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to Player |




\e Square positions
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Rounded positions belong to Player |
Square positions belong to Player 2

0000

1110

A game is played as follows: in each round, the game is in a position, if
the game is in a rounded position, Player | resolves the choice for the next
state, if the game is in a square position, Player 2 resolves the choice. The
game is played for an infinite number of rounds.




Play : 0000




0000

Play : 0000 0100




0000

Play : 0000 0100 0101




0000

Play : 0000 0100 OI10I 1101




0000

Play : 0000 0100 OI10I 1101 ...




Two-player Game Structure

A two-player game structure is a tuple
G = (Q1,Q2,t,0) where:

@1 and Q2 are two (finite and) disjoint sets
of positions

L € Q1 UQ2 is the initial position of the game

0 C (Q1UQ2) x (Q1UQ2) is the transition
relation of the game

We assume that Vg e Q1 UQ2: 3¢ € Q1 U Q> : 6(q,q’)




Plays, Prefixes of Plays

Let G = <Q1,Q2,L,5>,
coiln ... isaplayin G if




Plays, Prefixes of Plays

Let G = <Q1,Q2,L,5>,
coiln ... isaplayin G if

~

Vi>0:q; € Q1 UQ2




Plays, Prefixes of Plays

Let G = <Q1,Q2,L,5>,

Notations

Letw:qoql...qn...'

w(:z) denotes position i

w(0,7) denotes the prefix
up to position |

last(w(0,7)) = w(7)




Plays, Prefixes of Plays

Let G = <Q1,Q2,L,5>,

1) w(0) =1

2) Vi>0:d(w(i),w(i+1))

We denote the set of plays in G by : Plays(G)
and

PrefPlays(G) = {qoq1 ... qn | Fw € Plays(G) AV0 < i <n:w(i)=gq;}
PrefPlays, (G) = {w € PrefPlays(G) A last(w) € Qx}




Who is winning !

Play : 0000 0100 OI10I 1101 ...




Who is winning !
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Play : 0000 0100 OI10I 1101 ...

s this a good or a bad play for Player k!




Who is winning !
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A winning condition (for Player k)
is a set of plays

W C (Q1UQ2)”




Game

Two-=-player game structure
+

Winning condition for Player k




Strategies

Players are playing according to strategies.

A Player k strategy in G is a function:

A PrefPIaysk(G) — Ql U QQ

with the restriction that:

Vw € PrefPlays, (G) : d(last(w), A(w))




Outcome of a strategy

w is a possible outcome of the Player k
strategy \ if

Vi>0:w(i) € Qp:w(i+1) = \w(0,7))

w is a play where Player k plays
according to strategy \




Outcome of a strategy

w is a possible outcome of the Player k
strategy \ if

Vi>0:w(i) € Qp:w(i+1) = \w(0,7))

The set of plays that have this property is denoted

Outcomey (G, \)




Winning strategy

® Given a pair (G, W)

® We say that Player k wins the game (G, W)
if and only if:

3\ : Outcomer (G, \) C W




Winning strategy

® Given a pair (G, W)

® We say that Player k wins the game (G, W)
if and only if:

3\ : Outcomer (G, \) C W

That is, no matter how the other player resolves his choices, when player
k plays according to )\, the resulting play belongs to W. Player k can
force the play to be in W.




Winning strategy

® Given a pair (G, W)

® We say that Player k wins the game (G, W)
if and only if:

3\ : Outcomer (G, \) C W

We say )\ that is a winning strategy for
player k in the game (G, W)




Winning strategies

Controllers that enforce
winning plays







Safety Game

(G, W) is a safety game if

1Q C Q1 UQo: W ={w € Plays(G) | Vi > 0: w(i) € Q}

That is W is the set of plays that stay
within a given set of positions Q.

Safe(G, Q)




A Safety Game
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Does Player |, who owns the rounded positions, have a strategy
(against any choices of Player |l) to stay within the set of states

Q\{1111}|?




Symbolic algorithms to

solve games




Complete lattices

A complete lattice is a partially ordered set (L,<) where every subset of L has a
least upper bound (often called join or supremum) and a greatest lower
bound (often called meet or infimum).

Given M C L, lub(M) is a value of L such that :
(i) forallm e M :m < lub(M) and
(i) for all m’ € L,

if forallme M :m < m’then lub(M) = m’

Given M C L, glb(M) is a value of L such that :
(i) for allm e M : glb(M) < m and
(i) for all m’ € L,

if forallme M: m”<mthen m’ < glb(M)




N
Example of complete lattice

27, the set of subsets of a set S, ordered by set inclusion &

forms a complete lattice.

Its least upper bound is given by union :

lub{Sl, SQ, cee Sn} — U{Sl, SQ, Cee Sn}

Its greatest lower bound is given by intersection :
glb{Sl, SQ, Coe Sn} — ﬂ{Sl, SQ, Cee Sn}

The least element of the lattice is () and the largest element is S.
The powerset complete lattice is noted

(2°,C,u,N, S, 0)




Monotone functions and

fixed points

Let (L,C,U,M, T, L) be a complete lattice,let f: L — L.
We say that f is monotone iff

\V/ll,lg cL:[{Cl,= f(ll) L f(lg)

fis Scott- continuous iff LI{f(l)|l e X} = f(LX)
for any chain X.

We say that | is a fixed point of fiff | = f({)

Any monotone function f over a complete lattice L has:
a least fixed point: ifpf =1{l |l = f(I)}
a greatest fixed point:gfpf =U{l |l = f(I)}




Monotone functions and

fixed points

Let (L,C,U,M, T, L) be a complete lattice,let f: L — L.
We say that f is monotone iff

\V/l]_,lg c L : [

Monotony is equivalent
to Scott-continuity on
any finite complete
lattice.

fis Scott- continuou
for any chain X.

We say that | is a fixed p¢

Any monotone function |}
a least fixed point: ifpf =1{l |l = f(I)}
a greatest fixed point:gfpf =LU{l |l = f(])}




Player k Controllable
Predecessors

X is a set of positions

1CPreg(X) ={qe Q1 |3¢ :0(q,¢)N¢g € X}U{qe Q2 |Vq :0(q,q") : ¢ € X}

/

Set of Player | positions where she has
a choice of successor that lies in X

Set of Player |l positions where all
her choices for successors lie in X




Player k Controllable
Predecessors

1CPreq(X) ={qe Q1 |13¢ :6(q,¢)Ng € X}U{qe Q2| V¢ :0(q,q") : ¢ € X}

Symmetrically

2CPreq(X) ={q€ Q2| 3¢ : 6(q, )N € X}U{qe Q1 |V :6(¢q,¢) : ¢’ € X}




Player k Controllable
Predecessors

1CPreq(X)={qe Q1 |3¢ :6(q,¢)Nq¢ € X}U{qe Q2 |V :0(q,q") : ¢ € X}

Monotonic functions over (291°%2 C)

2CPreq(X) ={q€ Q2| 3¢ : 6(q, )N € X}U{qe Q1 |V :6(¢q,¢) : ¢’ € X}
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{1000,0101,1111}




{1000,0101,1111}

1CPre(X) = [{0000}|u {0100, 1101}

Rounded positions,
there exists a red successor




{1000,0101,1111}

1CPre(X) = ({0000}

Rounded positions,
there exists a red successor

U

{0100, 1101}

N

Squared positions,
all successors are red




Fixed points to solve games

Let Q be a set of safe states, the states in which
Player | can force the game to within Q is given by
the following fixed point expression :

U{R| R=QnNCPre;(R))




Fixed points to solve games
U
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Does Player |, who owns the rounded positions, have a
strategy to stay within the set of states

Q\ {1111}]?




Fixed points to solve games
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We must compute

H{R|R=(Q1UQ2)\ {1111} N CPre;(R)}

To do that, we use the Tarski fixpoint theorem.



Tarski-Kleene Theorem

Let (L,C, 1,1, T, L) be a complete lattice, the f be a
Scott-continuous function on L, then

Ifp f is the limit of the sequence :

ALY, L)), o Fo L))o

gfp f is the limit of the sequence :

f(T),f(f(T)), ..., f(...f(T)...), ...




Fixpoint for a sa?ety game

Xo = (Q\ {1111}) N 1CPre(@))




Fixpoint for a safety game




Fixpoint for a safety game
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1CPre(Q)







Xo = (Q\ {1111}) N 1CPre(Q)
X, = (Q\ {1111}) N 1CPre(Xp)




Fixpoint for a sa?ety game

= (Q\ {1111}) N 1CPre(Q)
= (Q\ {1111}) N[1CPre(X,)




Fixpoint for a sa?ety game

| 0100 1101
1110

Xo=(Q\{1111}) N 1CPre(Q)

X1 = (Q\ {1111}) N[LCPre(X))




Fixpoint for a sa?ety game
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Xo = (Q\ {1111}) N 1CPre(Q)
X1 =[(@\ {1111})|N[1CPre( X))




Fixpoint for a safety game




Fixpoint for a safety game

Xo = (Q\ {1111}) N 1CPre(Q)

X5 = (Q\ {1111}) N 1CPre[XH)




Fixpoint for a sa?ety game

Xo = (Q\ {1111}) N 1CPre(Q)

X, = (Q\ {1111}) N[ICPre(X,)




Fixpoint for a sa?ety game
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Xo=(Q\{1111}) N 1CPre(Q)

X, = (Q\ {1111}) N[ICPre(X,)




Fixpoint for a sa?ety game
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O O
0000 < 1111
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Xo=(Q\{1111}) N 1CPre(Q)

X, =[(@\ {1111})|N[1CPre(X,)




Fixpoint for a sa?ety game

Xo = (Q\ {1111}) N 1CPre(Q)

N2 —[(@\ {1111}) N 1CPre(X,)




Fixpoint for a safety game

Xo = (Q\ {1111}) N 1CPre(Q)
This is the B
greatest Xl = (Q \ {1111}) [ ].CPFG(XQ)

fixed point | A2 :_ = A1




Fixpoint for a sa?ety game

= (Q\ {1111}) N 1CPre(Q)
This is the B
ereatest = (Q \ {1111}) N 1CPre( Xy

X1
fixed point | A2 :_ = A1




Fixpoint for a sa?ety game

Player | has a positional
(memoryless) strategy
to win the game

re(Q)

This is the
greatest
fixed point







Let G = (Q1,Q2,t,0) be a TGS, let
Reach(G, Q) be a reachability

game defined on G, Player | has a
winning strategy for this game iff

€ N{R| R=QUCPre,(R)}

Let G = (Q1,Q2,1,0) be a TGS, let
Safe(G, Q) be a safety game
defined on G, Player | has a winning
strategy for this game iff

€ U{R| R =QnNCPre(R)}




Games of imperfect

information




Thermometer
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k Digital

Controller

Typical hybrid system




Perfect information hypothesis?

The temperature
is in the interval

Thermometer
(c—1,c+1)
N
k Digital
&/ Controller

Typical hybrid system




Perfect information hypothesis?

Finite precision = imperfect information

The temperature
is in the interval

Thermometer
(c—1,c+1)
N
_L Digital
&/ Controller

Typical hybrid system




Player O chooses a letter
Player | resolves nhondeterminism




Imperfect information




Imperfect information




Imperfect information




Slight generalization of
incomplete information

Imperfect information




When observing Obs 0,
there is no unique good choice:

memory is hecessary

Imperfect information




- A game of imperfect information:
game structure + observation structure

-Observation structure : (Obs,Y) where ODbs is a finite
set of observations and Y maps every observation to

a set of states (we require that every state has at
least one observation).

-A observation based strategy is a function that maps
every sequence 0,0/0....0. to a letter in 2.

Our obijective is to find an algorithm to construct
observation based strategies that avoid Bad.




Notation: a game structure of
imperfect information is a

tuple (S,5,2,—,0bs,Y).

Ition structure

here ODbsS is a finite

set of observations and Y maps every observation to
a set of states (we require that every state has at
least one observation).

-A observation based strategy is a function that maps
every sequence 0,0/0....0. to a letter in 2.

Our obijective is to find an algorithm to construct
observation based strategies that avoid Bad.




Notation: a game structure of
imperfect information is a

(S o~ S L@ &A1

Ition structure

tup. :
Those games generalize games

set oflof perfect information

a Set ¢

east qwhere Obs=S and y is the

identity function

s a finite

ation to
1S at

-A observation based strategy is a function that maps

every sequence 0,0,0....0, to a letter in 2.

Our obijective is to find an algorithm to construct
observation based strategies that avoid Bad.




Notation: a game structure of
imperfect information is a

L

Ition structure

=T Y . W |

tup.

set of

Those games generalize games |s a finite

~ ) ~ ) ﬁ.ti.a.n_to

-A observa

every sequ

Those games generalize games
of incomplete information:
in that case Obs partitions
the state space S. [Rei84]

Our obijective is to find an algorithm to construct
observation based strategies that avoid Bad.




Classical Approaches

® To solve games of perfect information :

® (elegant) fixed point algorithms using a
controllable predecessor operator

® To solve games of imperfect information

® [Reif84] builds a game of perfect information
using a knowledge-based
subset construction and then solve this
games using classical techniques




Classical Approaches

® Tosolv After a finite prefix of a game, Player | has
* (clegs 2 partial knowledge of the current state of
contA the game : a set of states

® To solve games of imperfect information

® [Reif84] builds a game of perfect information
using a knowledge-based
subset construction and then solve this
games using classical techniques




Classical Approaches

® TosolW After a finite prefix of a game, Player | has
1 a partial knowledge of the current state of

the same : a set of states
Ve propose here a new

solution that avoid the  [[ect information

preliminary explicit |of perfect information
subset construction. nd

subset construction and then solve this
games using classical techniques




We define a controllable predecessor operator for
a set of sets of states g

CPre(q) = {8 € Bad | 3o € X - Vobs € Obs - 35’ € ¢ : Post,(s) N~(obs) C s’}

(1) s does not intersect with Bad,
(ii) there exists os.t. the set of possible successors of s by g is

covered by
(a) no matter how the adversary resolves non-determinism,
(b) no matter the compatible observation Obs







Cpre({A,B})= Blue sets




cattirt o insl

If there is a strategy for set A,
there is a strategy for any B included in A

It is enough to keep only
the maximal sets

30O

CPre(q) = [{s C Bad | 30 € X' - Yobs € Obs - 3s’ € ¢ : Post,(s) N~ (obs) C s’}



Antichains

Definition 4 [Antichain of sets of states||An antichain on the partially ordered
set (2°,C) is a set ¢ C 2° such that for any A, B € ¢ we have A ¢ B.

Let us call L the set of antichains on S.

Definition 5 [C| Let ¢q,q" € 22° and define q C ¢ if and only if

VAcg:3A €q¢ : AC A

lub : q1|_|q2:({8\86611\/8692ﬂ

glb: ¢1Mge=[{s1Ns2|s1E€qNS2Eq}]

The minimal element is (), the maximal element {S'}.

(L,C) is a complete lattice.




CPre over antichains

CPre(q) = [{s C Bad | 3o € X' - Vobs € Obs - 3s’ € q : Post,(s) N~y (obs) C s’}
® CPre is a monotone function over the

lattice of antichains

® CPre has a least and a greatest fixed
point

Advantage : we only keep the needed information to
find a strategy




Main theorem

LEt (G = <S, S(),E,%,Obsaqo

be a two-player game of imperfect
information. Player | has a winning
observation based strategy to avoid Bad, iff

{So N~(obs) | obs € Obs} C |_|{q | g = CPre(q)}.

We can extract a strategy from the fixed point




Does Player O have an observation
based strategy to avoid Bad !




Does Player 0 have an observation
based strategy to avoid Bad !

Let us compute the gfp of CPre over L.







g2 = CPre({{1,2,3}})







Indeed,
Post, ({1,3}) N {1,2,4} C {1,2,3}

Post, ({1,3}) N 41,3} C {1,2,3}
Posty({2}) N{1,3} C {1,2,3}
Post,({2}) N {1,2,4} C {1,2,3}




q = 1
q1 = {{17273}a,b}
q2 — {{Q}ba {17 B}a}

q3 = CPre({{2},{1,3}})




q = 1
q1 = {{17273}a,b}
q2 — {{Q}ba {17 B}a}

q3 = CPre({{2},{1,3}})
= 11}a,12}6, 13}a}




qQ = T
d1 = {{17273}a,b}
g2 = {12}, {1,3}a}

Indeed,

g = CPre({{2},{1,3}}) ~ Posta(il}) M1l 2.4} € 12}
= {{1}a, {2}, {3}s} Post, ({1}) N{1,3} C {3}

Adding any state would
break this property




q = 1
q1 = {{17273}a,b}
q2 — {{Q}ba {17 B}a}

g3 = {{1}a:{2}b,{3}a}
d4 = {{1}CL7 {2}197 {S}G}

Fixed point




q = T
d1 = {{17273}(1,19}
g2 = {12}, {1,3}a}

g3 = {{1}a:{2}b,{3}a}
d4 = {{1}a7 {2}57 {S}a}

Fixed point

We have
{{2,3} N Obsy,{2,3} N Obs;} CE LI{q | ¢ = CPre(q)}

and so, Player 0 has an observation
based winning strategy to avoid Bad




q = T
d1 = {{17273}a,b}
g2 = {12}, {1,3}a}

g3 = {{1}a:{2}b,{3}a}
d4 = {{1}a7 {2}57 {S}a}

Fixed point

We can extract a strategy from the fixed point




g2 = {12}, {1,3}a}
g3 = {{1}a:{2}b,{3}a}
d4 = {{1}aa {2}67 {S}a}

a ? go = I
o . q1 — {{17 27 S}Cb,b}
b

Fixed point




Complexity for finite
state games

® The imperfect information control problem is
EXPTIME-complete

® There exist finite state games of incomplete
information for which the algorithm of
[Rei84] requires an exponential time where
our algorithm needs only polynomial time




Complexity for finite
state games

® The imperfect information control problem is
EXPTIME-complete

® There exist finite state games of incomplete
information for which the algorithm of

[Rei84] requires 3 We compute exactly
our algorithm ne¢ what is needed to
control the system
for a given objective




Infinite state games

We drop the assumption that S if finite
Our fixed point algorithm will terminate if

There exists a finite quotient of the state space
Post, Enabled,”) are definable using this quotient

Application : Discrete Time Control of RHA




Discrete time control of RHA

Player | (contr.) chooses an action every | time unit
Player 2 (env.) resolves nondeterminism
(in discrete and continuous steps).




Discrete time control of RHA

Everything else




Discrete time control of RHA




Discrete time control of RHA

100

FOSCEORO
jeROROY

The Strategy




Discrete time control of RHA

L

100

>
0

JOBGRG!
SO

o

The symbolic CPre can be encoded
in the script language of Hy Tech




Another application:
avoiding determinization

when testing
universability of NFA




Universality of NFA




Universality of NFA

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The protagonist has to provide a finite word w such that no
matter how the antagonist reads it using A, the automaton
ends up in a rejecting location.

—= This is a one-shot game.




Universality of NFA

Consider a game played by a protagonist and an antagonist
The protagonist wants to establish that A is not universal.

The protagonist has to provide a finite word w such that no
matter how the antagonist reads it using A, the automaton
ends up in a rejecting location.

—= This is a one-shot game.

The game is turn-based: the protagonist provides the
word w one letter at a time, and the antagonist updates
the state of A. The protagonist cannot observe the state

chosen by the antagonist.

—— This is a blind game (or game of null information).




Let A= (Loc,47,2-,64, F).

Consider the following controllable predecessor operator
over sets of sets of locations. For g C 2Lo¢ |et:

CPre(q) ={s|3s'cq-Joe X -Ves-Vl ecloc:64(0,0,0) — ¢ €5}

So s € CPre(q) if thereis a set s’ € g that is reached from any
location in s, reading input letter o, that is Post,(s) C s’.

— (Pre encodes the blindness of the game.




Let A= (Loc,l;,2,64, F).

T heorem:

{¢;} € px.(CPre(x) U{T})
ifF
Protagonist has a strategy to win G
ifF

A is not universal

Claim: For sy C so, if Posts(s5) C s’ then Post,(s7) C s
and if so» € CPre(-), then s1 € CPre(-)

Idea: Keep in CPre(x) only the maximal elements.




Universality - Experimental results (1)

e \\We compare our algorithm Antichains with the best(1)
known algorithm dk.brics.automaton by Anders Mgller.

(1) According to "D. Tabakov, M. Y. Vardi. Experimental Eval-
uation of Classical Automata Constructions. LPAR 2005".

e We use a randomized model to generate the instances
(automata of 175 locations). Two parameters:

— Transition density: » > 0

— Density of accepting states: 0 < f <1




Universality - Experimental results (2)

Time dk.brics.automaton

Time Antichains

Each sample point: 100 automata with |Loc| = 175, > = {0, 1}.




Universality - Experimental results (3)

| | | |
Antichains

dk.brics.automaton

~
0p)
—
()
=
4+
-
9
4+
o
O
)
X
L]

| | | | |
500 1000 1500 2000 2500 3000 3500 4000

Number of states

e Iransition density: r = 2.
e Density of accepting states: f = 1.




Works also for

® |anguage inclusion between NFA

® emptiness of AFA

® See proceedings of CAV 2006

(joint work with Martin De Wulf, Laurent Doyen and Tom Henzinger)




Conclusion/Perspectives

Winning strategies are controllers.We review a lattice theory to
solve games.

We have extended this theory for games of imperfect information,
those games are needed to make the synthesis of robust
controllers (= finite precision).

Our technique computes only the information that is needed to find a
winning strategy, i.e. we avolid the explicit subset construction.

Applicable to discrete time control of RHA and useful to solve
efficiently classical problems for NFA and AFA.

Perspectives : continuous time control, finite automata on infinite
words, efficient implementation issues, etc.
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