Model Checking Probabilistic Systems

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

ARTIST2 Motives Winterschool, February 22, 2007

© JPK

L2228 Probabilities help

e When analysing system performance and dependability
— to quantify arrivals, waiting times, time between failure, QoS, ...
e When modelling uncertainty in the environment

— to quantify environmental factors in decision support
— to quantify unpredictable delays, express soft deadlines, ...

e When building protocols for networked embedded systems
— randomized algorithms
e When analysing large populations

— number of nodes in the internet, number of end-users, ...

© JPK

Probability elsewhere

e In performance modelling (Erlang, 1907)

— models: typically continuous-time Markov chains
— emphasis on steady-state and transient measures

e In stochastic control theory and operations research (Bellman, 1957)

— models: typically discrete-time Markov decision models
— emphasis on finding optimal policies for average measures

e Our focus: model checking Markov chains

— temporal logic = unambiguous and precise measure-specification

— model-checking techniques = no expert algorithmic knowledge needed

— complex (new) measures are concisely specified and automatically verified
— exchanging techniques with the other two areas

© JPK 2

Probabilistic verification so far

e Termination of probabilistic programs (Hart, Sharir & Pnueli, 1983)
— does a probabilistic program terminate with probability one?

e Markov decision processes (Courcoubetis & Yannakakis, 1988)
— does a certain (linear) temporal logic formula hold with probability p?

e Discrete-time Markov chains (Hansson & Jonsson, 1990)
— can we reach a goal state via a given trajectory with probability p?

e Discrete-time Markov decision processes (Bianco & de Alfaro, 1995)
— what is the maximal (or minimal) probability of doing this?

e Continuous-time Markov chains (Baier, Katoen & Hermanns, 1999)

— can we do so within a given time interval 1?

© JPK 3

What is probabilistic model checking?

. _ up to 107 states
requirements inaccuracy
P<0.01(Odeadlock) l

@ Formalizing Modeling

property

specification system model

Y
*™Model Checking«—"——

statel 0.678
the probabili state2 0.9797
state3 0.1523

state4 0.2123

insufficient

memory

© JPK 4

Q%g@ Characteristics

e What is inside?

— temporal logics and model checking
— numerical and optimisation techniques from performance and OR

e \What can be checked?
— time-bounded reachability, long-run averages, safety and liveness
e What is its usage”?

— powerful tools: PRISM (4,000 downloads), MRMC, Petri net tools, Probmela

— applications: distributed systems, security, biology, quantum computing . .

© JPK

‘ﬁ%‘; Characteristics

e What is inside?

— temporal logics and model checking
— numerical and optimisation techniques from performance and OR

e What can be checked?

— time-bounded reachability, long-run averages, safety and liveness

e What is its usage”?

— powerful tools: PRISM (4,000 downloads), MRMC, Petri net tools, Probmela

— applications: distributed systems, security, biology, qguantum computing . .

e What are its deficiencies?

— limited (automated) abstraction techniques
— limited diagnostic feedback in case of property refutation

© JPK

Overview of the tutorial

e INntroduction

e Discrete-time probabilistic models

— fully probabilistic systems: discrete-time Markov chains
— probabilistic CTL, verification algorithms, counterexamples

e Continuous-time probabilistic models

— fully probabilistic systems: continuous-time Markov chains
— stochastic CTL, verification algorithms, experimental results
— exhibiting non-determinism: continuous-time MDPs

e Stochastic cost models (not today)

— discrete-time and continuous time Markov reward models

© JPK

Finite labeled DTMCs

A labeled DTMC D is a triple (S, P, L) with:
e S, afinite set of states

e P:S5S xS —|0,1], a probability matrix with) © ,P(s,s") = 1

— P(s, s) is the probability to jump from s to s’ in one step
— s is absorbingif P(s,s) =1

e L:S — 247 the labelling function

— L(s) is the set of atomic propositions that are valid in s

= a DTMC is a Kripke structure with only probabilistic transitions

© JPK 8

uuuuu

Craps

Douhle

(12

]
Mu
=¥
L |
L |
L—
L o |
!
L)
-
S
-
=
]
m..
(=¥

2

Field

© JPK

Craps

e Roll two dice and bet on outcome

e Come-out roll (“pass line” wager):

— outcome 7 or 11: win
— outcome 2, 3, and 12: loss (“craps”)
— any other outcome: roll again (outcome is “point”)

e Repeat until 7 or the “point” is thrown:

— outcome 7: loss (“seven-out”)
— outcome the point: win
— any other outcome: roll again

© JPK 10

© JPK

11

Address assignment in IPv4

e IPv4 is aimed at plug-and-play networks for domestic appliances

e New devices must get a unique IP address in an automated way

e This is done by the IPv4 zeroconf protocol (proposed by IETF)

— randomly select one of the 65,024 possible addresses
— loop: as long as # sent probes < n
+ broadcast probe “who is using this address?”
x receive reply? — go back to initial step of protocol
x receive no reply within » > 0 time units
- #£ sent probes = n? — use selected address
- # sent probes < n? — repeat loop

(Cheshire, Adoba & Guttman, 2001)

© JPK 12

The probabilistic host behaviour

1 ok error D 1

1—gq

1—p
1—p

1—p

p = probability of message loss; q = probability of selecting occupied address

(Bohnenkamp et al., 2001)

© JPK 13

Pl‘ObabI“StIC CTL (Hansson & Jonsson, 1990)

e Fora € AP, J C |0,1] an interval with rational bounds, and natural n:

¢ = true] a ’CID/\CI) ‘ - ‘ P(e)

p = PUD, | & US" Dy

® 505182... = ®US" W if ® holds until ¥ holds within n steps

e s =P ;(yp) if probability that paths starting in s fulfill © liesin J

abbreviate Py o.5(¢) by P<o.5(e) and Pjg 11(¢) by P~o(p)

© JPK 14

Derived operators

P = trueU ¢
OS"P = true U S"d
Pep(OP) = Po1p(O®)

IP)]10,(1](D<n(p) — IP)[1—(1,1—'19[(<><nﬂ(1))

operators like weak until W or release R can be derived analogously

© JPK

15

e Transient probabilities:

Example properties

e With probability > 0.92, a goal state is reached legally:

. In maximally 137 steps:

IP)> 0.92 (_I |||ega| U gOaD

.. once there, remain there almost always for the next 31 jumps:

P- .92 (ﬂ illegal U<'7 p_,(0l0:31] goal))

P- .92 (O=137 goal)

P .92 (—illegal US!37 goal)

© JPK

16

PCTL semantics (1)

D, s = @ if and only if formula ® holds in state s of DTMC D
Relation = is defined by:

s Ea Iff ae L(s)

skE= P Iff not (s = @)

sE® VU iff (skE®)or(sEVY)
sEP;(p) iff Pr(sEyp)ed

where Pr(s = ¢) = Pry{m € Paths(s) | 7 |= ¢}

© JPK

17

PCTL semantics (2)

A path in D is an infinite sequence sq sy So . .. With P(s;, s;41) > 0

Semantics of path-formulas is defined as in CTL:

TEOUT iff 3

n=>0(s, FYAVO<Li<n.s; EP)
TE®US"T iff 3k > 0.

(k<n A spE=ETYA
Vo<1 < k. s; ’:(I))

For any PCTL path formula ¢ and state s of DTMC D
the set {w € Paths(s) | # = ¢} is measurable

© JPK

18

PCTL model checking

e Check whether state s in a DTMC satisfies a PCTL formula:

— compute recursively the set Sat(P) of states that satisfy ®
— check whether state s belongs to Sat(®)
= bottom-up traversal of the parse tree of ® (like for CTL)

e For the propositional fragment: as for CTL

e How to compute Sat(®P) for the probabilistic operators?

© JPK

19

Checking probabilistic reachability
o s =P;(®US"T)if and only if Prob(s,®US" W) € J

° P’I“Ob(S, o U Sh \Ij) IS the least solution of: (Hansson & Jonsson, 1990)
—1lifs =W
— forh >0and s = ® A —V:

Z P(s,s") - Prob(s,®US"""w)
s'esS

— 0 otherwise

e Standard reachability for P~ (® U S" &) and P~ (® U ")

— for efficiency reasons (avoiding solving system of linear equations)

© JPK 20

Reduction to transient analysis

e Make all ¥- and all = (® Vv W¥)-states absorbing in D

e Check ©=" ¥ in the obtained DTMC D’

e This is a standard transient analysis in D’:

> Pr{r € Paths(s) | o[h] = s’}

s'=v
— compute by (P)"..y where vy is the characteristic vector of Sat ()

=- Matrix-vector multiplication

© JPK 21

Summary of model-checking DTMCs

(Hansson & Jonsson, 1990)
e Recursive descent over parse tree of ¢

e Probabillistic (bounded) reachability:

— graph analysis to obtain states with positive probability to reach &
— solving a linear equation system, or matrix-vector multiplication

e \Worst case time-complexity:
O(|®[-kmaz| S || P)
|®| the length of ® and k,,,, the largest bound (# oo) of an until in &

e Tools: TPWB, PROBVERUS, E - MC? , PrRISM, MRMC, APMC*

© JPK 22

A synchronous leader election protocol

e A round-based protocol in a synchronous ring of N > 2 nodes

— the nodes proceed in a lock-step fashion
— each slot = 1 message is read + 1 state change + 1 message is sent
= this synchronous computation yields a DTMC!

e Each round starts by each node choosing a uniformid € {1,..., K }
e Nodes pass their selected id around the ring

e If there is a unique id, the node with the maximum unique id is leader
e If not, start another round and try again . ..

(Itai & Rodeh, 1990) © PRISM web-page

© JPK 23

Leader election

choose 5

choose 7
choose 7
choose 5
choose 1
choose 7

probabilistically choose an id from [1... K]

© JPK

24

Leader election

send 7
send 7

send 1
send 5

send 7

send your selected id to your neighbour

© JPK

25

Leader election

pass 1
pass 5

pass 7
pass 7

pass 5

pass the received id, and check uniqueness own id

© JPK

26

Leader election

pass 7
pass 1

pass 5
pass 5

pass 7

pass the received id, and check uniqueness own id

© JPK

27

Leader election

pass 5
pass 7

pass 7
pass 1

pass 5

pass the received id, and check uniqueness own id

© JPK

28

End of 1st round

no unique leader has been elected

© JPK

29

Start a new round

choose 51

choose 1

choose 1
choose 3
choose 1
choose 1
choose 3

new round and new chances!

© JPK

30

Probability to elect a leader within L rounds

Frobability leader elected within L rounds (K=2) Probability leader elected within Lrounds (K=4)

Frobakility

—*— MN=3 —— =3

—*— N=4 —=— pl=4

—+— M=5 —k— [y=5
— N=6 —— N=6
—+— N=8 L —— =7
N=10 N=8

0.8

0.754

P, (OSWTY-Lleader elected) © PRISM web-page

© JPK 31

Markov reward model checker (MRMC)

(Zapreev & Meyer-Kayser, 2000/2005)

e Supports DTMCs, CTMCs and cost-based extensions thereof
— temporal logics: P(R)CTL and CS(R)L
— bounded until, long run properties, and interval bounded until

e Sparse-matrix representation

e Command-line tool (in C)

— experimental platform for new (e.g., reward) techniques
— back-end of GreatSPN, PEPA WB, PRISM and stochastic GG tool
— freely downloadable under Gnu GPL license

e Experiments: Pentium 4, 2.66 GHz, 1 GB RAM

© JPK 32

Verification times

verification time (in ms)

TR G
? o E @
I 2 g
SN E 8 -
WA
IRV Y
|13 8
\ 5| &
Gl ©
AN
20 \
2|3 \
5 \ £\
g |2
£ |7 \
= |\ \ |
\ \ |
\ |
Lok
IA @ /
\
\)
// //M //r/
d./ MuUDU/
oL

oov.m.m

0l-e

0L-G'}

gOkt

mov.m

33

© JPK

Counterexamples

e Counterexamples are of utmost importance:

— diagnostic feedback, the key to abstraction-refinement, schedule synthesis . . .

e LTL: counterexamples are finite paths

— O®: a path leading to a —®-state
— OP: a ~P-path leading to a =P cycle
— BFS yields shortest counterexamples

e Universal CTL\LTL: trees or proof-like counterexample
e Existential CTL: withesses, annotated counterexample

e Probabilistic CTL/LTL:

— what is a counterexample?, how to determine it?, smallest?

© JPK 34

Evidences

s 7= Pep(p)

< notPr{oc e Paths(s) |[c =} < p

< Pr{ocePaths(s) |[c EFp} > p

e An evidence is a finite path starting in s satisfying ¢

e A strongest evidence is an evidence ¢ such that:

Pr{ o } > Pr{o } for any evidence &

© JPK

35

Evidences for so = P_

50 51 3] .
evidences prob.
01 = 850 81 tl 0.2
02 =— S50 S1 Sztl 0.2
0.667 7 0.9
0.1 O3 = Sp S2 11 0.15
o4 = S0 S1 82 19 0.12
(7 2 — S Sot 0.09
X B o R
1 0.2 1
© JPK 36

Strongest evidences

50 51 t :
evidences prob.
o1 = 80 $1 tl 0.2
092 = S50 $1 Sgtl 0.2
0.667 7 0.9
0.1 O3 = Sp S211 0.15
o4 = 80851 82 t2 0.12
u 12 O5 = S S2 b9 0.09
0 T D
1 0.2 1
© JPK 37

Counterexamples

For s = P, (¢p):

e A counterexample is a set C' of evidences such that Pr{C'} > p

— counterexamples are always finite sets (of finite paths)

e A minimal counterexample is a counterexample C' such that:

— |C] < |C’] for any counterexample C'

e A counterexample C' is smallest, most indicative whenever:

— C'is minimal, and Pr{ C } > Pr{ C’ } for any minimal counterexample C’

© JPK

38

Counterexamples for sg (%= Pg%(a Ub)
S0 Sq 131
evidences prob.
o1 =— S50 51 tl 0.2
0.667,70.9 o o2 = Sgs182t1 | 0.2
| 03 =— S0 S2 tl 0.15
to O4 = S0 S1 S92 t2 0.12
0.3
S2U U O =— S0 S2 t2 0.09
1 0.2 1
counterexample | card. | prob.
{0'1,...,0'5} 5 0.76
{0'10r0'2,...,0'5} 4 0.56
{01,02,04} | 3 0.52
{0'1,0'2,0'3} 3 0.55
© JPK 39

Counterexamples for sg = Pg%(a Ub)
S0 Sq 131
evidences prob.
o1 =— S50 51 tl 0.2
0.667,7 0.9 o o2 = sps182t1 | 0.2
| 03 =— S0 S2 tl 0.15
to O4 = S0 S1 S92 t2 0.12
0.3
SzU U O =— S0 S2 t2 0.09
1 0.2 1
counterexample | card. | prob.
{0'1,...,0'5} 5 0.76
{0'10r0'2,...,0'5} 4 0.56
minimal — { 01,092,004} | 3 0.52
minimal — { o1, 092,03} | 3 0.55
© JPK 40

Counterexamples for sg = Pg%(a Ub)
S0 Sq 131
evidences prob.
o1 =— S50 51 tl 0.2
0.667, 0.9 o oo = 89Sy 82t1 | 0.2
| 03 =— S0 S2 tl 0.15
to O4 = S0 S1 S92 t2 0.12
0.3
SzU U O =— S0 S2 t2 0.09
1 0.2 1
counterexample | card. | prob.
{0'1,...,0'5} 5 0.76
{0'10r0'2,...,0'5} 4 0.56
{01,02,04} | 3 0.52
smallest — { o1, 02,03} | 3 0.55
© JPK 41

Adapting the Markov chain

Step 1: make all W-states and all =& N —W-states absorbing

© JPK

42

Adapting a bit more

Step 2: insert a sink state and redirect all outgoing edges of W-states to it

© JPK

43

A weighted digraph

0 log 5

Step 3: turn it into a weighted digraph with w(s, s’) = log (P(s,s’) ")

© JPK

44

Shortest path problems
For finite path o = sg s1 82 ... Sy:

w(o) = w(sg,s1) +w(s1,s2) + ... +w(Sp_1,5n)

1 1
= lOg P(50,51) + lOg P(s1,52) + ..t log P(sp—1,8n)

1
log P(s0,51)-P(s1,52)...-P(spn—1,5n)

= log —Pr{la T

Pr{c} > Pr{o} ifandonlyif w(o) < w(o)

\ >4

in DTMC D in digraE)rh G (D)

© JPK

45

Bellman equations

e Strongest evidence for unbounded until = shortest path

o for bounded until = hop-bounded shortest path

mr(s,v) is the shortest path (if any) from s to v with at most 2 hops:

(

S if v=sand h > 0
Th(s,v) = ¢ L if v£s and h = 0
| arg min, {w (m,—1(s,u) - v) | (u,v) € E} otherwise

© JPK 46

Finding smallest counterexamples

e A counterexample C' is smallest if:

— C'is minimal and Pr{ C } > Pr{ C'} for any minimal C"

e k shortest paths (KSP) problem: find the k¥ SPs between two vertices

l.e., { shortest path, 2nd shortest path, . . . , kth shortest path }

e Well-studied problem in algorithmics

— best known time complexity O(M+N-log N+k) (Eppstein, 1998)
— the recursive enumeration algorithm performs better (Jiménez et. al, 1999)

= The shortest counterexample problem (for h=00) Is a KSP problem

— dynamically determine k: generate C incrementally and haltwhen Pr{ C } > p

© JPK 47

Recursive enumeration (h=co)

7% (s,v) is the k-th shortest path (if any) from s to v:

(s If v=s and k=1

m™(s,v) =<4 L if v£s and k>1

| arg min{w(o) | o € Q*(s,v)} otherwise

Q%(s,v) is a set of candidate paths among which 7% (s, v) is chosen:

"

{ml(s,u) v | (u,v) € E} if k=1, v+#s
or k=2,v=s

(Q* (s, v) = {7 (s,0) - w}) U{FF* (s,0) -0} ifE>1

wk—1(s,v)

Q" (s,v) =

\

© JPK 48

Time complexity

counterexample | shortest path algorithm time complexity
problem problem
SE (h=c0) SP Dijkstra O(M + N-log N)
SE (h#) HSP BF / Viterbi O(h-M)
SC (h=0) KSP Eppstein O(M + N-log N + k)
SC (h#x) HKSP adapted REA | O (h-M + h-k-log N)
N =|S|, M = # transitions, h = hop count, k = # shortest paths

including rewards yields a non-trivial instance of the NP-complete RSP problem

© JPK

49

Traditional model checking

e Bisimulation: (Fisler & Vardi, 1998)

— preserves u-calculus
— ... Obtains significant state space reductions
— ... minimization effort significantly exceeds model checking time

e Advantages:

— fully automated and efficient abstraction technique
— may be tailored to properties-of-interest
— enables compositional minimisation

e Does bisimulation in probabilistic model checking pay off?

© JPK 50

Probabilistic bisimulation

e LetD = (S,P,L) be a DTMC and R an equivalence relation on S
e R is a probabilistic bisimulation on S if for any (s, s’) € R:
L(s)=L(s") and P(s,C) =P(s',C) forall CinS/R
where P(s,C) = > .~ P(s,s") (Larsen & Shou, 1989)

e s ~ s’ if 4 a probabilistic bisimulation R on S with (s,s’) € R

s~s < (VP ePCTL: s =®ifand only if s’ = ®)

© JPK 51

Quotient DTMC under ~

D/~ = (5 ,P' L"), the quotientof D = (S,P, L) under ~:

¢ S'=5/~= {ls]~|s5€ S5}

o P'([s]~,C) =P(s,C)

get D/ ~ by partition-refinement in time O(M-log N + |AP|-N)

(Derisavi et al., 2001)

© JPK

52

© JPK

53

Minimizing Craps

initial partitioning for the atomic propositions AP = { loss }

© JPK

54

A first refinement

refine (“split”) with respect to the set of red states

© JPK

55

A second refinement

refine (“split”) with respect to the set of green states

© JPK

56

Quotient DTMC

© JPK

57

Property-driven bisimulation

e For DTMC D, set I’ of PCTL-formulas, and equivalence R on S
e R is a probabilistic F-bisimulation on S if for any (s, s’) € R:
Lr(s)=Lp(s') and P(s,C) =P(s',C) forall CinS/R
where Lp(s) ={®P e F|sE=®} (Baier et al., 2000)

e s ~p s if 4a probabilistic F-bisimulation R on S with (s,s’) € R

s~ps < (VO € PCTLr : s = ®ifand only if s" = ®)

© JPK 58

Minimization for ® until ¥

e Initial partition for ~: s;y = { s’ | L(s") = L(s) }

— independent of the formula to be checked

e Now: exploit the structure of the formula to be checked

e Bounded until:

—take F ={ V¥V, - O AU, OA -V}
— initial partition IT = { sy, sS—ppr-w, Sat(P A =V) }
— or, for non-recurrent DTMCs: P((® U V) instead of =& A =W

e Standard until:
— take F' = {P>1((I> U \If) IP)<0(CI) U \If) IP)>0(CI) U \If) VAN IP)<1((I> U \If) }

single state in IT single state in IT

© JPK

59

Workstation cluster maverkort et al., 2001)

state space size

107]
/D
o _~_o
//J 7
e
L /'/u /ﬂ
10 /U// ,'/
/O/ - /’/IY
// Jo P
104 ,[,/ ,/ /U
~ 1 7~ O
iy e S
10 ///,O’ o
el —
’/ 4 '
Y L.
107 -l Py
o— "
= = number of stations =
. .. <510 .
state space reductions for P, (minimum U premium)

© JPK 60

Workstation cluster

verification (+ lumping) time (in ms)
5

10
4
1o) 4:7/////
108 — o—
/ ,//I
I~z
102 / /’/
/’(/
)J
10" ?/
T
|
100,¢
o
number of stations
10-10 o o o o o
verification (+ lumping) times (in ms) for P, (minimum U <°*° premium)

© JPK

61

state space reductions for P, (—serve; U

Cyclic polling system e s mivedi, 1089)

state space size

10 —
/ﬂ
/
(@]
i
10 —
/N
/
o]
),/
104 //;
J/
J/
ol
Yy~ -
10 I//L
~
P
/
Jed
10 :?////V n—A}’O’OPO
OV
~ |
by | |)
o— T L 5000
0

o
number of Stations

<1010

serve;) and P.,(—serve; U serve;)

© JPK

62

Cyclic polling system

verification (+ lumping) time (in ms)

10° i
i
/ g
//
-
10%
7
o
-4
103 A ;/C?
= ===,
Pl |
~ 1
~ o
102 A o
{ i z ILI
- A
| P
o | O
A ~
- r
101 A I;.T)é
r/' o
}I
' AT
/\J
100 9:-—‘9
T > O i
Fg ==t
\J
1071
0 0 o 0 T}
~ - ol -
number of stations
<1010

run times for P, (—serve; U

serve;) and P.,(—serve; U serve;)

© JPK

63

Crowds protocol (reier & rubin, 1008)

e A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)

e Hide user’'s communication by random routing within a crowd

— sender selects a crowd member randomly using a uniform distribution
— selected router flips a biased coin:

x With probability 1 — p: direct delivery to final destination

x otherwise: select a next router randomly (uniformly)
— once a routing path has been established, use it until crowd changes

e Rebuild routing paths on crowd changes (R times)

e Probable innocence:

— probability real sender is discovered < 1 if N > —Z4-(c+1)
1

. . . 2
— where N is crowd’s size and c is number of corrupt crowd members

© JPK

64

Crowds protocol

state space size

107
=[]
/74
6 —
10
/, //7
- L =
10 — T
— O~
rv/ l/
T
—

104 |

O
108

N-=-15
102 D}
) N =10
7
number of protocol runs
1
10 ©] © < < ©] © © <
[aV] ™ o <t < o n ©

state space reductions for eventually observer the real sender more than once

© JPK

65

Crowds protocol

verification (+ lumping) time (in ms)

4
10 =y
7 N=1
1\
L~ L~
. A 1 N =15
10 — N =10
1y
X
P)
L~
O
/'// /C/ — N = 1Q
|
/ ~dl _—
2 L~
10 A
yd v
l, /'/'
P |
o P r
O -
/l
o
/] pd
101 -
number of protocol runs

2.8
3.2
3.6
4.8
5.2
5.6

run times for eventually observer the real sender more than once

© JPK

66

It mostly pays off!

e Significant state space reductions

— reduction factors varying from O to 3 orders of magnitude
— property-driven bisimulation yields better results
— ... even after symmetry reduction

e Mostly a reduction of the total verification time

— depends on “denseness” and structure of the Markov chain
— long run: convergence rate of numerical computations
— reward models: huge reductions of verification time (up to 4 orders)

e Possibility to exploit component-wise minimisation

© JPK

67

Overview of the tutorial

e INntroduction

e Discrete-time probabilistic models

— fully probabilistic systems: discrete-time Markov chains
— probabilistic CTL, verification algorithms, counterexamples

e Continuous-time probabilistic models

— fully probabilistic systems: continuous-time Markov chains
— stochastic CTL, verification algorithms, experimental results
— exhibiting non-determinism: continuous-time MDPs

e Stochastic cost models (not today)

— discrete-time and continuous time Markov reward models

© JPK

68

CTMCs

A labeled CTMC C is a quadruple (S, P, E, L) with:

E : S — IR, is the exit-rate function

— E(s)"!isthe average residing time in s

e Interpretation: P(s, s',t) = P(s,s') - (1 — e #())

— the probability to move from state s to s’ within ¢ time units
— 1—e P tis the probability to take some outgoing transition from s within [0, ¢]

e (S,P,L)isthe embedded DTMC of C

= a CTMC is a Kripke structure with randomly timed transitions

© JPK 69

Exponential distribution

Continuous r. v. X Is exponential with parameter A > 0 if its density is

fx(x) =X e ™ forz >0 andO0 otherwise

Cumulative distribution of X:

d
Fx(d) = / e AT dp=1—e M
0

e expectation E[X] = [[“z-Xe " dx =1 -

e variance Var[X] = 15 density function

© JPK 70

Exponential distributions

e Are adequate for many real-life phenomena

— the time until you have your next car accident (failure rates)
— inter-arrival times of jobs, telephone calls, and so on

e Are memoryless: Pr{X >t+d| X >t} = Pr{X > d}, moreover:

- Pr{X = min(X,Y)} = 33,

e Can approximate general distributions arbitrarily closely

e Maximal entropy probability distribution if only the mean is known

© JPK

71

Modelling techniques for CTMCs

e Stochastic Petri nets

e Markovian queueing networks

e Stochastic automata networks

e Stochastic activity networks

e Stochastic process algebra

e Probabilistic input/output automata

and many variants thereof

(Molloy 1977)

(Kleinrock 1975)

(Plateau 1985)

(Meyer & Sanders 1985)

(Herzog et al., Hillston 1993)

(Smolka et al. 1994)

© JPK

72

StOCh aSU C CTL (Aziz et al., 1996, Baier et al., 1999)

State-formulas ¢ = « ’ k% ‘ o v P ’ Sy(P) ‘ Ps(p)
S;(®) probability that @ holds in steady state lies € J
P;(v) probability that paths fulfill ¢ lies € J

Path-formulas ¢ = ®U/' & with interval I
U/ & & holds along the path until U holds attime t € I

CTL operator U is a special cases, viz. for I = [0, co)

© JPK

73

Example properties

e In > 92% of the cases, a goal state is legally reached within 3.1 sec:

P .92 (—illegal US®" goal)

e ... astate is soon reached guaranteeing 0.9999 long-run availability:

P .92 (—illegal US®" S-q.9999 (goal))

e On the long run, illegal states can (almost surely) not be reached in
the next 7.2 time units:

5>0.9999 (P> 1 (ngﬁ iIIegaI))

© JPK 74

Semantics of CSL: state-formulas

C,s = @ if and only if formula ¢ holds in state s of CTMC C

Relation = is defined by:

—

= 0
— ¢ Vv W
= S,(P)

=P;(¢)

Iff
Iff
Iff
Iff
Iff

a € L(s)

not (s = @)

(sE®)or(sE= W)

lim; .o Pr{o € Paths(s) |cQt =®} € J
Pr{oc € Paths(s) |c E ¢} € J

Pr{...} is measurable by a (i.e., cone) Borel space construction on paths ina CTMC

© JPK

75

Semantics of CSL: path-formulas

A path ¢ In CTMC C is an infinite alternating sequence
Sotosyty... with R(Sz, SZ'_|_1) >0 and t; >0

non time-divergent paths have probability zero

Semantics of path-formulas is defined by:

cEoU T iffItel (V' e|0,t).cQt =) A cQt =)

where o @t denotes the state in the path o at time ¢

© JPK 76

Model-checking CSL

e Check which states in a CTMC satisfy a CSL formula:

— compute recursively the set Sat(P) of states that satisfy ®
= recursive descent computation over the parse tree of ®

e For the non-stochastic part: as for CTL

e For all probabilistic formulae not involving a time bound: as for PCTL

— using the embedded DTMC

e How to compute Sat(®) for the timed and S operators?

© JPK 77

Model-checking the steady-state operator

e For an ergodic (i.e., strongly-connected) CTMC:

s € Sat(Sqy(®)) iff Y wy<dp

s'eSat(P)
—> this boils down to a standard steady-state analysis

e For an arbitrary CTMC:

— determine the bottom strongly-connected components (BSCCs)
— for BSCC B determine the steady-state probability of a $-state
— compute the probability to reach BSCC B from state s

— check whether » (Pr{ reach B froms} -)~ w?) < p
B

s’e BNSat(P)

© JPK

78

Verifying steady-state properties: an example

1 3

(@ ®

o, e -

1 2

determine the bottom strongly-connected components

© JPK

79

s = S~¢.75(magenta)

Iff

Prob(s, Catyenow) w1 (magenta)

+ Prob(s, O atyye)-m0t¢(magenta) > 0.75

© JPK

80

Checking time-bounded reachability
e s=P,. y«y()ifandonlyif Prob(s, @ US'W) € J

° P’I“Ob(S, () Ugtqj) IS the least solution of: (Baier, Katoen & Hermanns, 1999)

—1ifsE=U

—ifsE® A U

¢

| Y Ples) BB Proy(s\ 2US T 0) do
0 5 M .

s'es probability to move to probability to fulfill ® U W

state s’ at time x before time t—x from s’

— 0 otherwise

© JPK 81

Reduction to transient analysis

(Baier, Haverkort, Hermanns & Katoen, 2000)
e Make all U- and all - (® Vv W)-states absorbing in C

e Check ¢=t ¥ in the obtained CTMC C’

e This is a standard transient analysis in C:

Z Pr{o € Paths(s) | c@Qt = s’}

s'E=w
— compute by solving linear differential equations, or discretization

=- Discretization + matrix-vector multiplication + Poisson probabilities

© JPK 82

Interval-bounded reachability

e For any path o that fulfills ® Ul:tT 0 with 0 < ¢ < #';

— & holds continuously up to time ¢, and
/
— the suffix of o starting at time ¢ fulfills ® UL%* —t @

e Approach: divide the problem into two:

chlsst) Zﬂ' (s, 8", t'—t)

/ |_ // |_
7 7

check D[O’t] P check ® U[Oat —])
with starting distribution 7€ (¢)

— where C’ equals C with all ®-states absorbing
— and C” equals C with all ¥ and — (® Vv W¥)-states absorbing

© JPK

83

Summary of model checking CSL

(Aziz et al., 1996), (Baier et al., 1999), (Katoen et al., 2001)
e Recursive descent over the parse tree of ¢
e Steady-state operator: graph analysis + linear system(s) of equations

e Time-bounded until: model transformation and uniformisation

e Worst case time-complexity: O(|®|-(| R |-g-tye + | S|*5))
with |®| the length of ®, uniformisation rate g, t,,. the largest time bound in @
e Tools:

E - MC?, PrRiISM, APNN TOoOLBOX, MRMC, 2TOWERS, YMER*, VESTA*

© JPK 84

Markov reward model checker (MRMC)

(Zapreev & Meyer-Kayser, 2000/2005)

e Supports DTMCs, CTMCs and cost-based extensions thereof
— temporal logics: P(R)CTL and CS(R)L
— bounded until, long run properties, and interval bounded until

e Sparse-matrix representation

e Command-line tool (in C)

— experimental platform for new (e.g., reward) techniques
— back-end of GreatSPN, PEPA WB, PRISM and stochastic GG tool
— freely downloadable under Gnu GPL license

e Experiments: Pentium 4, 2.66 GHz, 1 GB RAM

© JPK 85

Verification times

verification time (in ms)

TR G
? o E @
I 2 g
SN E 8 -
WA
IRV Y
|13 8
\ 5| &
Gl ©
AN
20 \
2|3 \
5 \ £\
g |2
£ |7 \
= |\ \ |
\ \ |
\ |
Lok
IA @ /
\
\)
// //M //r/
d./ MuUDU/
oL

oov.m.m

0l-e

0L-G'}

gOkt

mov.m

86

© JPK

Overview of the tutorial

e INntroduction

e Discrete-time probabilistic models

— fully probabilistic systems: discrete-time Markov chains
— probabilistic CTL, verification algorithms, counterexamples

e Continuous-time probabilistic models

— fully probabilistic systems: continuous-time Markov chains
— stochastic CTL, verification algorithms, experimental results
— exhibiting non-determinism: continuous-time MDPs

e Stochastic cost models (not today)

— discrete-time and continuous time Markov reward models

© JPK

87

Scheduling a batch of stochastic jobs

e N jobs with a random duration and M identical machines

— the job’s probability distribution is unknown
— but its mean duration is known
=- assuming exponential distributions (rate ;) is most appropriate

e Jobs maybe preempted at decision epochs

e \Which scheduling policy to take? (Bruno et. al, 1981)

— to minimize the expected total flowtime: SEPT policy
— to minimize the expected finishing time of last job (makespan): LEPT policy
— to maximize the probability to finish all jobs at time ¢: unknown

© JPK 88

Scheduling a batch of stochastic jobs (Vv =4; M = 2)

(123" job 4 finished

A
Pr{Job 4 finishes first} = -
H3t 4

Ha _ : 3
Pr{Job 3 finishes first} =

3+ 4

job 3 finished

© JPK 89

Scheduling a batch of stochastic jobs (Vv =4; M = 2)

job 1 finished

Pr{Job 1 finishes first} = at
o142

Pr{Job 2 finishes first} = a

123

|

22!

M2

job 4 finished

job 3 finished

3

© JPK

90

Scheduling a batch of stochastic jobs (Vv =4; M = 2)

job 1 finished

M1

M1

k2

job 4 finished

K4

(13 job 3 finished
12@ (124
\T’/C>
> "

H2 | p2

\j

@ job 2 finished

© JPK

91

Schedullng a batch of stochastic jobs (Vv = 4; M = 2)
\ s ,°
RN
// "'
c=0 »

Even more reasons for CTMDPs

e They are a key model in:

— stochastic control theory (e.g., dynamic power management)
— stochastic scheduling

e They are the semantic basis for

— (non-well-specified) stochastic activity networks
— generalised stochastic Petri nets (with confusion)
— some Markovian process algebra and stochastic UML statecharts

e Our interests:

— model-checking Continuous Stochastic Logic (CSL)
— abstraction-refinement for continuous-time Markov chains
— stochastic scheduling

© JPK

93

Continuous-time MDP
A CTMDP C is a triple (S, Act, R) with:
e Finite (discrete) set of states S and finite set of actions Act
e A three-dimensional rate matrix R : (S x Act x §) — IR such that

— R(s, a, s’) = \is the rate of a negative exponential distribution

1
Fx()=1—e"" t>0; B[X]=<

such that Act(s) ={a | E(s,a) >0} # o for all s

- E(s,a) =R(s,a,5) = > .5 R(s, o, s") be the exit rate to “leave” s via «

= if |Act| = 1 there is no non-determinism and we obtain a CTMC

© JPK 94

Example

R(sp, o, s2) = 21 and
R(sp, a,80) = 1

E(sgp,«) = 24 and
E(so, 3) = 3.5
P(so, e, s2) = £ and

P(807 O, SO) — ﬁ

example run:

a,2.71 3,0.41 3,2.1
So — So — So — S1

v,17.2 v,0.2 B,
—

S9o — 89 — S3...

© JPK

95

Types of schedulers
e Nondeterminism in a CTMDP is resolved by a scheduler

— Available information? current state (M), # visits (S) or history (H)
— How to decide? deterministic (D) or randomized (R)
— Fairness? (not today)

e The hierarchy of scheduler classes MD, MR, SD, SR, HD and HR:
HR

SR

HD
MR

SD

MD

alternative terminology: tactic, policy, adversary, . . .

© JPK 96

A CTMDP under a HD-scheduler
HD-scheduler D : St — Act on CTMDP C = (S, Act,R)

e Unfold C, resolving the nondeterminism according to D

e Formally, this induces the CTMC Cp = (Sp, Rp) with:
— Sp = ST, unlabeled path fragments sy — s1 — ... — s,_1 — s, IN D
— Rp(o,0 — s) = R(last(o), D(o0), s) and O otherwise

e Mostly infinite, but for MD-schedulers the unfolding is finite:

all sequences ending in s are lumping equivalent

e The embedded DTMC of Cp is a tuple (Sp, Pp) where

/
Pp(o,o0’) = % if Ep(o) > 0 and 0 otherwise

© JPK 97

A CTMDP under a HD-scheduler

choose ¢ if reached via ~
/ after three times (3 in a row choose «
D —
5050 O\Q

808080
80808080 \t>
8080505052 5 5
1 7 \
505050505252

'y

© JPK

98

Problem statement
e CTMDP (S,Act,R) is uniform if
E(s,a) = E for some E > 0 for any state s and any « € Act(s)

= In a uniformized CTMDP the exit rates for all states and all actions are equal

e For a uniform CTMDP, time ¢t > 0, B C S, and s € S, calculate:

<t
sup Pr(s,~ B) up to some accuracy e
pDex D

— where Prp denotes the induced probability measure on paths in CTMC Cp
=- compute the maximal probability to reach — under a given class of schedulers —
a set B of states within ¢ time units when starting in s

© JPK 99

Our approach in a nutshell

e Consider approximations of the required probability

e Consider truncated step-dependent (SD) schedulers

— step-dependent schedulers with a bounded memory (only store first k£ visits)
e Give a simple and efficient greedy algorithm for such schedulers

e Prove that the computed probabilities coincide with the maximal
probabilities under all HD, HR, SD and SR schedulers

© JPK 100

Shifting to the embedded DTMC

e For HD-scheduler D, the probabilities in CTMC Cp are given by:

<t o S —E-t (Et)n n '
(Bro=8)) = D™ Phacis

— p(n) =e F1. (En—t,)n is the probability of n events occurring within ¢ time units

in a Poisson process with rate £

— whereig(o) = 1 if and only if last(c) € B and

Pp(o,0’) iflast(c) € B
1 if o’ = o and last(c) € B
0 otherwise.

— Pp p(o, o) =

© JPK 101

A greedy algorithm — basic idea

e Consider truncated SD-schedulers: D : S x {1...k} — Act

e Construct the optimal one by a “backwards” greedy strategy:

for each s choose the action maximizing the probability to reach B in one step:

select act(s, k) € Act(s) with P(s,act(s, k), B) = max » P(s,a,s)

acACt(s) SeB

use these actions to calculate the last (k£-th) summand of

k
(D w(n) Phy-ip) (s)

continue this way for i=k—1,...,1, i.e., choose act(s,¢) maximizing the

probability to move to a B-state within at most k—i+1 steps (under D)

© JPK

102

k
q; = Z w(n)P’L P’L—I—]_ Pn | B
k
= ¢(i)-Pi-ig + Y (n)-P;i-Piy P, g
n=1t+1
k
= ¢(i)-Pi-ip + Pi- Y p(n) Py P, iz
n=1t+1

= | (i) -P;-ig + P;-qi+1 |Where gz.1 = 0, the O-vector

© JPK 103

Results

e For any state s € S:

sup Pr(s,g B) —e¢ < q(s) < sup Pr(s,g B)
Denp D DeHDp D

e The supremum under SD-, HR-, and HD-schedulers agree:

sup Pr(s,g B) = sup Pr(s,g B) = sup Pr(s,g B)
Desp D DeHp D DeHR D

e Also for SR-schedulers this coincides as SD C SR C HR

— for probabilities of other events such correspondence may not hold (Beutler &
Ross, 1987)
= In general, randomized schedulers may be better than deterministic schedulers

© JPK 104

Timed schedulers

N~
T

_ o TSR
e Timed schedulers may make decisions /\ THD
based on the timing of transitions TMR \HR
e A timed-history dependent, deterministic SR 1op
(THD) scheduler:
CTMI) HD
— D : (S x Act x IR5¢)* x S — Act with MR - \>
a(,tp O 1tp—1 SD
— D(sog — ... — ., 8,) €EACt(sy) /
timed?ﬁistory

MD

Hierarchy of
scheduler classes

© JPK 105

A simple example

2
73 N‘
2% 0"

HD-scheduler D, chooses «; Dg chooses 3

t
Forxe{a,0}: Er(so,g B) = / 2. e 2(t-2) -gr(sl,g B) dx
* 0

*

with _
PI’DQ(Sla’g> {s3}) = 1-—e' and
Prp,(s1,~ {s3}) = 1—e 2(1+2¢)

© JPK 106

l ey &
o)
>
=
= 08 |
O
@®
Q 1
2 06 '
s ° :
1
1
1
0.4 |- ;
1
1
1
1
0.2 F ;
1
; time ¢
1
%0 ols |1 . 1|5 |2 2|5 |3 3|5 4
. ty * . .

5 ift—x = 1o

v,x .
D, and Dg are outperformed by D(syp — s1) = { o otherwise

© JPK 107

Another simple example

2
B
2|y
1
<t —t
PrDa(SOf\”} {82 }) = l—e) and
PrDﬁ(so,g {s2}) = 1—e%(1+2t)

= If you know the # loops in sg the probability may be higher

© JPK

108

Simple schedulers may be worse

0.9
0.85 -
SH
>
=
5 0.8
®©
0
o
S
o 0.75 |
0.7
0.65 -
— » timet
06 y 1 1 1 1
0.8 1 1.2 1.4 1.6 1.8

if t=tg
D, and Dg are outperformed by D (sg, i) = { g If;thgerk/viéej

© JPK 109

Time-bounded reachability in CTMDPs

e Problem:

— compute the maximal (or minimal) probability to reach a set of states
within ¢ time units in a (uniform) CTMDP

e Results:

— simple greedy algorithm for truncated step-dependent schedulers
— SD, SR, (fair) HD, and HR schedulers perform exactly the same
— MD schedulers are “worse” and timed schedulers may be more optimal

e Space and time-complexity:

— space complexity in O (N°-M + N), where N = # states, M = # actions
— worst-case time complexity in O (E-t-N?- M) where E is maximal exit rate
— worst-case time complexity in O(E-t-N?) for timed reachability in CTMCs

= price to pay is the amount of nondeterminism, but no more!

© JPK 110

Probabilistic model checking

o IS a mature automated technigue

o broad range of applications

o IS supported by powerful software tools
o significant efficiency gain

o promising abstraction techniques

o possibilitity of counterexamples

© JPK 111

