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Probabilities help

• When analysing system performance and dependability

– to quantify arrivals, waiting times, time between failure, QoS, ...

• When modelling uncertainty in the environment

– to quantify environmental factors in decision support
– to quantify unpredictable delays, express soft deadlines, ...

• When building protocols for networked embedded systems

– randomized algorithms

• When analysing large populations

– number of nodes in the internet, number of end-users, ...
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Probability elsewhere

• In performance modelling (Erlang, 1907)

– models: typically continuous-time Markov chains

– emphasis on steady-state and transient measures

• In stochastic control theory and operations research (Bellman, 1957)

– models: typically discrete-time Markov decision models

– emphasis on finding optimal policies for average measures

• Our focus: model checking Markov chains

– temporal logic ⇒ unambiguous and precise measure-specification
– model-checking techniques ⇒ no expert algorithmic knowledge needed
– complex (new) measures are concisely specified and automatically verified
– exchanging techniques with the other two areas
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Probabilistic verification so far

• Termination of probabilistic programs (Hart, Sharir & Pnueli, 1983)

– does a probabilistic program terminate with probability one?

• Markov decision processes (Courcoubetis & Yannakakis, 1988)

– does a certain (linear) temporal logic formula hold with probability p?

• Discrete-time Markov chains (Hansson & Jonsson, 1990)

– can we reach a goal state via a given trajectory with probability p?

• Discrete-time Markov decision processes (Bianco & de Alfaro, 1995)

– what is the maximal (or minimal) probability of doing this?

• Continuous-time Markov chains (Baier, Katoen & Hermanns, 1999)

– can we do so within a given time interval I?
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What is probabilistic model checking?
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Characteristics

• What is inside?

– temporal logics and model checking
– numerical and optimisation techniques from performance and OR

• What can be checked?

– time-bounded reachability, long-run averages, safety and liveness

• What is its usage?

– powerful tools: PRISM (4,000 downloads), MRMC, Petri net tools, Probmela
– applications: distributed systems, security, biology, quantum computing . . .
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Characteristics

• What is inside?

– temporal logics and model checking
– numerical and optimisation techniques from performance and OR

• What can be checked?

– time-bounded reachability, long-run averages, safety and liveness

• What is its usage?

– powerful tools: PRISM (4,000 downloads), MRMC, Petri net tools, Probmela
– applications: distributed systems, security, biology, quantum computing . . .

• What are its deficiencies?

– limited (automated) abstraction techniques
– limited diagnostic feedback in case of property refutation
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Overview of the tutorial

• Introduction

• Discrete-time probabilistic models

– fully probabilistic systems: discrete-time Markov chains
– probabilistic CTL, verification algorithms, counterexamples

• Continuous-time probabilistic models

– fully probabilistic systems: continuous-time Markov chains
– stochastic CTL, verification algorithms, experimental results
– exhibiting non-determinism: continuous-time MDPs

• Stochastic cost models (not today)

– discrete-time and continuous time Markov reward models
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Finite labeled DTMCs

A labeled DTMC D is a triple (S,P, L) with:

• S, a finite set of states

• P : S × S → [0, 1], a probability matrix with
∑

s′ P(s, s′) = 1

– P(s, s′) is the probability to jump from s to s′ in one step
– s is absorbing if P(s, s) = 1

• L : S → 2AP , the labelling function

– L(s) is the set of atomic propositions that are valid in s

⇒ a DTMC is a Kripke structure with only probabilistic transitions
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Craps
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Craps

• Roll two dice and bet on outcome

• Come-out roll (“pass line” wager):

– outcome 7 or 11: win
– outcome 2, 3, and 12: loss (“craps”)
– any other outcome: roll again (outcome is “point”)

• Repeat until 7 or the “point” is thrown:

– outcome 7: loss (“seven-out”)
– outcome the point: win
– any other outcome: roll again
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A DTMC model of Craps
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Address assignment in IPv4

• IPv4 is aimed at plug-and-play networks for domestic appliances

• New devices must get a unique IP address in an automated way

• This is done by the IPv4 zeroconf protocol (proposed by IETF)

– randomly select one of the 65,024 possible addresses
– loop: as long as # sent probes < n

∗ broadcast probe “who is using this address?”
∗ receive reply? → go back to initial step of protocol
∗ receive no reply within r > 0 time units

· # sent probes = n? → use selected address
· # sent probes < n? → repeat loop

(Cheshire, Adoba & Guttman, 2001)
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The probabilistic host behaviour
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Probabilistic CTL (Hansson & Jonsson, 1990)

• For a ∈ AP , J ⊆ [0, 1] an interval with rational bounds, and natural n:

Φ ::= true
∣∣ a ∣∣ Φ ∧ Φ

∣∣ ¬Φ
∣∣ PJ(ϕ)

ϕ ::= Φ1 U Φ2

∣∣ Φ1 U�n Φ2

• s0s1s2 . . . |= Φ U�nΨ if Φ holds until Ψ holds within n steps

• s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J

abbreviate P[0,0.5](ϕ) by P�0.5(ϕ) and P]0,1](ϕ) by P>0(ϕ)
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Derived operators

�Φ = true UΦ

��nΦ = true U �nΦ

P�p(�Φ) = P�1−p(�¬Φ)

P]p,q](��nΦ) = P[1−q,1−p[(��n¬Φ)

operators like weak until W or release R can be derived analogously
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Example properties

• Transient probabilities: P� 0.92

(
�=137 goal

)
• With probability � 0.92, a goal state is reached legally:

P� 0.92 (¬ illegal U goal)

• . . . in maximally 137 steps: P� 0.92

(¬ illegal U� 137 goal
)

• . . . once there, remain there almost always for the next 31 jumps:

P� 0.92

(
¬ illegal U � 137

P=1(�[0,31] goal)
)
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PCTL semantics (1)

D, s |= Φ if and only if formula Φ holds in state s of DTMC D

Relation |= is defined by:

s |= a iff a ∈ L(s)

s |= ¬Φ iff not (s |= Φ)

s |= Φ ∨ Ψ iff (s |= Φ) or (s |= Ψ)

s |= PJ(ϕ) iff Pr(s |= ϕ) ∈ J

where Pr(s |= ϕ) = Prs{π ∈ Paths(s) | π |= ϕ}
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PCTL semantics (2)

A path in D is an infinite sequence s0 s1 s2 . . . with P(si, si+1) > 0

Semantics of path-formulas is defined as in CTL:

π |= Φ UΨ iff ∃n � 0.( sn |= Ψ ∧ ∀0 � i < n. si |= Φ )

π |= Φ U�nΨ iff ∃k � 0.( k � n ∧ sk |= Ψ∧
∀0 � i < k. si |= Φ )

For any PCTL path formula ϕ and state s of DTMC D
the set {π ∈ Paths(s) | π |= ϕ} is measurable

c© JPK 18



PCTL model checking

• Check whether state s in a DTMC satisfies a PCTL formula:

– compute recursively the set Sat(Φ) of states that satisfy Φ

– check whether state s belongs to Sat(Φ)

⇒ bottom-up traversal of the parse tree of Φ (like for CTL)

• For the propositional fragment: as for CTL

• How to compute Sat(Φ) for the probabilistic operators?
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Checking probabilistic reachability

• s |= PJ(Φ U �hΨ) if and only if Prob(s,Φ U �hΨ) ∈ J

• Prob(s,Φ U �hΨ) is the least solution of: (Hansson & Jonsson, 1990)

– 1 if s |= Ψ

– for h > 0 and s |= Φ∧¬Ψ:X
s′∈S

P(s, s
′
) · Prob(s′,Φ U

�h−1
Ψ)

– 0 otherwise

• Standard reachability for P>0(Φ U �hΨ) and P�1(Φ U �hΨ)

– for efficiency reasons (avoiding solving system of linear equations)
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Reduction to transient analysis

• Make all Ψ- and all ¬ (Φ ∨ Ψ)-states absorbing in D

• Check �=hΨ in the obtained DTMC D′

• This is a standard transient analysis in D′:X
s′|=Ψ

Pr
s
{π ∈ Paths(s) | σ[h] = s

′}

– compute by (P′)h·ιΨ where ιΨ is the characteristic vector of Sat(Ψ)

⇒ Matrix-vector multiplication
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Summary of model-checking DTMCs
(Hansson & Jonsson, 1990)

• Recursive descent over parse tree of Φ

• Probabilistic (bounded) reachability:

– graph analysis to obtain states with positive probability to reach Ψ

– solving a linear equation system, or matrix-vector multiplication

• Worst case time-complexity:

O(|Φ|·kmax·|S |·|P |)

|Φ| the length of Φ and kmax the largest bound ( �= ∞) of an until in Φ

• Tools: TPWB, PROBVERUS, E 
 MC2 , PRISM, MRMC, APMC∗
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A synchronous leader election protocol

• A round-based protocol in a synchronous ring of N > 2 nodes

– the nodes proceed in a lock-step fashion
– each slot = 1 message is read + 1 state change + 1 message is sent

⇒ this synchronous computation yields a DTMC!

• Each round starts by each node choosing a uniform id ∈ { 1, . . . , K }

• Nodes pass their selected id around the ring

• If there is a unique id, the node with the maximum unique id is leader

• If not, start another round and try again . . .

(Itai & Rodeh, 1990) c© PRISM web-page
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Leader election
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probabilistically choose an id from [1...K]
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Leader election
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Leader election
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Leader election
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Leader election
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End of 1st round
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Start a new round

choose 1choose 1

choose 3

choose 1

choose 1

choose 51

choose 3

new round and new chances!
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Probability to elect a leader within L rounds

P�q(�
�(N+1)·L leader elected) c© PRISM web-page
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Markov reward model checker (MRMC)
(Zapreev & Meyer-Kayser, 2000/2005)

• Supports DTMCs, CTMCs and cost-based extensions thereof

– temporal logics: P(R)CTL and CS(R)L
– bounded until, long run properties, and interval bounded until

• Sparse-matrix representation

• Command-line tool (in C)

– experimental platform for new (e.g., reward) techniques
– back-end of GreatSPN, PEPA WB, PRISM and stochastic GG tool
– freely downloadable under Gnu GPL license

• Experiments: Pentium 4, 2.66 GHz, 1 GB RAM
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Verification times
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Counterexamples

• Counterexamples are of utmost importance:

– diagnostic feedback, the key to abstraction-refinement, schedule synthesis . . .

• LTL: counterexamples are finite paths

– �Φ: a path leading to a ¬Φ-state
– �Φ: a ¬Φ-path leading to a ¬Φ cycle
– BFS yields shortest counterexamples

• Universal CTL\LTL: trees or proof-like counterexample

• Existential CTL: witnesses, annotated counterexample

• Probabilistic CTL/LTL:

– what is a counterexample?, how to determine it?, smallest?
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Evidences

s �|= P�p(ϕ)

⇔ not Pr{σ ∈ Paths(s) | σ |= ϕ } � p

⇔ Pr{σ ∈ Paths(s) | σ |= ϕ } > p

• An evidence is a finite path starting in s satisfying ϕ

• A strongest evidence is an evidence σ such that:

Pr{σ } � Pr{ bσ } for any evidence bσ
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Evidences for s0 �|= P�1
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Strongest evidences
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Counterexamples

For s �|= P�p(ϕ):

• A counterexample is a set C of evidences such that Pr{C } > p

– counterexamples are always finite sets (of finite paths)

• A minimal counterexample is a counterexample C such that:

– |C| � |C ′| for any counterexample C ′

• A counterexample C is smallest, most indicative whenever:

– C is minimal, and Pr{C } � Pr{C ′ } for any minimal counterexample C ′
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Counterexamples for s0 �|= P�1
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Counterexamples for s0 �|= P�1
2
(aU b)

0.9
0.1

11

0.3 0.667

0.333

0.3

0.1

0.2

s0 s1

s2

t1
0.6

u t2

0.5

evidences prob.
σ1 = s0 s1 t1 0.2

σ2 = s0 s1 s2 t1 0.2

σ3 = s0 s2 t1 0.15

σ4 = s0 s1 s2 t2 0.12

σ5 = s0 s2 t2 0.09

counterexample card. prob.
{σ1, . . . , σ5 } 5 0.76

{σ1 or σ2, . . . , σ5 } 4 0.56

minimal −→ {σ1, σ2, σ4 } 3 0.52

minimal −→ {σ1, σ2, σ3 } 3 0.55

c© JPK 40



Counterexamples for s0 �|= P�1
2
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Adapting the Markov chain
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Adapting a bit more
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A weighted digraph
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Shortest path problems

For finite path σ = s0 s1 s2 . . . sn:

w(σ) = w(s0, s1) + w(s1, s2) + . . .+ w(sn−1, sn)

= log 1
P(s0,s1)

+ log 1
P(s1,s2)

+ . . .+ log 1
P(sn−1,sn)

= log 1
P(s0,s1)·P(s1,s2)·...·P(sn−1,sn)

= log 1
Pr{σ }

Pr{ σ̂ } � Pr{σ }︸ ︷︷ ︸
in DTMC D

if and only if w(σ̂) � w(σ)︸ ︷︷ ︸
in digraph G(D)
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Bellman equations

• Strongest evidence for unbounded until = shortest path

• for bounded until = hop-bounded shortest path

πh(s, v) is the shortest path (if any) from s to v with at most h hops:

πh(s, v) =




s if v=s and h � 0

⊥ if v �=s and h = 0

arg minu
{
w (πh−1(s, u) · v) | (u, v) ∈ E

}
otherwise
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Finding smallest counterexamples

• A counterexample C is smallest if:

– C is minimal and Pr{C } � Pr{C ′ } for any minimal C ′

• k shortest paths (KSP) problem: find the k SPs between two vertices

i.e., { shortest path, 2nd shortest path, . . . , kth shortest path }

• Well-studied problem in algorithmics

– best known time complexity O(M+N · logN+k) (Eppstein, 1998)

– the recursive enumeration algorithm performs better (Jiménez et. al, 1999)

⇒ The shortest counterexample problem (for h=∞) is a KSP problem

– dynamically determine k: generateC incrementally and halt when Pr{C } > p
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Recursive enumeration (h=∞)

πk(s, v) is the k-th shortest path (if any) from s to v:

πk(s, v) =




s if v=s and k=1

⊥ if v �=s and k>1

arg min
{
w(σ) | σ ∈ Qk(s, v)

}
otherwise

Qk(s, v) is a set of candidate paths among which πk(s, v) is chosen:

Qk(s, v) =




{π1(s, u) · v | (u, v) ∈ E } if k=1, v �=s
or k=2, v=s(

Qk−1(s, v) − {πk′(s, u) · v︸ ︷︷ ︸
πk−1(s,v)

}) ∪ {πk′+1(s, u) · v } if k>1
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Time complexity

counterexample shortest path algorithm time complexity
problem problem

SE (h=∞) SP Dijkstra O(M +N · logN)

SE (h�=∞) HSP BF / Viterbi O(h·M)

SC (h=∞) KSP Eppstein O(M +N · logN + k)

SC (h�=∞) HKSP adapted REA O (h·M + h·k· logN)

N = |S|, M = # transitions, h = hop count, k = # shortest paths

including rewards yields a non-trivial instance of the NP-complete RSP problem
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Traditional model checking

• Bisimulation: (Fisler & Vardi, 1998)

– preserves µ-calculus
– . . . obtains significant state space reductions
– . . . minimization effort significantly exceeds model checking time

• Advantages:

– fully automated and efficient abstraction technique
– may be tailored to properties-of-interest
– enables compositional minimisation

• Does bisimulation in probabilistic model checking pay off?
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Probabilistic bisimulation

• Let D = (S,P, L) be a DTMC and R an equivalence relation on S

• R is a probabilistic bisimulation on S if for any (s, s′) ∈ R:

L(s) = L(s′) and P(s, C) = P(s′, C) for all C in S/R

where P(s, C) =
∑

s′∈C P(s, s′) (Larsen & Shou, 1989)

• s ∼ s′ if ∃ a probabilistic bisimulation R on S with (s, s′) ∈ R

s ∼ s′ ⇔ (∀Φ ∈ PCTL : s |= Φ if and only if s′ |= Φ)
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Quotient DTMC under ∼

D/∼ = (S′,P′, L′), the quotient of D = (S,P, L) under ∼:

• S′ = S/∼= { [s]∼ | s ∈ S }

• P′([s]∼, C) = P(s, C)

• L′([s]∼) = L(s)

get D/∼ by partition-refinement in time O(M · logN + |AP |·N) (Derisavi et al., 2001)
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A DTMC model of Craps
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Minimizing Craps
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A first refinement

1
9

1 1

3
4

13
18

13
18

25
36

25
36

1
12

1
12 5

36
5
36

1
9

1
9

4 10 5 9 6 8

1
12

1
12

1
9

1
9

5
36

5
36

1
6

1
6

1
6

1
6 1

6 1
6

3
4

2
9

refine (“split”) with respect to the set of red states

c© JPK 55



A second refinement
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Quotient DTMC
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Property-driven bisimulation

• For DTMC D, set F of PCTL-formulas, and equivalence R on S

• R is a probabilistic F -bisimulation on S if for any (s, s′) ∈ R:

LF (s) = LF (s′) and P(s, C) = P(s′, C) for all C in S/R

where LF (s) = {Φ ∈ F | s |= Φ } (Baier et al., 2000)

• s ∼F s′ if ∃ a probabilistic F -bisimulation R on S with (s, s′) ∈ R

s ∼F s′ ⇔ (∀Φ ∈ PCTLF : s |= Φ if and only if s′ |= Φ)
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Minimization for Φ until Ψ

• Initial partition for ∼: sΠ = { s′ | L(s′) = L(s) }
– independent of the formula to be checked

• Now: exploit the structure of the formula to be checked

• Bounded until:

– take F = {Ψ,¬Φ ∧ ¬Ψ,Φ ∧ ¬Ψ }
– initial partition Π = { sΨ, s¬Φ∧¬Ψ, Sat(Φ ∧ ¬Ψ) }
– or, for non-recurrent DTMCs: P�0(Φ U Ψ) instead of ¬Φ ∧ ¬Ψ

• Standard until:

– take F = { P�1(Φ U Ψ)| {z }
single state in Π

, P�0(Φ U Ψ)| {z }
single state in Π

, P>0(Φ U Ψ) ∧ P<1(Φ U Ψ) }
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Workstation cluster (Haverkort et al., 2001)
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Workstation cluster
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Cyclic polling system (Ibe & Trivedi, 1989)
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Cyclic polling system
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Crowds protocol (Reiter & Rubin, 1998)

• A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)

• Hide user’s communication by random routing within a crowd

– sender selects a crowd member randomly using a uniform distribution
– selected router flips a biased coin:

∗ with probability 1 − p: direct delivery to final destination
∗ otherwise: select a next router randomly (uniformly)

– once a routing path has been established, use it until crowd changes

• Rebuild routing paths on crowd changes (R times)

• Probable innocence:

– probability real sender is discovered < 1
2 if N � p

p−1
2
·(c+1)

– where N is crowd’s size and c is number of corrupt crowd members
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Crowds protocol
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Crowds protocol
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It mostly pays off!

• Significant state space reductions

– reduction factors varying from 0 to 3 orders of magnitude
– property-driven bisimulation yields better results
– . . . even after symmetry reduction

• Mostly a reduction of the total verification time

– depends on “denseness” and structure of the Markov chain
– long run: convergence rate of numerical computations
– reward models: huge reductions of verification time (up to 4 orders)

• Possibility to exploit component-wise minimisation
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Overview of the tutorial

• Introduction

• Discrete-time probabilistic models

– fully probabilistic systems: discrete-time Markov chains
– probabilistic CTL, verification algorithms, counterexamples

• Continuous-time probabilistic models

– fully probabilistic systems: continuous-time Markov chains
– stochastic CTL, verification algorithms, experimental results
– exhibiting non-determinism: continuous-time MDPs

• Stochastic cost models (not today)

– discrete-time and continuous time Markov reward models
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CTMCs

A labeled CTMC C is a quadruple (S,P, E, L) with:

E : S → IR�0 is the exit-rate function

– E(s)−1 is the average residing time in s

• Interpretation: P(s, s′, t) = P(s, s′) · (1 − e−E(s)·t)
– the probability to move from state s to s′ within t time units
– 1−e−E(s)·t is the probability to take some outgoing transition from s within [0, t]

• (S,P, L) is the embedded DTMC of C

⇒ a CTMC is a Kripke structure with randomly timed transitions
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Exponential distribution

Continuous r. v. X is exponential with parameter λ > 0 if its density is

fX(x) = λ·e−λ·x for x > 0 and 0 otherwise

Cumulative distribution of X :

FX(d) =
∫ d

0

λ·e−λ·x dx = 1 − e−λ·d

• expectation E[X] =
R∞

0
x·λ·e−λ·x dx = 1

λ

• variance Var[X] = 1
λ2
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Exponential distributions

• Are adequate for many real-life phenomena

– the time until you have your next car accident (failure rates)
– inter-arrival times of jobs, telephone calls, and so on

• Are memoryless: Pr{X > t+ d | X > t} = Pr{X > d}, moreover:

– Pr{X = min(X, Y )} = λ
λ+µ

• Can approximate general distributions arbitrarily closely

• Maximal entropy probability distribution if only the mean is known
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Modelling techniques for CTMCs

• Stochastic Petri nets (Molloy 1977)

• Markovian queueing networks (Kleinrock 1975)

• Stochastic automata networks (Plateau 1985)

• Stochastic activity networks (Meyer & Sanders 1985)

• Stochastic process algebra (Herzog et al., Hillston 1993)

• Probabilistic input/output automata (Smolka et al. 1994)

and many variants thereof
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Stochastic CTL (Aziz et al., 1996, Baier et al., 1999)

State-formulas Φ ::= a | ¬Φ | Φ ∨ Φ | SJ(Φ) | PJ(ϕ)

SJ(Φ) probability that Φ holds in steady state lies ∈ J

PJ(ϕ) probability that paths fulfill ϕ lies ∈ J

Path-formulas ϕ ::= ΦUI Φ with interval I

Φ UI Ψ Φ holds along the path until Ψ holds at time t ∈ I

CTL operator U is a special cases, viz. for I = [0,∞)
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Example properties

• In � 92% of the cases, a goal state is legally reached within 3.1 sec:

P� 0.92

(¬ illegal U� 3.1 goal
)

• . . . a state is soon reached guaranteeing 0.9999 long-run availability:

P� 0.92

(¬ illegal U�0.7
S�0.9999 (goal)

)

• On the long run, illegal states can (almost surely) not be reached in
the next 7.2 time units:

S�0.9999

(
P� 1

(
��7.2¬ illegal

))
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Semantics of CSL: state-formulas

C, s |= Φ if and only if formula Φ holds in state s of CTMC C

Relation |= is defined by:

s |= a iff a ∈ L(s)

s |= ¬Φ iff not (s |= Φ)

s |= Φ ∨ Ψ iff (s |= Φ) or (s |= Ψ)

s |= SJ(Φ) iff limt→∞ Pr{σ ∈ Paths(s) | σ@t |= Φ } ∈ J

s |= PJ(ϕ) iff Pr{σ ∈ Paths(s) | σ |= ϕ } ∈ J

Pr{. . .} is measurable by a (i.e., cone) Borel space construction on paths in a CTMC
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Semantics of CSL: path-formulas

A path σ in CTMC C is an infinite alternating sequence

s0 t0 s1 t1 . . . with R(si, si+1) > 0 and ti � 0

non time-divergent paths have probability zero

Semantics of path-formulas is defined by:

σ |= Φ UI Ψ iff ∃t ∈ I. ((∀t′ ∈ [0, t). σ@t′ |= Φ) ∧ σ@t |= Ψ)

where σ@t denotes the state in the path σ at time t
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Model-checking CSL

• Check which states in a CTMC satisfy a CSL formula:

– compute recursively the set Sat(Φ) of states that satisfy Φ

⇒ recursive descent computation over the parse tree of Φ

• For the non-stochastic part: as for CTL

• For all probabilistic formulae not involving a time bound: as for PCTL

– using the embedded DTMC

• How to compute Sat(Φ) for the timed and S operators?
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Model-checking the steady-state operator

• For an ergodic (i.e., strongly-connected) CTMC:

s ∈ Sat(S�p(Φ)) iff
∑

s′∈Sat(Φ)

πs′ � p

=⇒ this boils down to a standard steady-state analysis

• For an arbitrary CTMC:

– determine the bottom strongly-connected components (BSCCs)
– for BSCC B determine the steady-state probability of a Φ-state
– compute the probability to reach BSCC B from state s

– check whether
X
B

0@Pr{ reach B from s } ·
X

s′∈B∩Sat(Φ)

πBs′

1A � p
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Verifying steady-state properties: an example

1

1

6

3 1 2

3

1

determine the bottom strongly-connected components
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Verifying steady-state properties: an example

1

1

6

3 1 2

3

1

s |= S>0.75(magenta) iff Prob(s,�atyellow)·πyellow(magenta)

+Prob(s,�atblue)·πblue(magenta) > 0.75
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Checking time-bounded reachability

• s |= P
JΦ U�tΨ( ) if and only if Prob(s,Φ U�tΨ) ∈ J

• Prob(s,Φ U�tΨ) is the least solution of: (Baier, Katoen & Hermanns, 1999)

– 1 if s |= Ψ

– if s |= Φ ∧ ¬Ψ:

∫ t

0

∑
s′∈S

P(s, s′) · E(s) · e−E(s)·x︸ ︷︷ ︸
probability to move to

state s′ at time x

· Prob(s′,Φ U�t−xΨ)︸ ︷︷ ︸
probability to fulfill Φ UΨ
before time t−x from s′

dx

– 0 otherwise
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Reduction to transient analysis

(Baier, Haverkort, Hermanns & Katoen, 2000)

• Make all Ψ- and all ¬ (Φ ∨ Ψ)-states absorbing in C

• Check �=tΨ in the obtained CTMC C′

• This is a standard transient analysis in C′:X
s′|=Ψ

Pr{σ ∈ Paths(s) | σ@t = s
′}

– compute by solving linear differential equations, or discretization

⇒ Discretization + matrix-vector multiplication + Poisson probabilities
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Interval-bounded reachability

• For any path σ that fulfills Φ U[t,t′] Ψ with 0 < t � t′:

– Φ holds continuously up to time t, and
– the suffix of σ starting at time t fulfills Φ U[0,t′−t] Ψ

• Approach: divide the problem into two:

∑
s′|=Φ

πC′
(s, s′, t)

︸ ︷︷ ︸
check �[0,t] Φ

·
∑
s′′|=Ψ

πC′′
(s′, s′′, t′−t)

︸ ︷︷ ︸
check Φ U[0,t′−t] Ψ

with starting distribution πC′
(t)

– where C′ equals C with all Φ-states absorbing
– and C′′ equals C with all Ψ and ¬ (Φ ∨ Ψ)-states absorbing

c© JPK 83



Summary of model checking CSL

(Aziz et al., 1996), (Baier et al., 1999), (Katoen et al., 2001)

• Recursive descent over the parse tree of Φ

• Steady-state operator: graph analysis + linear system(s) of equations

• Time-bounded until: model transformation and uniformisation

• Worst case time-complexity: O(|Φ|·(|R |·q·tmax + |S |2.81))
with |Φ| the length of Φ, uniformisation rate q, tmax the largest time bound in Φ

• Tools:

E � MC2 , PRISM, APNN TOOLBOX, MRMC, 2TOWERS, YMER∗, VESTA∗
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Markov reward model checker (MRMC)
(Zapreev & Meyer-Kayser, 2000/2005)

• Supports DTMCs, CTMCs and cost-based extensions thereof

– temporal logics: P(R)CTL and CS(R)L
– bounded until, long run properties, and interval bounded until

• Sparse-matrix representation

• Command-line tool (in C)

– experimental platform for new (e.g., reward) techniques
– back-end of GreatSPN, PEPA WB, PRISM and stochastic GG tool
– freely downloadable under Gnu GPL license

• Experiments: Pentium 4, 2.66 GHz, 1 GB RAM
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Verification times
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Overview of the tutorial

• Introduction

• Discrete-time probabilistic models

– fully probabilistic systems: discrete-time Markov chains
– probabilistic CTL, verification algorithms, counterexamples

• Continuous-time probabilistic models

– fully probabilistic systems: continuous-time Markov chains
– stochastic CTL, verification algorithms, experimental results
– exhibiting non-determinism: continuous-time MDPs

• Stochastic cost models (not today)

– discrete-time and continuous time Markov reward models
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Scheduling a batch of stochastic jobs

• N jobs with a random duration and M identical machines

– the job’s probability distribution is unknown
– but its mean duration is known

⇒ assuming exponential distributions (rate µi) is most appropriate

• Jobs maybe preempted at decision epochs

• Which scheduling policy to take? (Bruno et. al, 1981)

– to minimize the expected total flowtime: SEPT policy
– to minimize the expected finishing time of last job (makespan): LEPT policy
– to maximize the probability to finish all jobs at time t: unknown
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Scheduling a batch of stochastic jobs (N = 4;M = 2)

123

1234

134

234 124

job 4 finished

µ3

µ4

Pr{Job 4 finishes first} =
µ4

µ3+µ4

Pr{Job 3 finishes first} =
µ3

µ3+µ4

job 3 finished
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Scheduling a batch of stochastic jobs (N = 4;M = 2)

123

1234

134

234 124

job 4 finished

job 3 finished

µ3

job 2 finished

job 1 finished

µ2

µ4

Pr{Job 1 finishes first} =
µ1

µ1+µ2

Pr{Job 2 finishes first} =
µ2

µ1+µ2

µ1
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Scheduling a batch of stochastic jobs (N = 4;M = 2)

123

1234

134

234 124

job 4 finished

job 2 finished

µ2 µ2

job 1 finished job 3 finished

µ4

µ2

µ3

µ3

µ3

µ1

µ1

µ1

µ4µ4
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Scheduling a batch of stochastic jobs (N = 4;M = 2)

1234

123

124

234

1423

34

24

12

13

134 3

4

1

2

⇒ this is a continuous-time Markov decision process
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Even more reasons for CTMDPs

• They are a key model in:

– stochastic control theory (e.g., dynamic power management)
– stochastic scheduling

• They are the semantic basis for

– (non-well-specified) stochastic activity networks
– generalised stochastic Petri nets (with confusion)
– some Markovian process algebra and stochastic UML statecharts

• Our interests:

– model-checking Continuous Stochastic Logic (CSL)
– abstraction-refinement for continuous-time Markov chains
– stochastic scheduling
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Continuous-time MDP

A CTMDP C is a triple (S,Act,R) with:

• Finite (discrete) set of states S and finite set of actions Act

• A three-dimensional rate matrix R : (S × Act × S) → IR�0 such that

– R(s, α, s′) = λ is the rate of a negative exponential distribution

FX(t) = 1 − e−λ·t, t � 0; E[X] =
1

λ

such that Act(s) = {α | E(s, α) > 0 } �= ∅ for all s

– E(s, α) = R(s, α, S) =
P

s′∈S R(s, α, s′) be the exit rate to “leave” s via α

⇒ if |Act| = 1 there is no non-determinism and we obtain a CTMC
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Example

s0
s2

s1

s3

β

β

α

α

α β

γ

γ

2
21

1

1

2

0.5

21

3

• R(s0, α, s2) = 21 and

R(s0, α, s0) = 1

• E(s0, α) = 24 and

E(s0, β) = 3.5

• P(s0, α, s2) = 7
8 and

P(s0, α, s0) = 1
24

• example run:

s0
α,2.71→ s0

β,0.41→ s0
β,2.1→ s1

γ,17.2→ s2
γ,0.2→ s2

β,π→ s3 . . .
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Types of schedulers
• Nondeterminism in a CTMDP is resolved by a scheduler

– Available information? current state (M), # visits (S) or history (H)
– How to decide? deterministic (D) or randomized (R)
– Fairness? (not today)

• The hierarchy of scheduler classes MD, MR, SD, SR, HD and HR:

MD

SD

HD

HR

SR

MR

alternative terminology: tactic, policy, adversary, . . .

c© JPK 96



A CTMDP under a HD-scheduler
HD-scheduler D : S+ → Act on CTMDP C = (S,Act,R)

• Unfold C, resolving the nondeterminism according to D

• Formally, this induces the CTMC CD = (SD,RD) with:

– SD = S+, unlabeled path fragments s0 → s1 → . . . → sn−1 → sn in D
– RD(σ, σ → s) = R(last(σ), D(σ), s) and 0 otherwise

• Mostly infinite, but for MD-schedulers the unfolding is finite:

all sequences ending in s are lumping equivalent

• The embedded DTMC of CD is a tuple (SD,PD) where

PD(σ, σ′) =
RD(σ,σ′)
ED(σ) if ED(σ) > 0 and 0 otherwise
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A CTMDP under a HD-scheduler

after three times β in a row choose α

choose δ if reached via γ

γ
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s0s0s0s0s2s2

2

2

2
s0

2

2 2

2

2

7
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Problem statement

• CTMDP (S,Act,R) is uniform if

E(s, α) = E for some E > 0 for any state s and any α ∈ Act(s)

⇒ in a uniformized CTMDP the exit rates for all states and all actions are equal

• For a uniform CTMDP, time t > 0, B ⊆ S, and s ∈ S, calculate:

sup
D∈X

Pr
D

(s, �t
� B) up to some accuracy ε

– where PrD denotes the induced probability measure on paths in CTMC CD
⇒ compute the maximal probability to reach – under a given class of schedulers –

a set B of states within t time units when starting in s
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Our approach in a nutshell

• Consider approximations of the required probability

• Consider truncated step-dependent (SD) schedulers

– step-dependent schedulers with a bounded memory (only store first k visits)

• Give a simple and efficient greedy algorithm for such schedulers

• Prove that the computed probabilities coincide with the maximal
probabilities under all HD, HR, SD and SR schedulers
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Shifting to the embedded DTMC

• For HD-scheduler D, the probabilities in CTMC CD are given by:

(
Pr
D

(σ, �t
� B)

)
σ∈S+

=
∞∑
n=0

e−E·t · (E·t)n
n!

· Pn
D,B · iB

– ψ(n) = e−E·t · (E·t)n
n! is the probability of n events occurring within t time units

in a Poisson process with rate E

– where iB(σ) = 1 if and only if last(σ) ∈ B and

– PD,B(σ, σ′) =

8<:
PD(σ, σ′) if last(σ) �∈ B

1 if σ′ = σ and last(σ) ∈ B

0 otherwise.
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A greedy algorithm – basic idea

• Consider truncated SD-schedulers: D : S × { 1 . . . k } → Act

• Construct the optimal one by a “backwards” greedy strategy:

– for each s choose the action maximizing the probability to reach B in one step:

select act(s, k) ∈ Act(s) with P(s, act(s, k), B) = max
α∈Act(s)

X
s′∈B

P(s, α, s′)

– use these actions to calculate the last (k-th) summand of 
kX

n=0

ψ(n) · Pn
D,B · iB

!
(s)

– continue this way for i=k−1, . . . , 1, i.e., choose act(s, i) maximizing the
probability to move to a B-state within at most k−i+1 steps (under D)
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The main recurrence equation

qi =
k∑
n=i

ψ(n) · Pi · Pi+1 · . . . · Pn · iB

= ψ(i) · Pi · iB +
k∑

n=i+1

ψ(n) · Pi · Pi+1 · . . . · Pn · iB

= ψ(i) · Pi · iB + Pi ·
k∑

n=i+1

ψ(n) · Pi+1 · . . . · Pn · iB

= ψ(i) · Pi · iB + Pi · qi+1 where qk+1 = 0, the 0-vector

c© JPK 103



Results

• For any state s ∈ S:

sup
D∈HD

Pr
D

(s, �t
� B) − ε � q(s) � sup

D∈HD
Pr
D

(s, �t
� B)

• The supremum under SD-, HR-, and HD-schedulers agree:

sup
D∈SD

Pr
D

(s, �t
� B) = sup

D∈HD
Pr
D

(s, �t
� B) = sup

D∈HR
Pr
D

(s, �t
� B)

• Also for SR-schedulers this coincides as SD ⊆ SR ⊆ HR

– for probabilities of other events such correspondence may not hold (Beutler &

Ross, 1987)

⇒ in general, randomized schedulers may be better than deterministic schedulers
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Timed schedulers

• Timed schedulers may make decisions
based on the timing of transitions

• A timed-history dependent, deterministic
(THD) scheduler:

– D : (S × Act × IR>0)
∗ × S → Act with

– D(s0
α0,t0→ . . .

αn−1,tn−1→| {z }
timed-history

, sn)∈ Act(sn)

MD

SD

HD

HR

SR

MR

TMR

TSR

THR

THD

TSD

TMD

Hierarchy of
scheduler classes
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A simple example

s0 s1

s2

2

2 2

1

γ α

β β

β1s3

HD-scheduler Dα chooses α; Dβ chooses β

For ∗ ∈ {α, β } : Pr
D∗

(s0,
�t
� B) =

∫ t

0

2 · e−2(t−x) · Pr
D∗

(s1,
�x
� B) dx

with
PrDα(s1,

�t
� { s3 }) = 1 − e−t, and

PrDβ(s1,
�t
� { s3 }) = 1 − e−2t·(1 + 2t)
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Timed schedulers may be better
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Dα and Dβ are outperformed by D(s0
γ,x→ s1) =


β if t−x � t0
α otherwise
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Another simple example

γ

1

α
β2

2
β

2

s0

s1

s2 γ1

PrDα(s0,
�t
� { s2 }) = 1 − e−t, and

PrDβ(s0,
�t
� { s2 }) = 1 − e−2t·(1 + 2t)

⇒ If you know the # loops in s0 the probability may be higher
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Simple schedulers may be worse
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β if i � t−t04 �
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Time-bounded reachability in CTMDPs

• Problem:

– compute the maximal (or minimal) probability to reach a set of states
within t time units in a (uniform) CTMDP

• Results:

– simple greedy algorithm for truncated step-dependent schedulers
– SD, SR, (fair) HD, and HR schedulers perform exactly the same
– MD schedulers are “worse” and timed schedulers may be more optimal

• Space and time-complexity:

– space complexity in O `N2·M +N
´
, where N = # states, M = # actions

– worst-case time complexity in O(E·t·N 2·M) where E is maximal exit rate
– worst-case time complexity in O(E·t·N 2) for timed reachability in CTMCs

⇒ price to pay is the amount of nondeterminism, but no more!
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Probabilistic model checking

• . . . . . . is a mature automated technique

• . . . . . . broad range of applications

• . . . . . . is supported by powerful software tools

• . . . . . . significant efficiency gain

• . . . . . . promising abstraction techniques

• . . . . . . possibilitity of counterexamples
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