
1

We are looking for Post Doc Fellows
and new Ph.D. Students in Uppsala

Send me a message if you are interested
Wang Yi: yi@it.uu.se

Commercial !!

Schedulability Analysis of Timed Systems

Wang Yi
Uppsala University

with contributions from
Tobias Amnell, Elena Fersma, John Håkansson,
Pavel Kracal, Leonid Mokrushine, and Paul Pettersson

Artist MOTIVES School, 2007, Trento, Italy

Real Time Systems

Hardware

RTOS

Sensors

Actuators

Task Task TaskTask

Application software

Scheduler
(Resource management)

Networks of Real-Time Components
(abstract view)

a

b

c

o

p
FIFO channel

...

...

...

...

Task A Task B

Task C, S, T
Task D

Task E

Schedulability Analysis

• Whether all task instances can be executed within
given deadlines

• Alternatively (more difficult) what are the worst-case
response times?

• (Buffer over- and under-flow? The buffer size?)

The ABB Robot Controller

• ABB robot controller (2 500 000 loc)
• Real time tasks A,B,C,D
• Read inputs from channels write output to channels
• Task priority order D>C>B>A (FPS)
• Buffer overflow/underflow, WCRT

A B C D
Commands High-level

instructions

Precise moves

Requests

Welding
program

2

Networks of Real-Time Components
(abstract view)

a

b

c

o

p
FIFO channel

Timed automata with FIFO channels [CAV’06, Pavel&Wang]

...

...

...

...

TA
TA

PROBLEM SETTING

TASK -- a piece of executable code characterized by

– Worst-Case Execution time: C (maybe [B, W])
– Priority: P
– Deadline: D
– Arrival Rate/pattern e.g. periodic

Scheduling Policy

• Decide which task to run
• e.g. EDF, FPS, FIFO, Rate-Monotonic etc.

Simple Task Arrival Patterns: Periodic

... ...
P1 P1 P1 P1 P1

... ...
P2 P2 P2 P2

... ...
P3 P3 P3 P3 P3 P3 P3 P3 P3

10 20 30 40

13 26 39

time

time

time
6 12 18

”Classic” Real Time Scheduling

Periodic tasks

Scheduler/RTOS

P1 P2 Pn

well-developed techniques e.g. Rate-Monotonic Scheduling

3

• tasks may share many resources (not only CPU time)
• tasks may have complex control stuctures and interactions
• tasks may not be that ”regular” (often non-periodic)

e.g. UML diagrams with SPT constraints

In many applications: More Complex Arrival Patterns: Timed Traces

x>3 ax:=0

(3.3, a) (3.4, b),
(6.5, a),
(3.6, a) (3.9, b),
(3.14, a) (3.14159, b)
... ...

x<4 b

Automata-based Approaches

Networks of timed automata whose transitions trigger tasks Pi’s

Scheduler/RTOS

AmA2A1

P2P6

P1 P1P8

P20

Schedulable? If yes, Worst-case response times?

Problem to solve:

(A1 ||... ... || An || Scheduler) satisfies K

• K is a safety property (no deadline miss)
• Scheduler is an automaton encoding a given scheduling policy

OUTLINE

• A Model for Systems with Complex Task Structures [1998]
– Timed automata with tasks

• Schedulability and (un)Decidability [Inf. & Com. 07]
– Timed automata with bounded subtraction

• More Efficient Algoritms [TCS 06]
– Schedulability analysis using 2 clocks

• TIMES tool demo

• Compositional Analysis: CATS tool [2007]
– Keep the expressiveness for modeling
– Perform analysis with approximation

• References/links

Non-compositional
Analysis

The MODEL
(Timed Automata with Tasks)

4

Timed Automata with Tasks

• Events
– Discrete Transitions

• Timing constraints
– Clocks / Guards / Resets
– Complex arrival rates

• Tasks
– Asynchronous execution
– WCET, Deadline

Task (C,D)Task (C,D)

x<3

a!

x:=0

Example: periodic tasks

P

start

c=100

c:=0

c:=0

c: clock
P: task

C<=100

Timed Automata withTasks

• Assume a set of tasks Pr
• A timed automaton with tasks is a tuple:<N,n0,T,M>

– <N,n0,T> is a standard timed automaton
• N is a set of nodes
• n0 is the initial node
• T ⊆ N x (B(C) x Act x 2C) x N is the set of ’edges’

– C is a set of clocks
– Act is a set of actions
– B(C) is the set of clock constraints e.g. X <10 etc

– M: N 2Pr is a mapping which assigns each node a set of tasks

The Execution Platform

Task Queue

P2P3 P2 P1

Task Releases

A1 || … … || An

(the plant)

Thread 3

Thread 2: Scheduling Policy

Thread 1

States/Configurations of automata

A state is a triple: (m, u, q)

Location
(node)

clock assignment
(valuation)

task queue

Run of TAT

(Idle, x=0, [])

Idle

P

Q

0.1 (Idle, x=0.1, [])

(RelP, x=0, [P(2,8)])
1.5 (RelP, x=1.5, [P(0.5,6.5)])

(RelQ, x=1.5, [P(0.5,6.5),Q(2,20)])

1.5 (RelQ, x=3, [Q(1,18.5)])

(Idle, x=3, [Q(1,18.5)])

(RelP, x=0, [P(2,8),Q(1,18.5)])

0.1 1.6 2.1 3.1

2 (RelP, x=2, [Q(1,16.5)])

5.1

5

Sch and Run

• Sch is a function sorting task queues according to a given scheduler
e.g FPS,EDF,FIFO etc

Example: EDF [P(2, 10), Q(4, 7)] = [Q(4, 7), P(2, 10)]

• Run is a function corresponding to running the first task of the
queue for a given amount of time.

Examples: Run(0.5, [Q(4, 7), P(2, 10)]) = [Q(3.5, 6.5), P(2, 9.5)]
Run(5, [Q(4, 7), P(2, 10)]) = [P(1, 5)]

Semantics (as transition systems)

• States: <m,u,q>
– m is a location
– u is a clock assignment (valuation)
– q is a queue of tasks (ready to run)

• Transitions:
1. (m,u,q) –a (n, r(u), Sch[M(n)::q]) if & g(u)

2. (m,u,q) –d (m, u+d, Run(d,q)) where d is a real

OBS: q is growing (by actions) and shrinking (by delays)

m n
g a r

”Zenoness” = Non-Schedulability

P

start

x<=1

P=(2,3)

…...P(2,3)P(2,3)P(2,3)P(2,3)P(2,3)

Zeno: ∞ many P’s may arrive within 1 time unit !

But after 2 copies, the queue will be non-schedulable

x:=0

SCHEDULABILITY

Schedulability of automata

a state is a triple: (m, u, q)

location

clock assignment task queue

•A state is schedulable if q is schedulable
•An automaton is schedulable if all reachable states are

Schedulability of Automata

Assume a scheduler Sch:

• A state (m,u,q) is schedulable with Sch if
– Sch(q)= [P1(c1,d1)P2(c2,d2)…Pn(cn,dn)] and
– (c1+…+ci)<=di for all i<=n (i.e. all deadlines met)

• An automaton is schedulable with Sch if all its reachable states
are schedulable

• An automaton is schedulable with a class of scheduling policies
if it is schedulable with every Sch in the class.

6

DECIDABILITY

Schedulability Analysis (Non-preemptive scheduling)

FACT [1998]

For Non-preemptive schedulers, the schedulability of
an automaton can be checked by reachability analysis
on ordinary timed automata.

Proof ideas (1):
Size of schedulable queues is bounded

• The maximal number of instances of Pi in a
schedulable queue is bounded by Mi = Di/Ci

• The maximal size of schedulable queues is bounded
by M1 + M2+...+Mn

• To code the queue/scheduler, for each task instance, use 2 clocks:
– ci remembers the computing time
– di remembers the deadline

(ci,di)

Proof ideas (2):
The scheduler as an automaton

P2 is running P2 is running P1 is running

released_P1?released_P2?

c2:=0
d2:=0 ...

c2=C2

d2>D2

or d1>D1

Error

d2>D2 d1>D1

d1:=0 c1:=0
START

P1=(C1,D1)
P2=(C2,D2)

The scheduler automaton

Schedule Pk is running

Error

Sk:= Running (if Dk<=Di for all i)

ck:=0

released_Pj?

dj:=0

ck=Ck

released_Pi?

di:=0

(Pk finished)

Start

di>Di (if Pi is released)

SCHEDULER

Proof Ideas (3)

• Modify the original
automaton M: adding
’release!’ to inform
the scheduler

• Check reachability of
the error state for

M’ || SCHEDULER

Pi

X<10

z:=0

Pi

X<10

z:=0

released_Pi!

M M’

7

How about preemptive scheduling?

• We may try the same ideas
– Use clocks to remember computing times and deadlines

• BUT a running task may be stopped to run a more ’urgent’ task
– Thus we need stop-watches to remember ”accumulated computing times”

• Then the schedulability problem is undecidable ?

• This is wrong !!

Decidability Result [TACAS 2002]

FACT

For Preemptive schedulers, the schedulability of an
automaton can be checked by reachability analysis on
Bounded Substraction Timed Automata (BSA).

NOTE
– Reachability for BSA is decidable
– Preemptive EDF is optimal; thus the general schedulability

checking problem is decidable.

Timed automata with subtraction
i.e. Subtraction Automata, [McManis and Varaiya, CAV94]

• Subtraction automata are
timed automata
extended with
subtraction on clocks

• That is, in addition to
reset x:=0, it is also
allowed to update a clock
x with X:= X-n where n is
a natural number

x>10
y>10

x:=0
y:=y-10

x:=x-1

Bounded Subtraction Automata

• A subtraction automaton is bounded if its clocks are
non-negative and bounded with a maximal constant
(or subtraction is only allowed in the bounded zone).

M

N

Bounded area allowed
for subtraction e.g. x:=x-1

u v

u(x-1) v(x-1)

x

y

u~v
implies
u(x-1) ~ v(x-1)

FACT:
Location Reachability
checking is decidable!

Schedulability Checking
as a reachability problem for
Bounded Subtraction Automata

Proof ideas (no stop but subtraction :-)

• Model the scheduler as a subtraction automaton
– Do not stop the computing clock c2 when a new task P1 is released
– Let c2 for P2 (preempted) run until the task P1 (with higher priority) finishes,

then perform c2:=c2-C1 (note: C1 is the computing time for P1).

P2 is running P1 is running P2 is running

released_P1?released_P2?

c2:=0 c1:=0
c2:=c2-C1

cm:=cm-C1 for all Pm

preempted earlier

... ...

c1=C1

8

Proof ideas (clocks are bounded):

• c2 can never be negative.
• c2 is bounded by D2.

d1>D1

or dm>Dm

for any
preempted Pm

Error

d2>D2

or dm>Dm

for any
preempted Pm

d2>D2

or dm>Dm

for any
preempted Pm

P2 is running P1 is running P2 is running

released_P1?released_P2?

c2:=0 c1:=0
c2:=c2-C1

cm:=cm-C1 for all Pm

preempted earlier

... ...

c1=C1

END of proof

Schedulability analysis using DBM’s

Subtraction on Clocks, added to DBM-library (UPPAAL)

4<= x <=7
2<= y <=4

4<= x <=7
2<= y <=4

x

y

0<= x <=3
2<= y <=4

0<= x <=3
2<= y <=4

x

y
x:=x-4

Complexity

#clocks (needed)
= 2 x #instances (maximal number of schedulable task instances)

= 2 x ΣiDi/Ci

This is a huge number in the worst case
But the run-time complexity is not so bad!

It works anyway !!!

• #active tasks in the queue is normally small, and the
run-time complexity is only related to #active clocks

• If Too many active tasks in the queue (i.e. Too many
active clocks), the check will stop sooner and report
”non-schedulable”

• AND the analysis can be done symbolically!

WE CAN DO BETTER ! [TACAS 03, TCS 06]

For fixed priority scheduling strategies (FPS),
we need only 2 clocks (and ordinary timed automata)!

9

The 2-CLOCK ENCODING

(for fixed-priority scheduler)

Problem to solve

A1 || A2 || ... || An || FPScheduler

Check: the network will never reach a state where
a deadline is violated

Main Idea

• Check the schedulability of tasks one by one
according to priority order (highest priority first)

• This is similar to response time analysis in RMS

To code the scheduler, we need:

• 1 integer variable for each Pi:
• r denotes the response time as in RMS

(the total computing time needed before Pi finishes)

• 2 clocks for each Pi:
• c remembers the accumulated computing time

(so much has been computed so far)
• d remembers the ”deadline”

Intuition of the encoding:

– Assume: priority(Pj) > priority(Pi) and Pi is analyzed

time

Pi released:
r:=r+Ci
d:=0

Pj released

r:=r+Cj

First release of Pj (or Pi)
c:=0,r:=Cj (or r:=Ci)

Pi finished:

c<r,d=Di: error!!
c=r,
d<=Di

Ri = Ci + Σpri(Pj)>pri(Pi) Cj

When Pi finishes, r = Ri

The ”FPS scheduler”: analyzing Pi

Waiting for Pi Check Pi

Release_j?

r:=r+Cj

Release_i?

d:=0
r:=r+Ci

Initial

c:=0,r:=Cj
Release_j?

Error

c<r,d=Di
c=r
d<=Di

Note that it is not clear that c and r are bounded !

Release_j?

r:=r+Cj

c=r

10

The ”FPS scheduler”: analyzing Pi
(we need the boundedness)

Waiting for Pi Check Pi

Release_j?

r:=r+Cj

Release_i?

d:=0
r:=r+Ci

Initial

c:=0,r:=Cj
Release_j?

Error

c<r,d=Di
c=r
d<=Di

Release_j?

r:=r+Cj

c=r

c=M
c:=0
r:=r-M

c=M
c:=0
r:= r-M

OBS: r-c is the only interesting info, so M can be any integer! Let M=Ci

c and r are bounded

• c is bounded by M
• r is bounded by rmax + Ci

– Where rmax is the maximal value of r from previous analysis

for all tasks Pj with higher priority

So the scheduler is a standard TA END

SUMMARY: Decidability

• For Non-preemptive schedulers, the problem can be
solved using standard TA.

• For preemptive schedulers, the problem can be
solved using BSA (Bounded Substraction Automata).

• For fixed-priority schedulers, the problem can be
solved using TA with only 2 extra clocks – similar to
the classic RMA technique (Rate-Monotonic Analysis).

Undecidability [Inf. and Comp. 2007]

Unfortunately, the problem will be undecidable
if the following conditions hold together:

1. Preemptive scheduling
2. Interval computation times [B, W]
3. Feedback i.e. the finishing time of tasks may

influence the release times of new tasks.

Compositional Analysis of Timed Sysems
with Abstraction/Approximation

www.timestool.com/cats

What we have done so far:

(A1 ||... ... || An || Scheduler) satisfies K

• K is a safety property (no deadline miss)
• Scheduler is an automaton encoding various queues

11

The ABB Robot Controller

TAA TAB TAC TAD

TASCH

Task
Ready
Queue

Shared variables

TAAxTABxTACxTADxTASCH with queues is TOO BIG

UPPAAL, TIMES (and others)

Trying to search ”all the combinations of local states”:

S1 || S2 || ... || Sm || q1 || q2 || ... || qn

Some of which are bugs

Networks of RT Components

A2

A3

Components: A1, A2 ... Am and queues:Q1,Q2 ... Qn

A1

Q1

Q2

Buffer underflow?
Buffer overflow?
Deadlock?
Schedulable?

A2

A3

A1

Q1

Q2

......eee..e.ee

....aa..a...a

...bb..b

...cc..ccc

...dd..d..dd

System/component = Stream transformer

• Network Calculus (Cruz, Boudec, Thiran ‘91-’04)
– Arrival Curves

• Real-Time Calculus (Thiele, Chakraborty ‘00s)
– Upper/Lower Arrival/Service Curves

• RT Components/TA = Abstract stream transformers
– Abstract stream defines a timed language

Set of streams = Abstract stream = Arrival curve

time

a sliding time window with size 5

Set of streams = Abstract stream = Arrival curve

time

a sliding time window with size 5

12

Set of streams = Abstract stream = Arrival curve

time

a sliding time window with size 5

Set of streams = Abstract stream = Arrival curve

time

a sliding time window with size 5

Set of streams = Abstract stream = Arrival curve

time

a sliding time window with size 5

Set of streams = Abstract stream = Arrival curve

time

a sliding time window with size 5

[2,6]

Set of streams = Abstract stream = Arrival curve

time

a sliding time window with size 1

[0, 1]

Arrival curve

#events

Window sizes1 2 3 4 5 6 7 8

1

2

4

5

3

Lower bounds

Upper bounds

L(C)= set of streams

C

13

A1

C1

C2

System/component= ”Arrival curve” transformer

This can be done modularly when there is no ”feedback”

TA as Curve Transformer

TA Model
of a System
Component

Event Generator

Event Observer

L(EG) = L(AC)

Arrival
Curve

Departure
Curve

Verification in UPPAAL

input output

F

L(F(AC)) ⊆ L(DC)

A1

System/Component = Arrival Curve Transformer

A2
Assumption

On The
Environment

The “Maximal
Component
Capability”

Q1

• Comparing the curves we will answer:
– if A1 and A2 can “work together”? (all the events generated by A1 will be

received and processed by A2)
– what is the sufficient size of the buffer?
– what is the output curve of A2?

How about resources and scheduling?

time

events

window
size

number
of events

window size
time

available
resources

window
size

available
service

window size

upper bound

lower bound

upper bound

lower bound

Arrival Curves
(tasks)

Service Curves
(resources)

(a,3)(a,3.34)(a,3.39)(a,4)(a,10)... (100%,0)(50%,3.3)(100%,7)...

Real-Time Calculus, Lottar et al Properties of Curves

• max vertical distance = required buffer size
• max horizontal distance = flow delay bound

required
buffer
size

lower bound
on consuming
(guaranteed resource)

upper bound
on producing

window
size

number
of events

flow delay bound

14

Resources & Scheduling

• FPS, priority order:
– Priority(A)<Priority(B)<Priority(C)<Priority(D)

• Service Curves
– Same as arrival curves but express available resource within

windows

• Highest priority task has 100% of CPU

A B C D
100%

<100%

Networks of Real-Time Components
(abstract view)

a

b

c

o

p
FIFO channel

...

...

...

...

Task A RTC
function

TA
TA

Curve
transformer

An Example with Feedback

• TASK1 input depends on the TASK2 output
• TASK1 uses TASK2’s remaining resource
• TASK2 input depends on TASK1 output
• Given

– TASK1 input stream
– Initial condition on activation of TASK2

• Iterative computation until fixed point

TASK1 TASK2AND

CPU
Initial

Condition

Input
Stream

100%

Simple Scheduling Example

• 4 tasks: 3 periodic+1 aperiodic (TA)
• Preemptive fixed priority scheduling
• Given BCET/WCET
• Abstracting release pattern with streams
• Analysis

– Worst case response time
– Required OS ready queue size

References/links

• E. Fersman, P. Krcal, P. Pettersson and Wang Yi, Task automata:
schedulability, decidability and undecidability, Information and
Computation, 2007 (http://user.it.uu.se/~yi/ps-files/ic07.ps)

• E. Fersman, L. Mokrushine, P. Pettersson and Wang Yi, Schedulability
Analysis of Fixed-Priority Systems Using Timed Automata, Theoretical
Computer Science, 2006

• L. Mokrushine, P. Krcal and Wang Yi, A Tool for Compositional
Analysis of Timed Systems (http://user.it.uu.se/~yi/ps-files/cats.ps, a
tool paper, submitted, 2007)

• TIMES: www.timestool.com
• CATS: www.timestool.com/cats
• UPPAAL: www.uppaal.com

