
ARTIST2 - MOTIVESARTIST2 - MOTIVES
Trento Trento - Italy, February 19-23, 2007- Italy, February 19-23, 2007

Modeling and Design of Heterogeneous Systems

Benoît Benoît CaillaudCaillaud

IRISA / IRISA / INRIA-RennesINRIA-Rennes, France, France

Composition and Transformation of

Heterogeneous Real-Time Systems

Outline

Models of Computation and Communication (MoCC)

Two types of MoCC heterogeneity: Architectural
heterogeneity & design flow heterogeneity

Synchronous vs. asynchronous MoCCs

Unifiying synchronous, time-triggered & losely time-
triggered MoCCs: Introducing tag systems

From an algebra of tags to tag machines

The power of tag system: An analysis of communication by
sampling in time-sensitive distributed systems

Bibliography (1/2)
[1] A. Benveniste, B. Caillaud, L. Carloni, P. Caspi, A. Sangiovanni-Vincentelli.

Heterogeneous Reactive Systems Modeling: Capturing Causality and the
Correctness of Loosely Time-Triggered Architectures (LTTA). In Proceedings of
the Fourth ACM International Conference on Embedded Software, EMSOFT'04,
Volume September, September 2004.

[2] A. Benveniste, B. Caillaud, L. P, Carloni, A. L. Sangiovanni-Vincentelli. Tag
Machines. In Proceedings of the fifth ACM International Conference on
Embedded Software (Emsoft), Pages 255-263, Jersey City, NJ, USA,
September 2005.

[3] A. Benveniste, B. Caillaud, L. Carloni, P. Caspi, A. Sangiovanni-Vincentelli.
Communication by Sampling in Time-Sensitive Distributed Systems. In
Proceedings of the Sixth Annual ACM Conference on Embedded Software,
EMSOFT'06, 2006.

[4] S. A. Edwards, O. Tardieu. SHIM: A Deterministic Model for Heterogeneous
Embedded Systems. In Proceedings of the ACM Conference on Embedded
Software, EMSOFT’05. Jersey City, NJ, September 2005.

[5] D. Potop-Butucaru, B. Caillaud, A. Benveniste. Concurrency in Synchronous
Systems. Formal Methods in System Design, 28(2), March 2006.

Bibliography (2/2)
[6] D. Potop-Butucaru, B. Caillaud. Correct-by-construction asynchronous

implementation of modular synchronous specifications. In Proceedings of the
Fifth International Conference on Application of Concurrency to System Design,
ACSD 2005, 2005.

Heterogeneous architectures: automotive electronics

Informatio
n

Systems

T
e
le

m
a
t
ic

s

F
a
u

lt
T
o

le
ra

n
t

Body
Electronics B

o
d

y
F
u

n
c
t
io

n
s

F
a
il
 S

a
fe

F
a
u

lt
 F

u
n

c
t
io

n
a
l

Body
Electronics

D
ri

v
in

g
 a

n
d

 V
e
h

ic
le

D
y
n

a
m

ic
 F

u
n

c
t
io

n
s

Mobile Communications Navigation

Fire
Wall

Access
to WWW

DAB

Gate
Way

Gate
Way

Theft
warning

Door Module Light Module

Air
Conditioning

Shift
by Wire

Engine
Managemen

t

ABS

Steer
by Wire

Brake
by Wire

MOSTMOST
FirewireFirewire

CANCAN
LinLin

CANCAN
TTCANTTCAN

FlexRay FlexRay TTPTTP

Heterogeneous models:

design flow in automobile or aeronautics

Systems modeling (UML, MDA,…SysML)

– Loose model of computation & communication

Matlab/Simulink/Stateflow

– Continuous time basis

Statemate, synchronous languages

Late assembly of imported functions

– Can be in C…

– Depends on OS and execution infrastructure

Reuse models of deployment architecture (components)

– CAN, ARINC, TTA,…

Classes of heterogeneous systems: GALS

synchronous synchronousasynchronous

Classes of heterogeneous systems: LTTA

synchronous

timed synchronous

timed

 asynchronous timed

(bounded delay)

How to blend heterogeneous models while

“preserving semantics”?

synch
synch +

timed

What have

you asynch

asynch +

timed

How to blend heterogeneous models while

“preserving semantics”? idea:
by generating proper

adaptors (wrappers)

synch

asynch

asynch +

timed

synch +
timed

What have

you

Classes of heterogeneous systems: SHIM

programs [S. Edwards, Emsoft’05]

SHIM, a language proposed by S. Edwards for HW/SW
integration:

– “Rather than propose a completely new semantics for SHIM, I
chose to integrate two well-known, well-established
semantics: C-like imperative semantics for the SW portion of
the design and RTL semantics for the HW”

Classes of heterogeneous systems: SHIM

programs
SHIM module

 shared

 hw

counter

 sw void reset_

 counter

 sw}

}

module timer {

 shared uint:32 counter;

 hw void count() {

 counter = counter + 1;

 }

 out void reset_timer() {

 counter = 0;

 }

 out uint get_time() {

 return counter;

 }

}

Classes of heterogeneous systems: SHIM

programs

SHIM, a language proposed by S. Edwards for HW/SW
integration:

– “A particularly glaring issue is that SHIM models are not easy
to simulate. This is due to the models themselves: the two
domains run asynchronously and while the HW is timed, the
SW effectively is not, meaning that the behavior of the system
may be nondeterministic or at least very difficult to predict
without careful modeling of SW timing, such as by using an
instruction-set simulator”

Two simple questions
1. How to keep control of the meaning of

heterogeneous programs such as our SHIM
example?

2. How to blend heterogeneous models while
“preserving semantics”? We discuss first the GALS
case

How to keep control of the

meaning of heterogeneous

programs such as SHIM?

SHIM module

 shared

 hw : what can be a
common synchro
domain with sw?

 sw : what can be a
common synchro
domain with hw?

module timer {

 shared uint:32 counter;

 hw void count() {

 counter = counter + 1;

 }

 out void reset_timer() {

 counter = 0;

 }

 out uint get_time() {

 return counter;

 }

}

Adaptors for GALS: informal discussion

How to ensure that the two components do not behave in different ways

difference when moving from synchrony to GALS?

Adaptors for GALS: informal discussion

How to ensure that the two components do not see the difference

when moving from synchrony to GALS? Easy if known to be single-

clocked: bananas ! (latency insensitive designs and many handshake-

based asynchronous HW designs make use of bananas; handshake /

adaptor)

Adaptors for GALS: informal discussion

bananas ???

How to ensure that the two components do not see the difference

when moving from synchrony to GALS? In general bananas can be

many!

Adaptors for GALS: informal discussion

• In general bananas can be many!

• Naive solution: attach to each wire a boolean_clock that is present in each

reaction and tells you the presence/absence for the wire (cf. hardware); then,

apply previous solution

• Poor if slow/fast communications between components, because all boolean

clocks must be communicated at fastest pace

• This overhead has been identified by HW people: they perform heuristic

post-processing to reduce the number of handshake protocols needed. Our

approach makes this algebraic and systematic

bananas ???

Synchronous vs. asynchronous MoCCs: Outline

Motivation: Asynchronous implementation of synchronous

specifications

– GALS architectures

– Desired efficient implementation

Formal model

– Correctness

Correctness criteria

– Microstep weak endochrony

– Microstep weak isochrony

Conclusion

Synchrony, asynchrony, GALS

Synchronous specification

– Global logical clock ease of specification & verification

– Popular, efficient tools for system design (digital circuits, safety-
critical systems)

Distributed implementation

– Distributed software, complex digital circuits (SoC/NoC),
heterogeneous systems

– Loosely-connected components (asynchronous FIFOs...)

GALS architectures = good implementation model

– Synchronous components, asynchronous communication

– Problem: preserve semantic consistency between synchronous
specification and GALS implementation

What we want (1/2)

1. Take a modular synchronous specification

IP1 IP2

logical clock

What we want (2/2)

1. Take a modular synchronous specification

2. Replace comm.
with asynchronous
FIFOs, wrappers

3. Preserve:

Functionality

Correctness

No “extra” traces

No deadlocks

(Kahn processes)

Parallelism

IP1 IP2

Delay-insensitive component

IP1

control

Related work (1/2)

Latency-insensitive systems

– Carloni & Sangiovanni-Vincentelli (1999)

– Goal: independence from communication delays

– Global synchrony: system speed = slowest component speed

Endo/isochronous systems

– Benveniste, Caillaud, Le Guernic (1999)

Variation: Generalized latency-insensitive circuits (Singh,
Theobald, 2003)

– Goals:

minimize communication

maximize concurrency, independence between system components

– Not compositional!

Previous work (2/2)

Weak endo/isochronous systems

– Potop, Caillaud, Benveniste (2004)

– Goals:

further minimize communication by exploiting intra-component
concurrency

Compositionality !

– Synchronous Mazurkiewicz traces

– Does not handle causality and communication deadlocks

This work: microstep weak endo/isochronous systems

– Goal: take into account causality and composition through
read/write mechanisms

Approach presented
Define a model such that:

– Criteria (sufficient conditions) for the existence of delay-insensitive
wrappers that preserve the semantics without adding new signals

– Connecting through FIFOs the resulting components produces a
semantics-preserving, deadlock-free GALS implementation

How to make given components satisfy the sufficient conditions?

– Possible solutions:

1. Encode (part of) the “absent” events (Carloni et al.)

2. Add new signals

3. Decide that none is necessary due to environment constraints

Efficient sw/hw implementation

– Sync./async. synthesis techniques, GALS-specific communication
schemes, etc.

Microstep vs. Macrostep

1 macrostep

s2

s0

ab

s3
ar

s2

s0

a;b

s3
a;r

or

s0

s2

s1
!a

1

?b

1 microstep
s3 1

1

?r

: reaction

The model: basic definitions
The basics: (incomplete) automata

 = (S,s0,V,), S L(V) S, L(V) =
v∈V

(D
v
∪⊥)

– Composition by synchronized product:

– Renaming operator:

Labels

Finite runs:

1[D/C] : 0 1
A=1 B=⊥
C=⊥

A=1 B=⊥ C=3 A=1 C=3

A=1 C=3 A = 1 B=7 C=3

A=1 C=3 ; B=2 ; ;

A=1 C=3 – A=1 = C=3

A=1 C=3 ; B=2 ; ; A=1 C=3 ; B=2 ; ; A=2;

0 1
A=1 B=⊥
D=⊥

0

1

A=1 B=⊥
C=3

2

A=1
B=7 C=3

A=1 B=⊥ C=3
D=⊥

0,0 1,2

The model: basic definitions

Generalized concurrent transition systems(GCTS)

– Void transitions:

– Down closure:

Example:

s s⊥

s
r

q r
s

q r-q

0 1A=1
B=7

3

2

A=1

B=7 A=1

B=7

s’

s’s’’

The model: I/O transition systems

Point-to-point communication:

– Broad/Multicast can be simulated…

– Communication channels: c = (!c,?c) D!c=D?c=Dc

– Dissociate emission from reception!

Logical (local) clocks: 1… of domain Dclk={T}

I/O transition system:

– GCTS where all variables are channels or clocks

– Example:

0

13

2

1

!A=1 !A=2

?R=3

1 2

2

4

?B

?R=4

The model: synchronous systems

Synchronous system: = (S,s0,V, ,), I/O transition system, 1-clock, s.t.:

1. Clock transitions:

2. Stuttering invariance:

3. Single assignment:

Example:

s0 s0 s s’ s’

1

1 0

3

2

1
!A

?B

?R

1

r()= T

r(v) = , v V
s s’

r

s0 s1

r1 r2
sn

rn

…

ri

supp(ri) supp(rj) =
for all i j

The model : composition

Synchronous 1-place register:

Synchronous composition (on clock) :

Asynchronous FIFO:

Asynchronous composition:

1| 2 = 1[1/] 2[2/] SFIFO(c1,) … SFIFO(cn,)

1|| 2 = 1 2 AFIFO(c1) … AFIFO(cn)

!c=xn+1 ?c=x
1AFIFO(c):

for all x1,…,xn,xn+1 Dc

x1…xn x1…xn+1 x2…xn

!c=x ?c=x
SFIFO(c,): for all x Dcc0

cx c1

The model : composition

!C

?B

?A

!C

?A

1 2

!A

!B

?C

x

!A

1| 2

1 2

1|| 2

!A
?A

1

1

1

2

2

!A

!B

!C
?C

?B

?A

!C

s0

s2

s1

!a

1

?b

1

s3 1

1

?r

t0 t2t1

?a
2

!b

2

t3 2

2

2

a1
AFIFO(b)AFIFO(a)

s0

s2

s1

!a

?b

1

s3

?r

t0 t2t1

?a !b

2

t3

a1 b0 b.

!b

SFIFO(b,)

?b
b1

a1a0 a.

!a

SFIFO(a,)

?a
a1

?

=

=
when

and

Example (1/3)

Example (2/3)

!A ?A
a0

B

?B

!B

A

?A

!A

0

13

2

1
!A

?B

?R

1

11:

1, 2
, 1 2

1, 2
, 1 2

0
2

2 31
?A !B

2

2 2

2:

!B ?B
b0

1| 2:

0,0 1,0 1,1

3,0 3,1 3,33,2

!A ?A

?R

?A

?R

!B

1|| 2:

1, 2

1 2

2

0,0 1,0 1,1

3,0 3,1 3,33,2

2,31,2 1,3
!A ?A

?R

?A

?R

!B

2

2

?R ?R

!B ?B

1

22

1, 2

1 2 1, 2 , 1 2

Preserving semantics 1| 2 1|| 2

two conditions required

s0

s2

s1

!a

1

s3

?r

t0 t2t1

?a !b

2

t3

a1 b0 b.

!b

SFIFO(b,)

?b
b1

a1a0 a.

!a

SFIFO(a,)

?a
a1

weak endochrony: reconstruct

reactions from asynch envirt, up toup to

concurrencyconcurrency

weak endochrony: reconstruct

reactions from asynch envirt, up toup to

concurrencyconcurrency

causal correctness causal correctness (isochrony):

ensure that composition is non-ensure that composition is non-

blockingblocking

?b

blocking

Preserving semantics 1| 2 1|| 2

two conditions required

weak endochrony: reconstruct

reactions from asynch envirt, up toup to

concurrencyconcurrency

weak endochrony: reconstruct

reactions from asynch envirt, up toup to

concurrencyconcurrency

causal correctness causal correctness (isochrony):

ensure that composition is non-ensure that composition is non-

blockingblocking

compositional

compositional

global

Back to the example (3/3)

0
2

2 31
?A !B

2

2 2

2:

1| 2:

0,0 1,0 1,1

3,0 3,1 3,33,2

!A ?A

?R

?A

?R

!B
4,3

?B

0

1

3

2

1
!A

?B

?R

11:
4

?R

?B

1

1

1, 2
, 1 2

1|| 2:

1, 2

1 2

2

0,0 1,0 1,1

3,0 3,1 3,33,2

2,31,2 1,3
!A ?A

?R

?A

?R

!B

2

2

?R ?R

!B ?B

1

22

1, 2

1 2
1, 2 , 1 2

1, 2
, 1 2

2,3
?B

1, 2
, 1 2

?R

Correctness

Some notations:

Formal correctness criterion

1||…|| n is correct w.r.t. 1|…| n if

for all s RSS(1|…| n) and all Traces 1||…|| n(s)

there exist Traces 1||…|| n(s) and Traces 1|…| n(s)

such that and

Intuition: every trace of 1||…|| n can be completed to one that is
equivalent to a synchronous trace

!A=1 ; 1; ?A=1 ; 2 ; !C=3 ; !A=1 ?A=1 ; 1 2 ; !C=3 ; 2 ;

!A=1 ; 1; 2 ; !C=3 ; !A=1 ?A=1 ; 1 2 ; !C=3 ; 2 ;

Microstep weak endochrony

Compositional delay-insensitivity criterion (signal absence

information is not needed)

Axioms (part 1):

A1: Determinism

A2: In every state, non-clock transitions sharing no common variable are
independent

?A !B

!A=1

!A=2

?B

?R ?B

?R
?B?R

Microstep weak endochrony

Axioms (continued):

A1: Determinism

A2: In every state, non-clock transitions sharing no common variable are independent

A3: Non-contradictory reactions can be united

A4: Conflict does not change with time

?B

?R

?B

?R ?B

?R

?R

?B

?B,?R

s0 sn…
r1 rn

?v=x

v supp(ri)

?v=y

s0

?v=y

sn

?v=x

Example (1/3)

0

1
3

2

1
!A

?B

?R

1

11:

Example (2/3)

0

3’

2’

1
!A

?D=0

?D=1

11’:

1
3

2
1

?B

?R

Example (3/3)

0

1

3

2

1
!A

?B

?R

1

13: 4

?R

?B

1

0

3’

2’

1
!A

?D=0

?D=1

11’:

1
3

2
1

?B

?R

Weak non-blocking property

Weak non-blocking

1,…, n are weakly non-blocking iff

for all s RSS(1|…| n) and all Traces 1|…| n(s)

maximal and containing no clock transition, there exists

 Traces 1|…| n(s) non-void such that

 and ; Traces 1|…| n(s)

Semantics preservation criterion

 1,…, n are weak non-blocking and weak

endochronous, then 1||…|| n is correct w.r.t. 1|…| n

Example (1/1)

0

2

1
?A

!B

2

2

4:

3

2

!Y

0

3’

2’

1
!A

?D=0

?D=1

11’:

1
3

2
1

?B

?R

Example (1/2)

0

3’

2’

1
!A

?D=0

?D=1

11’:

1
3

2
1

?B

?R

0

3’

2’

1
?A

!D=0

!D=1

24’:

2
3

2
2

!B

!Y

Conclusion

Decidable criteria for GALS implementation of synchronous

specifications

– Covers causality and read/write communication

– Compositionality, concurrency

Future: Synthesis

– Make synchronous automata weakly endo/isochronous. Optimality issues.

– Heuristics for actual synchronous languages and specifications. Scaling
issues (large specifications).

– GALS circuits using asynchronous logic

– Deal with mode changing latency

What about timed models ?

Outline

Tags, Tagged systems, and their ||, using
drawings

Some formalization

Theorems and their use for LTTA

Heterogeneous Systems as tagged systems with tag set

as parameter [Emsoft[Emsoft’’03]03]

X
Y
Z

synch

X
Y
Z

=

asynch

…

+ TAGSTAGS

X
Y
Z

11 33 44 66

44 66

11 22 44

Homogeneous parallel composition: P || Q

X
Y
V

1 3 4 6

4 6

unify values and TAGS

X
Y
U

1 3 4 6

4 6

GALS as an heterogeneous system : P || Q

X
Y
Z

X
Y
Z

X
Y
Z

synch
synch

asynch

GALS as an heterogeneous system : P || Q
synch

synch
asynch

X
Y
Z

11 33 44 66

44 66

11 22 44

X
Y
Z

11 22 33 44

55 66

22 33 44

unify values, ignoreignore TAGS

GALS as an heterogeneous system: P || fifo || Q

X
Y
Z

synch
synch

asynch

fifo

X
Y
Z

11 33 44 66

44 66

11 22 44

X
Y
Z

11 22 33 44

55 66

22 33 44

Heterogeneous parallel composition:

Tags to model dates, latest wins

X
Y
V

1 3 4 6

4 6

X
Y
U

3 5 7 12

2 3

unify values, combinecombine TAGS withwith
maxmax : (5,3) 5

Heterogeneous parallel composition: tags

to model causalities

U

X

Y

unify values, combine TAGS componentwise with

max : ((U:1),(U:3)) à (U:3)

U:1

X:1

X:0

Y:0

X:0

Y:0

X:0

Y:0

U:0

X:0

U:0

Y:0

U:1

Y:0

U:2

Y:0

U:3

Y:0

Heterogeneous parallel composition:

composite tags to combine features

U

X

Y

6

t4

U:3

Y:0

identify values, identify reaction indices, combines

dates with max, combines causality indices with

max componentwise

reaction index

date

causality indices

Synchrony, asynchrony

Causalities

Physical time – for performance evaluation
and/or timed automata

(More is conjectured: hybrid automata,
probabilities)

… and their combination

Desynchronizing erasing (part of) tags

Heterogeneous parallel composition:

what tags can capture

Outline

Motivation

Tags, Tagged systems, and their ||, using
drawings

Some formalization

Theorems and their use for LTTA

Heterogeneous parallel composition: ingredients (1)

Examples for :

unifiable iff equal: (,)

always unifiable: (,) max(,)

(T , ,)

(tag set, p.o., unification function)

 : partial function, consistent with

Heterogeneous parallel composition: ingredients (2)

T
1

T

T
2

1 2

synchronization tags

tags2tags1

P1 1
||

2
P2

tag morphism :T T ’consistent with

Heterogeneous parallel composition: GALS P || Q

synch
synch

asynch

X
Y
Z

11 33 44 66

44 66

11 22 44

X
Y
Z

11 22 33 44

55 66

22 33 44

unify values, ignoreignore TAGSTAGS : T {.}

Heterogeneous parallel composition:

graphical notation

T
1

T

T
2

1 2

synchronization tags

tags2tags1

P1 1
||

2
P2

P1,T1 P2,T2
T

Heterogeneous architectures: graphical notation

P1,T1 P2,T2
T
12

P3,T3

T
31

T
23

well

defined!

Outline

Motivation

Tags, Tagged systems, and their ||, using
drawings

Some formalization

Theorems and their use for LTTA

Heterogeneous parallel composition: theorem 1

P1,T P2,T
S

This architecture is semantics preserving if:

(i) (Pi)S is in bijection with Pi

(ii) (P1 || P2)S = (P1)S || (P2)S

Heterogeneous parallel composition:

“archi/appli separation” theorem 2

This architecture is semantics preserving if:

1. bus is in bijection with (bus)
S
 , and tot

(bus)
S
= Id , where T S Tbus

2. P ||
S
 Q is semantics preserving

P,T Q,Tbus,T bus

Adaptors for GALS: apply Th. 1

P1,Tsynch

S={.}
P2,Tsynch

1. (Pi)S is in bijection with Pi : endochronous

2. (P1 || P2)S = (P1)S || (P2)S : isochronous

Endochrony & Isochrony (GALS), effective properties
[BenvCaillaud2000, CaillaudPotop2004]

A process P is endochronous when at each state the presence/absence
of each variable can be inferred incrementally from the values carried by
present input variables and state variables.

Two processes P1,P2 are isochronous when at each state if each pair of
shared variables that are present in both P1,P2 have the same value then
all the shared variable are either present with the same value or absent

Endochrony and isochrony are expressed in terms of transition-relations
(not infinite behaviors)

– They can be model-checked

– They can be synthesized: for a given process P wrapper processes
can be derived and composed with P to guarantee each property;
wrappers provide “cheap additional signalling”

synchronous

timed synchronous

timed

 asynchronous timed

(bounded delay)

Applying theorems 2 and then 1 validates_LTTA

synchronous

application
synchronous

application
endochronous

isochronous

implements

asynch FIFO

Conclusion and perspectivesConclusion and perspectives

Functional and non-functional aspects jointly handled,

at both component- and system-level

Design space involves both functions and execution

infrastructure

With heterogeneous and flexible Models of

Computation and Communication (MoCC)

TagTag systems provide the needed algebraicsystems provide the needed algebraic

framework toframework to developdevelop ad-hoc mathematicalad-hoc mathematical

framework for semantic based architecture analysisframework for semantic based architecture analysis

and synthesisand synthesis

