
A Test Generation Framework for quiescent
Real-Time Systems

Laura Brandán Briones and Ed Brinksma

Faculty of Computer Science, University of Twente,
P.O.Box 217, 7500AE Enschede,

The Netherlands. Fax - (31 53)-489-3247
{brandanl, brinksma}@cs.utwente.nl

Abstract. We present an extension of Tretmans’ theory and algorithm
for test generation for input-output transition systems to real-time sys-
tems. Our treatment is based on an operational interpretation of the
notion of quiescence in the context of real-time behaviour. This gives
rise to a family of implementation relations parameterized by observa-
tion durations for quiescence. We define a nondeterministic (parameter-
ized) test generation algorithm that generates test cases that are sound
with respect to the corresponding implementation relation. Also, the test
generation is exhaustive in the sense that for each non-conforming imple-
mentation a test case can be generated that detects the non-conformance.

1 Introduction

Although testing has always been the most important technique for the valida-
tion of software systems it has only become a topic of serious academic research
in the past decade or so. In this period research on the use of formal methods
for model-driven test generation and execution of functional test cases has led
to a number of promising methods and tools for systematic black-box testing of
systems, e.g. [1, 13, 9, 10]. Most of these approaches are limited to the qualitative
behaviour of systems, and exclude quantitative aspects such as real-time prop-
erties. The explosive growth of embedded software, however, has also caused a
growing need to extend existing testing theories to the testing of real-time reac-
tive systems. In this paper we present an extension of Tretmans’ ioco theory for
test generation [12] for input-output transition systems that includes real-time
behaviour.

A central concept in the non-timed theory is the notion of quiescence, which
characterizes systems states that will not produce any output response without
the provision of a new input stimulus. By treating quiescence as a special sort
of system output the notion of behavioural trace can be generalized to include
observations of quiescence. In turn, this leads to an implementation relation that
defines unambiguously if implemented behaviour conforms to a given specifica-
tion model, viz. if after all specified generalized traces of the implementation
all possible generalized outputs are allowed according to the specification. Or,

J. Grabowski and B. Nielsen (Eds.): FATES 2004, LNCS 3395, pp. 64–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Test Generation Framework for quiescent Real-Time Systems 65

more informally, if all outputs and quiescence are correctly predicted by the
specification.

In practice, the above implementation criterion means that implementations
can be more deterministic than their specifications. Although it is good engineer-
ing practice to not introduce unnecessary nondeterminism in reactive systems,
it is often unavoidable in the context of testing, and it should therefore be part
of a sensible testing theory. The reason for this is twofold:

• although the implementation under test may be deterministic, it can often
only be tested through a testing environment that includes operating system
features, communication media, etc. that typically introduce nondetermin-
ism into the observed behaviour;

• an implementation under test often consists of concurrent components in
an asynchronous parallel composition. The loss of information about the
relative progress of components results in nondeterministic properties of their
integrated behaviour.

Our proposed extension of the ioco theory to real-time systems is based on an
operational interpretation of the notion of quiescence. This gives rise to a family
of implementation relations parameterized by observation durations for quies-
cence. We define a nondeterministic (parameterized) test generation algorithm
that generates test cases that are sound with respect to the corresponding im-
plementation relation. This means that if an implementation fails any of the
generated tests, it must be non-conforming. The algorithm is also exhaustive
in the sense that for every non-conforming implementation a test case can be
generated that will detect its non-conformance.

The rest of this paper is organized as follows. Section 2 introduces the model
of timed input-output transition systems and our conformance relation. Section
3 presents the real-time test generation algorithm. Section 4 illustrates the the-
ory with an example in the setting of timed automata. Section 5 compares our
achievements to related work. Finally, section 6 presents the conclusions and
future work.

2 Implementation Relations for Real-Time quiescence

2.1 Timed Input-Output Transition Systems

In this section we introduce the concept of Timed Labelled Transition Systems,
their properties and notation, and then specialize them to obtain the model of
Timed Input-Output Transition Systems. After that, we proceed to obtain a
conformance relation between a specification and an implementation, defined as
timed input-output transition systems, analogous to the ioco relation for the
untimed case.

For details of the underlying theory (the implementation relation ioco) we
refer to [12]. To save space we omitted the proof of lemmas and theorems in this
paper, but they can be found in the full version [15].

We distinguish three types of actions: time-passage actions, visible labelled
actions and the special internal action τ . All except the time-passage actions

66

are thought of as occurring instantaneously, i.e. without consuming time. To
specify time, a dense time domain is used, viz. the nonnegative reals (IR+); no
lower a priori bounds are imposed on the delays between events.

Definition 1. A timed labelled transition system (TLTS) is a 4-tuple
〈S, s0, Actτε,→〉, where

• S is a non-empty set of states
• s0 ∈ S is the initial state

• Actτε
def
= Act ∪ {τ} ∪ D are the actions Act including the internal action τ

and time-passage actions; where D is {ε(d) | d ∈ IR+}
• → ⊆ (S ×Actτε ×S) is the transition relation with the following consistency

constraints:
− Time Determinism whenever s

ε(d)−→ s′ and s
ε(d)−→ s′′ then s′ = s′′

− Time Additivity ∀ s, s′′ ∈ S ∧ ∀ d1, d2 ≥ 0 : (∃ s′ ∈ S : s
ε(d1)−→ s′ ε(d2)−→ s′′) iff

s
ε(d1+d2)−→ s′′

− Null Delay ∀ s, s′ ∈ S : s
ε(0)−→ s′ iff s = s′.

The labels in Actε (Actε
def
= Act ∪ D) represent the observable actions of a

system, i.e. labelled actions and passage of time; the special label τ represents
an unobservable internal action. A transition (s, µ, s′) ∈ → is denoted as s

µ→ s′.
A computation is a finite or infinite sequence of transitions:

s0
µ1→ s1

µ2→ s2
µ3→ · · · µn−1→ sn−1

µn→ sn(→ . . .)
A timed trace captures the observable aspects of a computation; it is the sequence
of observable actions. The set of all finite sequences of actions over Actε is
denoted by Act∗ε, while ε denotes the empty sequence. If σ1, σ2 ∈ Act∗ε then
σ1 ·σ2 is the concatenation of σ1 and σ2.

We denote the class of all timed labelled transition systems over Act by
TLTS(Act). Some additional notations and properties are introduced in the next
definitions.

Definition 2. Let p = 〈S, s0, Actτε,→〉 be a TLTS(Act) with s, s′, si ∈ S; d, d′,
e ∈ IR+;µi ∈ Actτε;β ∈ Act;αi ∈ Actε;α ∈ Act∗ε, then

s
µ1...µn−→ s′ def

= ∃ s0, . . . , sn : s = s0
µ1→ s1

µ2→ · · · µn→ sn = s′

s
µ1...µn−→ def

= ∃ s′ : s
µ1...µn−→ s′ s

µ1...µn
�−→ def

= � s′ : s
µ1...µn−→ s′

s
ε⇒ s′ def

= s = s′ or s
τ...τ−→ s′ s

β⇒ s′ def
= ∃ s1, s2 : s

ε⇒ s1
β→ s2

ε⇒ s′

s
ε(d)
⇒ s′ def

= (∃ s1, s2 : s
ε⇒ s1

ε(d)
→ s2

ε⇒ s′) or s
α1...αn=⇒ s′ def

= ∃ s0 . . . sn

(∃ s1, d′, e : d′ + e = d : s
ε(d′)

⇒ s1
ε(e)
⇒ s′) : s = s0

α1⇒ s1
α2⇒ · · · αn⇒ sn = s′

s
α⇒ def

= ∃ s′ : s
α⇒ s′ s

α
�⇒ def

= � s′ : s
α⇒ s′.

We do not always distinguish between a timed labelled transition system and
its initial state: if p = 〈S, s0, Actτε,→〉 we will often identify the process p with
its initial state s0, e.g. we write p

α⇒ instead of s0
α⇒.

Definition 3.

• ttraces(p)
def
= {σ ∈ Act∗ε | p

σ⇒ }
• init(p)

def
= {µ ∈ Actτε | p

µ→ }

L. Brandán Briones and E. Brinksma

A Test Generation Framework for quiescent Real-Time Systems 67

• der(p)
def
= {p′ | ∃ σ ∈ Act∗ε : p

σ⇒ p′}
• p after σ

def
= {p′ | p

σ⇒ p′}
• P after σ

def
=

⋃
p∈P

(p after σ), where P is a set of states

• p is deterministic if ∀ σ ∈ Act∗ε : (p after σ) has at most one element.
If σ ∈ ttraces(p), then (p after σ) is overloaded to denote this element.

In the context of timed systems there are some further important properties.

Definition 4. Let p = 〈S, s0, Actτε,→〉 be a TLTS(Act), then
p is time divergent: if for all s ∈ S there exists an infinite computation σ from
s with infinite cumulative delay:

∀ s ∈ S : ∃ σ ∈ Actωτε : σ = µ1 ·µ2 ·µ3 · · · : s
σ→ ∧ Σ{di | µi = ε(di)} = ∞

p has Zeno behaviour: if there exists a state s ∈ S and an infinite computation
from s with infinitely many non-delay actions and finite cumulative delay:

∃ s ∈ S : ∃ σ ∈ Actωτε : σ = µ1 ·µ2 ·µ3 · · · : s
σ→ ∧ | {i | µi �= ε(di)} |= ∞

∧ Σ{di | µi = ε(di)} < ∞.

We assume that for all p ∈ TLTS we are working with, p is time divergent,
and does not have Zeno behaviour.

We now introduce timed input-output transition systems (TIOTS) to model
timed systems for which the set of actions can be partitioned into output actions
and input actions. To do this properly, we formalize the notion of input enabling:
if an input action is initiated by the environment, the system is always prepared
to participate in such an interaction: all the inputs can always be accepted
without letting time pass. Also, we want to exclude the possibility that the flow
of time in a system can be blocked because the environment does not provide
certain input actions, i.e. there must be no forced inputs.

Definition 5. A timed input-output transition system (TIOTS) is a timed la-
belled transition system 〈S, s0, Actτε,→〉 with Act partitioned into input actions,
ActI , and output actions, ActU , (ActI ∪ActU = Act,ActI ∩ActU = ∅), that has
the properties of
weak input enabling: ∀ s ∈ S : ∀ µ ∈ ActI : s

µ⇒
no forced inputs: iff for all s ∈ S there exists an infinite computation σ from s
containing no input actions and with infinite cumulative delay: ∀ s ∈ S : ∃ σ ∈
(ActU ∪ {τ} ∪ D)ω : σ = µ1 ·µ2· · · : s

σ→ ∧ Σ{di | µi = ε(di)} = ∞
The class of timed input-output transition systems with input actions in ActI

and output actions in ActU is denoted by TIOTS(ActI , ActU) ⊆ TLTS(ActI ∪
ActU).

We follow the convention that input actions are identified by names followed
by a ?-symbol, and output actions by names followed by a !-symbol.

A timed trace σ is a sequence of actions and delays, e.g. σ = a?·ε(d1)·ε(d2)·b!.
Obviously, it would be more natural to avoid consecutive delays, as in σ =
a? · ε(d1 + d2) · b!. Such traces could alternatively be written as sequences of
actions with relative time stamps, viz. σ = a?(0)·b!(d1 +d2). This idea motivates
the definition of normalized timed traces.

68

Definition 6. Let σ ∈ Act∗ε, then

• σ is a normalized timed trace iff σ ∈ (D·Act)∗

• nttraces(p) = {σ ∈ (D·Act)∗ | p
σ⇒}

• for normalized timed traces σ = ε(d0)·a0 ·ε(d1)·a1 · · · ε(dn)·an we also write
σ̂ = a0(d0)·a1(d1) · · · an(dn).

If a timed trace begins with an action it can always be converted to a normal-
ized timed trace by combining delays, or adding zero delays ε(0) in the appropri-
ate places. But if a timed trace ends with a delay, such as σ = ε(d0)·a?·ε(d1)·b!·ε(d2)
then is not possible to interpret it as a normalized timed trace. The next lemma
shows, however, that in the presence of input enabledness normalized timed traces
preserve the information of timed traces.

Lemma 7. Let p1, p2 ∈ TIOTS(ActI , ActU), then
ttraces(p1) ⊆ ttraces(p2) iff nttraces(p1) ⊆ nttraces(p2).

From now on we will not distinguish between a timed trace σ and its nor-
malization σ̂ if it exist.

Similarly to Tretmans’ work, we proceed to introduce the notion of quiescence
in the timed setting. In the presence of time we define a quiescent state as one
where the system is unable to produce an output immediately or in the future
without receiving further input stimuli.

Definition 8. Let p ∈ TIOTS(ActI , ActU). A state s of p is quiescent, denoted

by δ(s), iff ∀ µ ∈ ActU : ∀ d ∈ IR+ : s
µ(d)
�⇒ .

As before in the untimed case, we can start out by representing quiescence as
a special action δ (δ �∈ Act ∪ {τ})1, and extending the timed transition relation
of a TIOTS p to include self-loop transitions s

δ→ s iff s is a quiescent state.
Moreover, let ∆(p) denote the extended timed transition system of p that is
obtained in this way.

2.2 Timed mplementation elations

The extension of the timed transition relation allows us to define the following
relation over TIOTS.

Definition 9. Let p and q ∈ TIOTS(ActI , ActU), then
q �tiorf p iff nttraces(∆(q)) ⊆ nttraces(∆(p)).

For specifications p ∈ TIOTS the quiescent states can, in principle, be iden-
tified by analyzing the timed transition system, i.e. we can assume that ∆(p) is

1 In [12] the action symbol θ is used for the observation of quiescence. We prefer to use
δ for both quiescence and its observation, in line with the philosophy that identical
actions synchronize.

I R

L. Brandán Briones and E. Brinksma

A Test Generation Framework for quiescent Real-Time Systems 69

at our disposal. For implementations q, however, we only can detect quiescence
by waiting for outputs. But we cannot wait forever, and therefore need to choose
a maximal duration M . This motivates the following parameterized version of
�tiorf, where σ can only appear after M time-units.

Definition 10. Let p and q ∈ TIOTS, then q �M
tiorf p iff ∆M (q) ⊆ ∆M (p)

where ∆M (r)
def
= nttraces(∆(r)) ∩ (D·Act ∪ ε(M)·δ)∗.

The above definition takes only into account observations of quiescence that
are made after a minimal delay of M time units. Naturally this definition implies
a pre-order.

Lemma 11. If M1 < M2, then if q �M1

tiorf p then q �M2

tiorf p.

This is not without consequences: in contrast to the untimed case, time delays
can change the system state, which has interesting consequences, as shown in
the quirky coffee machine of Figure 1, inspired by [21].

Example 12. Figure 1 shows two quirky coffee machines with time. Suppose both
graphs are saturated with input action transitions in each state by adding self-
loops for all input transitions that are not explicitly given. For simplicity, in
the figure, we use m? for money, b? for bang, c?, c! for coffee, and t?, t! for tea.
We suppose that each action resets the clock x and that k < M (we used the
representation of timed automata). Here after introducing money? we can switch
between the coffee and tea modes. If we order coffee? and bang? fast enough we
always will have coffee in the right-hand machine and some times in the left-hand
machine, but if we bang? after waiting for the quiescence we will not notice the
difference between machines. It follows from the one that cannot switch modes.
This is a consequence of the fact that observing quiescence takes time.

m? m?

t? c? t? c?

x≤k x≤k

t!
x=k

c!
x=k

m? m?

t? c? t? c?

x≤k x≤k

t!
x=k

b?
x≥M b?

x<M

b?
x<M b?

x≥M
c!
x=k

x≤k x≤k

c!
x=k

t!
x=k

��
����

�����
�

�
�� �

�
�

�
�
�	�� ��

�

� � �� ��
�
�
�
�� �

��
����

�����
�

�
�� �

�
�

�
�
�	�� ��

�

�

�

�
�
�
�

�

�

�
�
�
�

�� ��
�
�
�
�� � �� ��

�

�� �� �
�

�

� �
Fig. 1. The quirky coffee machine with time, a modified version of [21]

70

The output set of a given state of a system in TIOTS(ActI , ActU) consists of
the time stamped output actions that are allowed from that state (abstracting
from τ -actions), including δ-actions after a delay of M time-units.

Definition 13. Let p be a state of an (extended) timed transition system in
TIOTS(ActI , ActU),

then outM (p) = {µ(d) | µ ∈ ActU ∧ p
µ(d)⇒ } ∪ {δ(M)| p

δ(M)⇒ }
and for P a set of states, then outM (P) = ∪

p∈P
outM (p).

Lemma 14. Let p and q ∈ TIOTS(ActI , ActU), then

q �M
tiorf p iff

∀ σ ∈ (D·Act ∪ ε(M)·δ)∗ : outM (∆(q) after σ) ⊆ outM (∆(p) after σ).

Finally, we are in position to define the relation we use to test real time systems:
tiocoM . For p and q ∈ TIOTS(ActI , ActU), q will be tiocoM to p if the set
of outputs of q after every normalized timed trace σ of p including observations
δ(M), is a subset of the outputs of p after the same timed trace σ.

Definition 15. Let p and q ∈ TIOTS(ActI , ActU), then

q �M
tioco p iff ∀ σ ∈ ∆M (p) : outM (∆(q) after σ) ⊆ outM (∆(p) after σ)

we also write �M
tioco as tiocoM .

2.3 An perational odel

To obtain an effective theory of quiescence in a timed setting we need more than
stipulating that observing quiescence takes time. Since with physical implemen-
tations we can only observe absence of outputs over finite time intervals we must
stipulate when such observations will be interpreted as quiescence.

Definition 16. Let q be a TIOTS and M ∈ IR+, then

• a state s of q is M-quiescent iff ∀ s′ ∈ (s after ε(M)) : s′ is quiescent
• q is M-quiescent iff all states s of q are M-quiescent.

In line with the above development we now want to formalize how normalized
timed traces of TIOTSs may be enriched directly with δ-actions. Whenever the
normalized timed trace allows an action with a delay of more than M time-
units this creates a possibility to observe quiescence. For example, if M = 4
and σ = a?(2)·b?(5)·c!(3) is an observed timed trace then it is also possible to
observe σ′ = a?(2)·δ(4)·b?(1)·c!(3). We formalize the addition of δ-observations to
normalized timed traces as a formal relation δM between (extended) normalized
timed traces.

Definition 17. Let σ, σ′ be normal form of σ, σ′ ∈ (D·(Act ∪ δ))∗, then

• σ δM σ′ iff ∃ σ1, σ2 : ∃ µ : ∃ d ≥ M : σ = σ1·µ(d)·σ2∧σ′ = σ1·δ(M)·µ(d−M)·σ2

O M

L. Brandán Briones and E. Brinksma

A Test Generation Framework for quiescent Real-Time Systems 71

• letΣ be a set of normalized timed traces,then δM (Σ)=pref (∪
σ∈Σ

{σ′| σ δ∗M σ′})

where pref(S) is interpreted as the prefix-closure of a set of traces S and δ∗M
is the reflexive transitive closure of the relation δM .

If δ-actions are introduced in normalized timed traces on the basis observa-
tions of delays of (at least) M time units, we must check for consistency, i.e. we
must have the property expressed in the following lemma.

Lemma 18. Let q ∈ TIOTS(ActI , ActU) be M-quiescent, then
� σ ∈ δM (nttraces(q)) : ∃ µ ∈ ActU : σ = σ′ ·δ(M)·µ(d).

Corollary 19. Let q ∈ TIOTS be M-quiescent, then δM (nttraces(q)) = ∆M (q).

This corollary means that if an implementation q can be assumed to be M -
quiescent we may use the set of enriched observations δM (nttraces(q)) to obtain
∆M (q), whose definition is based on the unobservable timed transition system
∆(q). This will be the basis for our test derivation algorithm.

3 A Real-Time Test Generation Framework

In this section we define the concept of real-time test cases, the nature of their
execution, and the evaluation of their success or failure.

Definition 20. • A test case t is a TLTS 〈S, s0, Actε ∪ {δ},→〉 such that
− t is deterministic and has bounded behaviour, i.e. ∃ N > 0 : ∀ σ :

σ = µ1.µ2.µ3 . . . : |{i | µi �= ε(di)}| < ∞ and Σ{di | µi = ε(di)} < N
− S contains the terminal states pass and fail, with init(pass) =

init(fail) = ∅
− for any state t′ ∈ S of the test case with t′ �= pass, fail, ∃ d > 0 with

init(t′ after ε(d′)) = ActU ∪ {ε(e) | e = d − d′} for all d′ < d,
init(t′ after ε(d)) = µ with µ ∈ ActI or µ = δ

− t does not have τ -transitions
The class of test cases over ActI and ActU is denoted as T T EST (ActI , ActU)
but we represent it similarly as a timed automata, only for simplifying the
notation

• A test suite T is a set of test cases: T ⊆ T T EST (ActI , ActU).

A test run of an implementation with a test case is modelled by the syn-
chronous parallel execution of the test case with the implementation under test.
This run continues until no more interactions are possible, i.e. until a deadlock
occurs.

Definition 21. Let t ∈ T T EST (ActI , ActU) and imp ∈ TIOTS(ActI , ActU)
M-quiescent, then

72

• Running a test case t with an implementation imp is modelled by the parallel
operator || :T T EST (ActI , ActU)×TIOTS(ActI , ActU) →TIOTS(ActI ,ActU)
which is defined by the following inference rules:

imp
τ→ imp′ � t||imp

τ−→ t||imp′

t
δ→ t′ � t||imp

δ−→ t′||imp

t
µ−→ t′, imp

µ−→ imp′, µ ∈ Act � t||imp
µ−→ t′||imp′

t
ε(d)−→ t′, imp

ε(d)−→ imp′ � t||imp
ε(d)−→ t′||imp′

• A test run of t with imp, is a σ ∈ ∆M of t||imp leading to a terminal state
of t : σ is a test run of t and

imp
def
= ∃ imp′ : (t||imp

σ⇒ pass||imp′) or (t||imp
σ⇒ fail||imp′)

• An implementation imp passes test case t, if all their test runs lead to the
pass state of t:

imp passes t
def
= ∀ σ ∈ ∆M : ∀ imp′ : t||imp

σ

�⇒ fail||imp′

• An implementation imp passes a test suite T, if it passes all test cases in T:

imp passes T
def
= ∀ t ∈ T : imp passes t

If imp does not pass the test suite, it fails if:

imp fails T
def
= ∃ t ∈ T : imp pa �sses t.

Since an implementation can behave nondeterministically, different test runs
of the same test case with the same implementation may lead to different ter-
minal states and hence to different verdicts. An implementation passes a test
case if an only if all possible test runs lead to the verdict pass.

3.1 Nondeterministic est ase onstruction

For the description of test cases we use, as we already did before, a process-
algebraic behaviour notation with a syntax inspired by LOTOS [8]:

B
def
= a;B | B + B | Σ B

where a ∈ Actε, B is a countable set of behaviour expressions, and the axioms
and the inference rules are:

a ∈ Act � a;B a→ B′

a = ε(d), d′ < d � a;B
ε(d′)−→ ε(d − d′);B′

a = ε(d) � a;B
ε(d)−→ B′

B1
µ→ B′

1, µ ∈ Actε � B1 + B2
µ→ B′

1

B2
µ→ B′

2, µ ∈ Actε � B1 + B2
µ→ B′

2

B
µ→ B′, B ∈ B, µ ∈ Actε � Σ B µ→ B′

Moreover, we use µ(d) as syntactic sugar for ε(d);µ.

Test case generation procedure We define a procedure to generate test cases
from a given specification timed transition system. Similar to [12] test cases result
from the nondeterministic, recursive application of three test generation steps,

T C C

.

L. Brandán Briones and E. Brinksma

A Test Generation Framework for quiescent Real-Time Systems 73

corresponding to: (1) termination, (2) generation of an input, and (3) observa-
tion of output (including quiescence). It should be noted that the construction
steps involve (negations of) predicates of the form o(d) ∈ outM (S), which on
the general level of timed input-output transition systems are undecidable. The
procedure given here, therefore, should be seen as a meta-algorithm that can
be used to generate tests effectively for subclasses of TIOTS for which these
predicates are decidable, such as timed automata [16, 14].

1.
���� pass

3. ���x := 0

�	

�
x ≤ M

����������

o1!

x=d1

�

�
�t1

�
�

�
���

on!

x=dn�

�
�tn

oi(di)

∈ outM (S)

· · ·

�

δ

x=M�

�
�tδ

�
oj(dj)

/∈ outM (S)

· · ·

�
�
�
���

o1!

x=d1�
fail

�
�

�
��	

o
n′ !

x=d
n′�

fail

2. choose k ∈ [0,M)
and µ ∈ ActI

���x := 0

�	

�
x ≤ k

����������

o1!

x=d1

�

�
�t1

�
�

�
���

on!

x=dn�

�
�tn

oi(di)

∈ outM (S)

· · ·

�

µ

x=k�

�
�tµ

�
oj(dj)

/∈ outM (S)

· · ·

�
�
�
���

o1!

x=d1�
fail

�
�

�
��	

o
n′ !

x=d
n′�

fail

1. termination
t := pass
The single state test case pass is always a sound test case. It stops the
recursion in the algorithm, and thus terminates the test case.

2. inputs
t := Σ{oi(di); ti | oi ∈ ActU ∧ oi(di) ∈ outM (S)}

+ µ(k); tµ
+ Σ{oj(dj); fail | oj ∈ ActU ∧ oj(dj) /∈ outM (S)}

where x is a clock, k is a timed variable and ti and tµ are obtained by
recursively applying the algorithm for (S after oi(di)) and (S after µ(k)),
respectively.
Test case t is waiting for k time-units an treating to make and input (µ).
If an output arrives from the implementation it checks; if it is an invalid
response, i.e. oj(dj) /∈ outM (S) then the test case terminates in fail; if it is a
valid response after the timed pass then the test case continues recursively.
If the time pass then the test makes the input (µ) and continues recursively.

3. waiting for outputs
t := Σ{oi(di); ti | oi ∈ ActU ∧ oi(di) ∈ outM (S)}

+ Σ{δ(M); tδ | δ ∈ outM (S after ε(M))}
+ Σ{δ(M); fail | δ /∈ outM (S after ε(M))}
+ Σ{oj(dj); fail | oj ∈ ActU ∧ oj(dj) /∈ outM (S)}

where x is a clock and ti and tδ are obtained by recursively applying the
algorithm for (S after oi(di)) and (S after ε(M)), respectively.

74

Test case t is waiting for M time-units if an output arrive from the imple-
mentation it checks; if it is an invalid response, i.e. oj(dj) /∈ outM (S) then
the test case terminates in fail; if it is a valid response after the timed pass
then the test case continues recursively. The observation of quiescence δ is
treated separately, using the constant M given by the M -quiescent property.

Soundness The test generation procedure presented is sound with respect to
the tiocoM relation. This property is shown in the following theorem.

Theorem 22. Let spec ∈ TIOTS, then for all M -quiescent imp ∈ TIOTS and
all test cases t obtained from spec by the above procedure:

imp tiocoM spec ⇒ imp passes t.

Exhaustiveness The test generation procedure is also exhaustive in the sense
that for each non-conforming implementation a test case can be generated that
detects the non-conformance.
Definition 23. Let p ∈ TIOTS, then

σ ∈ ∆M (p) is δ(M)-saturated iff for all σ′ with σ δM σ′ we have σ = σ′.

Theorem 24. Let spec ∈ TIOTS, then for all M -quiescent imp ∈ TIOTS with
imp ti �ocoM spec, there exists a test case t generated from spec by the procedure
such that: imp pa �sses t.

The exhaustiveness of our test generation procedure as proven in [15] is less
useful than the corresponding result in the untimed case. There, it implies that
the test generation algorithm, if repeatedly executed in a fair non-terminating
manner, will generate all test cases in the limit, and therefore, in the limit,
achieve full coverage with respect to ioco and the given specification spec.

Here, the number of potential test cases is uncountable because of the under-
lying continuous model of time, and no countable repetition of test generations
suffices. It is possible, however, to obtain a version of the stronger form of exhaus-
tiveness for real-time test generation as well by considering equivalence classes
of (minimal) error traces. It can be shown that reasonable assumptions of our
test generation procedure will hit each such equivalence class in the limit. This
result will be reported in detail in a forthcoming publication.

4 Example

In the setting of timed automata, deciding the predicate oi(di) ∈ outM (S)
amounts to reachability analysis. For the simpler version of tioco based on timed
trace inclusion (i.e. excluding quiescence) this has already been implemented in
the tool environment IF [16], the Uppaal-based testing tool Tuppaal, and a
real-time extension of TorX. We present an example of our test case generation
based on a timed automaton model of a coffee machine, similar to the previous
one, but with infinite behaviour due to cycles.

Example 25. Figure 2 shows two quirky coffee machines with time. The first
one is a specification and the second one is a wrong implementation. To the

.

.

L. Brandán Briones and E. Brinksma

A Test Generation Framework for quiescent Real-Time Systems 75

spec:
δ

m? m?

t! c? δ δ t? c!

t? b? b? c?

δ δ

c? c! t! t?

imp:

m? m?

t! c? t? c!

t? b? b? c?

t? t! c! c?

x<k x<k

x<k x<k

test:
x :=0

x≤1

c! t!m?
x=1
x :=0

fail fail
x≤1

c! t!c?
x=1
x :=0

fail fail
x≤M

c! t!
δ
x=M
x :=0

pass fail
x≤1

c! t!b?
x=1
x :=0

fail fail
x≤1

c! t!c?
x=1
x :=0

fail fail
x≤M

c! t!
δ
x=M

pass fail
fail

����

�

�
�

���

�
�

�������
����

��

����
�

��� �

��� �
����

��

���

�

�
�

��	�

� �

���

���

�

���
���

�

�

��

��
�
�
�
�
�
�
�
�
�
��

��
�
�
�
�
�
�
�
�
�
��

��
�

�
���

�
�

�������
�����
�

��� �

��� �
����

�

�
�

��	�� ��

� �

�

�

�

�

�� ��

��

�� ���
�
�
�
�
�
�
�
�
�
��

�� ���
�
�
�
�
�
�
�
�
�
��

��	�� ��
�

�
���

�

�
�

����� ��
�

�
���

�

�
�

����� ��
�

�
���

�

�
�

����� ��
�

�
���

�

�
�

����� ��
�

�
���

�

�
�

����� ��
�

�
���

�

�
�

���

Fig. 2. A specification of a quirky coffee machine with time, an implementation with
M = k, and a test case derived from the specification

right, there is a test case derived by the algorithm that can detect the error
in the implementation. We suppose both machines are saturated with all input
actions in each state. In the specification we show the δ-transitions, while in the
implementation we detect them using M = k. We assume that k > 1.
The problem appears because:

out(spec after m?(1)·c?(1)·δ(k)·b?(1)·c?(1))= {c![0,∞)}
and out(imp after m?(1)·c?(1)·δ(k)·b?(1)·c?(1))= {δ(k)}

where we use the notation c![0,∞) to denote that the output c! can be at any
time between 0 and ∞.

5 Related Work

As already indicated before this work is closely related to work carried out
by Krichen et al. in [16], and closely related work by Larsen et al. [14], who
deal with a quiescence-free interpretation of timed ioco based on timed trace
inclusion for timed automata. Our work shows how such results may be extended
to deal with quiescence, and provides a general framework at the level of timed
transition systems.

76

Previous attempts of extending testing with time include older work by
Nielsen et al. in [2], for testing a subclass of timed automata called event-
recording automata (ERA). The technique is based on the symbolic analysis
of timed automata inspired by the Uppaal model-checker, but lacks a suitable
notion of implementation relation. Springintveld et al. in [11] present an exhaus-
tive testing method for deterministic timed automata with dense time, using
the notion of a grid automaton that represents each clock region with a finite
set of clock valuations. Although being exact, the grid method is impractical
because it generates “an astronomically large number of test sequences” [11].
Cardell-Oliver presents a method for networks of deterministic timed automata
extended with integer data variables [17], where only a part of the system is
visibly using test views, so that a test is never exhaustive.

Several authors have tried to obtain good specification coverage for their test
methods by adapting transition-tour methods from classical FSM-based testing
[7, 22].

Clarke and Lee [3] use the algebra of communicating shared resources (ACSR)
on a discrete time base. ACSR allows non-deterministic specifications, the use
of internal events and priorities. For testing, only boundary points of the time
domain are selected. Cleaveland et al. propose a testing method for probabilistic
processes on a discrete model of time [18] that bears a close resemblance to
the classical testing theory of Hennessy and De Nicola [19]. Mandrioli et al. use
temporal logic with arithmetic on a discrete time base [5].

6 Conclusion and Future Work

In this paper we have presented an extension of Tretmans’ ioco theory and
algorithm for test generation for input-output transition systems to real-time
systems. Our treatment is based on an operational interpretation of the notion of
quiescence that gives rise to a family of implementation relations parameterized
by observation durations M for quiescence. These relations detect differences in
behaviour after the execution of suspension traces provided that the observations
of quiescence all take longer than the stipulated duration M , but may not detect
differences in refusal behaviour that require shorter observations of quiescence.

It is shown how this theory may be used to test real-time implementations
under the assumption that the absence of system interaction with its environ-
ment for M time units implies quiescence. We have defined a nondeterministic
(M -parameterized) test generation framework that generates test cases that are
sound with respect to the corresponding implementation relation tiocoM . The
test generation is also exhaustive in the sense that for each non-conforming im-
plementation a test case can be generated that can detect the non-conformance.

The framework can be effectively instantiated for subclasses of timed input-
output transition systems for which outM (∆(spec) after σ) is computable, as is
the case for timed automata. Using standard symbolic state space representation
in the form of difference bounded matrices [4], a real-time version of TorX for
timed automata models is being implemented.

L. Brandán Briones and E. Brinksma

A Test Generation Framework for quiescent Real-Time Systems 77

The work presented here can be extended in a number of ways. As already indi-
cated, it is possible to show a stronger exhaustiveness result for the test generation
procedure based on an appropriate notion of equivalence of error traces. The gen-
eration procedure will hit each such class in the limit, provided that the error class
in not negligible, i.e. it must have positive measure in some appropriate sense.

Another extension is to relax the requirement that there must be a uniform
observation deadline M for quiescence. Obvious alternatives that we are studying
are:

• the observation parameter M(σ) is a function of the behaviour (trace) σ ob-
served so far. This would allows us to model sequential phases of quiescence,
i.e. slow vs. quick response times;

• the observation parameter M(Ci) is a function of the communication channel
Ci on which output is being observed. This would allows us to model different
kinds of response times for different communication channels with the system
under test, and would correspond to a real-time extension of the mioco
implementation relation of [6].
Our real-time theory inherits its focus on control aspects of system behaviour

from the existing ioco theory. Ultimately, it will be important to combine this
testing theory with methods for testing the static data aspects of systems. It will
be interesting to see to what extent the symbolic representation of data types
can be combined with symbolic representations of time.

In a more general vein, one can say that the development of a real-time
testing theory forces us to confront modelling issues with respect to physical
aspects of time and implementation. From a physical point of view, for example,
it is questionable whether negligible behaviour can be implemented. This has
also implications for specification formalisms that can be used to specify such
behaviour, e.g. timed automata can define negligible behaviour by using guards
that force behaviour to go through specific points in time, such as x = 3. It
would seem that realistic specifications and/or implementation relations allow
for tolerances in the evaluation of clock conditions. This would then introduce
a third source of non-determinism in the testing theory of real-time systems.
At any rate, a more systematic study of the formal aspects of tolerance and
robustness is definitely needed.

References

1. A.Belinfante, J.Feenstra, R.deVries, J.Tretmans, N.Goga, L.Feijs,

S.Mauw, and L.Heerink. Formal test automation: A simple experiment. In Int.
Workshop on Testing of Communicating Systems 12 (1999), Kluwer, pp. 179–196.

2. B.Nielsen, and A.Skou. Automated Test Generation from Timed Automata.
TACAS 2001: 343-357, 2001.

3. D.Clarke, and I.Lee. Automatic test generation for the analysis of a real-time
system: Case study. In IEEE Real Time Technology and Applications Symp. (1997),
pp. 112–124.

4. D.Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proceedings of the int. workshop on Automatic verification methods for finite
state systems (1990), Springer-Verlag NY, Inc., pp. 197–212.

78

5. D.Mandrioli, S.Morasca, and A.Morzenti. Generating test cases for real-time
systems from logic specifications. TOCS 13, 4 (1995), 365–398.

6. E.Brinksma, L.Heerink, and J.Tretmans. Factorized test generation for multi
input/output transition systems. In Int. Workshop on Testing of Communicating
Systems 11 (1998), Kluwer, pp. 67–82.

7. En-NouaaryA, R.Dssouli, and F.Khendek. Timed test cases generation based
on state characterization technique. In 19th IEEE Real-Time Systems Symp.
(1998), pp. 220–229.

8. ISO8807. Information processing systems, Open Systems Interconnection, LO-
TOS, A formal description technique based on the temporal ordering of observa-
tional behaviour. Int. Organization for Standardization, 1989.

9. J-C.Fernandez, C.Jard, T.Jeron, and C.Viho. Using on-the-fly verifica-
tion techniques for the generation of test suites. In Copmuter Aided Verification
CAV’96. LNCS 1102, Springer-Verlan (1996), R.Alur and T.A.Hezinger.

10. J-C.Fernandez, C.Jard, T.Jeron, and C.Viho. An experiment in automatic
generation of test suites for protocols with verification technology. In Sience of
Computer Programming - Special Issue on COST247, Verification and Validation
Methods for Formal Descriptions, 29(1-2) (1997), pp. 123–146.

11. J.Springintveld, F.Vaandrager, and P.D’Argenio. Testing timed automata.
Theoretical Computer Science 254, 1–2 (2001), 225–257.

12. J.Tretmans. Test generation with inputs, outputs and repetitive quiescence. In
Software-Concepts and Tools, 17(3) (1996), Also: Technical Report N0. 96-26, Cen-
ter for Telematics and Information Technology, University of Twente, The Nether-
lands, pp. 103–120.

13. J.Tretmans, and E.Brinksma. Torx: Automated model-based testing. In First
European Conference on Model-Driven Software Engineering, Nuremberg (2003),
A.Hartmann and K.Dussa-Ziegler.

14. K.Larsen, M.Mikucionis, and B.Nielsen. Real-time system testing on-the-fly.
In The 15th Nordic Workshop on Programming Theory (NWPT) (2003), K.Sere,
M.Walden, and A.Karlsson, Eds. Extended abstract.

15. L.Brandán-Briones, and E.Brinksma. A test generation framework for quies-
cent real-time systems. http://fmt.cs.utwente.nl/research/testing/files/BBB04.ps.
gz.

16. M.Krichen, and S.Tripakis. Black-box conformance testing for real-time sys-
tems. In SPIN 2004 (2004), Springer-Verlag Heidelberg, pp. 109–126.

17. R.Cardell-Oliver. Conformance test experiments for distributed real-time sys-
tems. In Proceedings of the int. symp. on Software testing and analysis (2002),
ACM Press, pp. 159–163.

18. R.Cleaveland, I.Lee, P.Lewis, and S.Smolka. A theory of testing for soft
real-time processes, 1996.

19. R.deNicola, and M.Hennessy. Testing equivalences for processes. In ICALP83
(1983), vol. 154.

20. R.J.vanGlabbeek. The linear time-branching time spectrum ii (the semantics of
sequential systems with silent moves). In CONCUR’93. LNCS 715 (1993), E.Best,
pp. 66–81.

21. R.Langerak. A testing theory for lotos using deadlock detection. In Proceedings
of the IFIP WG 6.1 Ninth int. Symp. on Protocol Spec., Testing, and Verification
(1990), IFIP, pp. 87–98.

22. T.Higashino, A.Nakata, K.Taniguchi, and R.Cavalli. Generating test cases
for a timed i/o automaton model. In IWTCS 1999 (1999), pp. 197–214.

L. Brandán Briones and E. Brinksma

	Introduction
	Implementation Relations for Real-Time quiescence
	Timed Input-Output Transition Systems
	Timed implementation relations
	An operational model

	A Real-Time Test Generation Framework
	Nondeterministic test case construction

	Example
	Related Work
	Conclusion and Future Work

