} + C_i \)
 - Where \(r_{\text{max}} \) is the maximal value of \(r \) from previous analysis for all tasks \(P_j \) with higher priority

So the scheduler is a standard TA

SUMMARY: Decidability

- For non-preemptive schedulers, the problem can be solved using standard TA.
- For preemptive schedulers, the problem can be solved using BSA (Bounded Substraction Automata).
- For fixed-priority schedulers, the problem can be solved using TA with only 2 extra clocks – similar to the classic RMA technique (Rate-Monotonic Analysis).

Undecidability [Inf. and Comp. 2007]

Unfortunately, the problem will be undecidable if the following conditions hold together:

1. Preemptive scheduling
2. Interval computation times \([B, W]\)
3. Feedback i.e. the finishing time of tasks may influence the release times of new tasks.

What we have done so far:

Compositional Analysis of Timed Systems with Abstraction/Approximation

www.timestool.com/cats
The ABB Robot Controller

\[\text{Task Ready Queue} \]

\[\text{Shared variables} \]

\[\text{TAA\times TAB\times TAC\times TAD\times TASCH with queues is TOO BIG} \]

UPPAAL, TIMES (and others)

Trying to search "all the combinations of local states":

\[S_1 || S_2 || ... || S_m || q_1 || q_2 || ... || q_n \]

Some of which are bugs

Networks of RT Components

Components: A1, A2 ... Am and queues: Q1, Q2 ... Qn

System/component = Stream transformer

- Network Calculus (Cruz, Boudec, Thiran ’91-’04)
 - Arrival Curves
- Real-Time Calculus (Thiele, Chakraborty ’00s)
 - Upper/Lower Arrival/Service Curves
- RT Components/TA = Abstract stream transformers
 - Abstract stream defines a timed language

Set of streams = Abstract stream = Arrival curve

a sliding time window with size 5

Set of streams = Abstract stream = Arrival curve

a sliding time window with size 5
Set of streams = Abstract stream = Arrival curve

A sliding time window with size 5

Set of streams = Abstract stream = Arrival curve

A sliding time window with size 5

Set of streams = Abstract stream = Arrival curve

A sliding time window with size 5

Set of streams = Abstract stream = Arrival curve

A sliding time window with size 5

Set of streams = Abstract stream = Arrival curve

A sliding time window with size 1

Arrival curve

\[L(C) = \text{set of streams} \]
System/component = “Arrival curve” transformer

This can be done modularly when there is no “feedback”

TA as Curve Transformer

System/Component = Arrival Curve Transformer

• Comparing the curves we will answer:
 - if A1 and A2 can “work together”? (all the events generated by A1 will be received and processed by A2)
 - what is the sufficient size of the buffer?
 - what is the output curve of A2?

How about resources and scheduling?

Real-Time Calculus, Lottar et al

Arrival Curves (tasks) Service Curves (resources)

(a,3),(a,3.34),(a,3.39),(a,4),(a,10)... (100%,0),(50%,3.3),(100%,7)...

Properties of Curves

• max vertical distance = required buffer size
• max horizontal distance = flow delay bound
Resources & Scheduling

- FPS, priority order:
 - Priority(A) < Priority(B) < Priority(C) < Priority(D)
- Service Curves
 - Same as arrival curves but express available resource within windows
 - Highest priority task has 100% of CPU

Networks of Real-Time Components
(abstract view)

An Example with Feedback

- TASK1 input depends on the TASK2 output
- TASK1 uses TASK2's remaining resource
- TASK2 input depends on TASK1 output
- Given
 - TASK1 input stream
 - Initial condition on activation of TASK2
- Iterative computation until fixed point

Simple Scheduling Example

- 4 tasks: 3 periodic + 1 aperiodic (TA)
- Preemptive fixed priority scheduling
- Given BCET/WCET
- Abstracting release pattern with streams
- Analysis
 - Worst case response time
 - Required OS ready queue size

References/links

- TIMES: www.timestool.com
- CATS: www.timestool.com/cats
- UPPAAL: www.uppaal.com