
Performance Debugging of Real-Time Systems
using Multicriteria Schedulability Analysis

Unmesh D. Bordoloi Samarjit Chakraborty
Department of Computer Science
National University of Singapore

E-mail: {unmeshdu, samarjit}@comp.nus.edu.sg

Abstract
Most of today’s real-time embedded systems consist of

a heterogeneous mix of fully-programmable processors,
fixed-function components or hardware accelerators, and
partially-programmable engines. Hence, system designers
are faced with an array of implementation possibilities for
an application at hand. Such possibilities typically come
with different tradeoffs involving cost, power consumption
and packaging constraints. As a result, a designer is no
longer interested in one implementation that meets the spec-
ified real-time constraints (i.e. is schedulable), but would
rather like to identify all schedulable implementations that
expose the different possible performance tradeoffs. In this
paper we formally define this multicriteria schedulability
analysis problem and derive a polynomial-time approxima-
tion algorithm for solving it. This result is interesting be-
cause the problem of optimally computing even one schedu-
lable solution in our setup (and in most common setups) is
computationally intractable (NP-hard). Further, our algo-
rithm is reasonably easy to implement, returns good qual-
ity (approximate) solutions, and offers significant speedups
over optimally computing all schedulable tradeoffs.

1 Introduction
It is now well-accepted that debugging real-time embed-

ded systems for non-functional or performance constraints
occupy a major chunk of their overall design time. Such
systems are increasingly becoming heterogeneous and con-
sist of a mix of fully- and partially-programmable proces-
sors, fixed-function hardware accelerators and different
kinds of buses and memory modules. Applications to be
implemented on such systems are partitioned and mapped
onto these different processors and hardware components.
This results in a large number of implementation possibil-
ities with different performance tradeoffs. As a result, a
designer is no longer interested in one implementation that
meets the real-time constraints associated with a given ap-
plication (i.e. is schedulable), but would rather like to iden-
tify all schedulable implementations that expose the differ-
ent possible performance tradeoffs.

Figure 1. Pareto-optimal solutions.

As a simple example, consider two applications (or
tasks) T1 and T2 which are required to run concurrently and
have predefined deadline constraints. Both T1 and T2 can
be partially implemented in hardware, with their remaining
parts implemented as software running on the same pro-
grammable processor P . Such a scheme is in line with
coarse-grained FPGA architectures (e.g. Virtex-II PRO
from Xilinx), which consist of one or more programmable
processors embedded within the FPGA’s logic fabric. The
portions (or even fractions) of T1 and T2 to be implemented
in hardware constitute the different implementation options.
The two objectives to be optimized are the total hardware
cost and the minimum clock frequency of P (which, for
example, might influence its power consumption). Clearly,
there can be different implementation options which satisfy
T1 and T2’s deadline constraints. If larger fractions of T1

and T2 are implemented in hardware, then the hardware
cost increases and the required clock frequency of P de-
creases, and vice versa. For any schedulable implementa-
tion, if (c, f) denotes the corresponding hardware cost and
clock frequency, then a designer will be interested in iden-
tifying all possible tuples (c1, f1), . . . , (cn, fn) which cap-
ture the different performance tradeoffs. In the multicriteria
optimization parlance, the set {(c1, f1), . . . , (cn, fn)} is re-
ferred to as the Pareto curve and each point (ci, fi) in this
set is called a Pareto-optimal solution [9] (see Figure 1).

Each (ci, fi) in this set has the property that there does not
exist any schedulable implementation of T1 and T2 with a
performance vector (c, f) such that c ≤ ci and f ≤ fi,
with at least one of the inequalities being strict. Further,
let S be the set of performance vectors corresponding to all
schedulable implementations. Let P be the set of perfor-
mance vectors {(c1, f1), . . . , (cn, fn)} corresponding to all
the Pareto-optimal solutions. Then for any (c, f) ∈ S − P
there exists a (ci, fi) ∈ P such that ci ≤ c and fi ≤ f ,
with at least one of these inequalities being strict (i.e. the
set P contains all performance tradeoffs). The vectors
(c, f) ∈ S −P are referred to as dominated solutions, since
they are “dominated” by one or more Pareto-optimal solu-
tions as shown in Figure 1.

1.1 Our Contributions

In this paper we present a polynomial-time approxi-
mation algorithm for computing the Pareto curve P =
{(c1, f1), . . . , (cn, fn)}. This result is interesting because
even the single-criteria version of the problem in very sim-
ple settings turns out to be intractable (NP-hard). Given a
set of tasks and a processor P running at a predefined clock
frequency, the single-criteria version of this problem is to
come up with a schedulable (on P) implementation of these
tasks with the minimum hardware cost. In other words, the
processor has a predefined clock frequency which is pro-
vided as an input. Note that the well-studied schedulabil-
ity analysis problem [3, 7] — where the goal is to decide
whether the task set is entirely schedulable on P — is a
special case of the single-criteria version of our problem.

The second reason which makes our work interesting
is that there can be an exponentially large number of per-
formance vectors (ci, fi) in the Pareto curve P , which
makes it impossible to compute this entire set in polyno-
mial time. Hence, our polynomial-time approximation al-
gorithm by default also implies approximating the (poten-
tially exponential size) set P with only a polynomial num-
ber of points. In a typical design or performance debug-
ging scenario, a system designer inspects all the tradeoffs
in the set P and then selects one, or at most a few imple-
mentations. Hence, from a practical perspective, it is more
meaningful if the designer is presented with a reasonably
few well-distinguishable tradeoffs in the set P , rather than
an exponentially large number of solutions, many of which
are very similar to each other. Our approximation algorithm
is therefore not only attractive in terms of time-complexity,
but also returns more meaningful solutions, as we show later
in this paper.

Overview of the proposed scheme: Our proposed
scheme takes as an input an error parameter ε and re-
turns an ε-approximate Pareto curve which we denote
as ε-Pareto curve (or Pε). Given a Pareto curve P =
{(c1, f1), . . . , (cn, fn)}, an ε-approximate Pareto curve is

defined as any set Pε = {(c′1, f ′
1), . . . , (c

′
m, f ′

m)} such that
for any (ci, fi) ∈ P , there exists a (c′j , f

′
j) ∈ Pε for

which c′j ≤ (1 + ε)ci and f ′
j ≤ (1 + ε)fi. In other

words, corresponding to any point on the Pareto curve P ,
there exists a point on Pε, each of whose coordinates are
at most ε distance away from the corresponding coordi-
nates of the point on P . Hence, each “tradeoff” in P
has an “ε-approximation” in Pε, where the semantics of ε-
approximation are as defined above. In Figure 1, each point
on the Pareto curve (denoted by •) is approximated by some
point (denoted by ×) which may be a Pareto-optimal solu-
tion or a dominated solution. The set of × points depend on
the value of ε, and constitute the set Pε. Since ε is an in-
put provided by the system designer, the error between the
approximate and the optimal Pareto curves can be made as
small as desired. The running time of our approximation
algorithm, as we show later, is polynomial in the size of the
problem instance and polynomial in 1

ε , but exponential in
the number of objectives/criteria. However, since the num-
ber of objectives is typically small for most real-life prob-
lems, this shouldn’t pose any problem. Finally, as one might
expect, the running time of the algorithm increases as the
error parameter ε is made smaller.

Our algorithm is made up of the following two parts.
(i) The first part is a polynomial-time approximation al-

gorithm for solving the single-criteria version of the
problem. Recall that here we are given a processor P
with a predefined clock frequency (or alternatively, a
target processor utilization). The goal is to compute
a partition of each task such that the portions mapped
onto P are schedulable and the total hardware cost is
minimized. As we describe later, we assume that each
task comes with a specified number of hardware im-
plementation possibilities, i.e. certain subtasks or por-
tions which might be implemented in hardware or in
software, and the remaining can only be implemented
in software. We believe that this is more realistic than
assuming that a task can be arbitrarily partitioned into
hardware and software. The approximation algorithm
for the single-criteria version takes as an input an error
parameter ε. It returns a hardware cost which is guar-
anteed to be no more than (1 + ε) times the minimum
cost incurred to schedule the tasks on P with the pre-
defined clock frequency or processor utilization. Al-
ternatively, it says that there does not exist any schedu-
lable implementation of the task set under the possible
hardware-implementation options.

(ii) The second part of our algorithm involves imposing
a k-dimensional grid on the objective space, where k
is the number of objectives being considered. In the
case of our bicriteria example (where k = 2), this
boils down to a rectangular grid. We then (approxi-
mately) solve a single-criteria version of our problem

for each grid point by using our approximation algo-
rithm outlined in part (i) and retain only the Pareto-
optimal solutions (or rather the “Pareto-optimal grid
points”). The crux of this step is in the choice of the
grid dimensions, which are also functions of the error
parameter ε that was used in part (i). By appropriately
choosing the grid dimensions, we can guarantee that
the approximate Pareto curve is within ε distance from
the optimal Pareto curve. Further, the number of calls
to the approximation algorithm in part (i) is restricted
to a polynomial in the problem size and in 1

ε , but ex-
ponential in the number of objectives k.

In summary, both parts (i) and (ii) incur an error in the
computation of the Pareto curve. However, the cumulative
error is bounded such that the resulting points in the objec-
tive space still cover the entire Pareto curve and approxi-
mate it with a maximum error of ε in all the objectives.

1.2 Related Work
There exists a large body of work on multiobjective op-

timization [9] and also on multicriteria scheduling and de-
cision making [18]. However, a significant portion of these
approaches address the problems from an engineering per-
spective and relies on heuristics and randomized search
techniques such as evolutionary algorithms (e.g. see [8]).
Our work in this paper differs from these approaches by tak-
ing a classical approximation algorithms standpoint, where
the goal is to provide formal guarantees on the quality of
the results obtained.

Further, we are also not aware of any work on multi-
criteria schedulability analysis of the form that we present
in this paper. Flexible scheduling with multiple concerns
is considered to be an important problem in the real-time
systems domain (e.g. see [4]). However, to the best of
our knowledge, no formal algorithmic solution to this prob-
lem is known so far. Our work is also tangentially re-
lated to a number of recent papers on performance de-
bugging of real-time and embedded systems from a tim-
ing/schedulability analysis perspective. For example, [6,
15, 16, 17, 20] address the problem of sensitivity analysis
of real-time systems where the goal is to compute permis-
sible changes in certain system parameters that do not re-
sult in the required timing/schedulability constraints to be
violated. Such changes, especially in a multidimensional
setting [16], might be viewed as possible schedulable im-
plementations which are associated with different perfor-
mance tradeoffs. Similarly, [5] addressed the problem of
computing the “schedulable region” or space of task peri-
ods and worst-case execution times that lead to schedulable
systems. The main difference between this line of work and
our results is that both sensitivity analysis and schedulable
region computation do not explicitly consider schedulable
implementation tradeoffs, which is our main focus.

The algorithmic techniques presented in this paper have
been motivated by [11] and [14]. More specifically, [11]
used a partitioning technique to divide a multidimensional
objective space into hyper-rectangles – as we do in part (ii)
of our scheme – but used it for improving the search qual-
ity of a randomized search algorithm. The result that any
Pareto curve can be ε-approximated by a polynomial-size
approximate Pareto curve was first proved in [14]. How-
ever, for many problems, efficiently (i.e. in polynomial
time) computing such approximate Pareto curves might not
be possible. Our work in this paper shows that for the mul-
ticriteria schedulability analysis problem, such approximate
Pareto curves can also be computed in polynomial time.

1.3 Organization of this Paper

The rest of the paper is organized as follows. In the next
section we introduce our task model and some necessary
notations. In Section 3 we then formally define the single-
criteria version of the problem, prove that it is NP-hard and
derive a polynomial-time approximation scheme for solving
it. This is followed by our solution to the multicriteria prob-
lem using the approach described in Section 1.1. Some of
the experimental results we obtained are described in Sec-
tion 5. Finally, we conclude in Section 6 by outlining some
directions for future work.

For ease of exposition, all the algorithms presented in
this paper are for a bicriteria schedulability analysis prob-
lem; more specifically, the one we described as an exam-
ple at the beginning of this paper. However, all our results
trivially extend to higher dimensional settings. Similarly,
we also considered a simple sporadic task model [3, 12].
Again, it is possible to extend our algorithms to more gen-
eral task models such as multiframe [13], generalized mul-
tiframe [2], and recurring real-time [1] models.

2 Task Model

In this paper, we use the sporadic task model in a pre-
emptive uniprocessor environment to illustrate our approx-
imation scheme. Thus, we are interested in the schedulabil-
ity analysis of a task set τ = {T1, T2, . . . , Tm} consisting
of m hard real-time tasks. Any task Ti can get triggered
independently of other tasks in τ . Each task Ti generates a
sequence of jobs; each job is characterized by the following
parameters:

• Release Time: the release time of two successive jobs
of the task Ti is separated by a minimum time interval
of Pi time units.

• Deadline: each job generated by Ti must complete by
Di time units since its release time.

• Workload: the worst case execution requirement of any
job generated by Ti is denoted by Ei.

Tasks in the Task Set Workload Cost

10 15
choices for task T1 = 3 8 45

E1 = 12, P1 = 40 4 90

choices for task T2 = 2 5 24
E2 = 6, P2 = 16 2 42

8 11
choices for task T3 = 3 6 26

E2 = 6, P3 = 25 5 82

Table 1. Implementation choices for three different tasks
in a task set. Each row of this table shows the new execution
requirement (on a programmable processor) because of a
part of the task being implemented in hardware, along with
the incurred hardware cost.

Throughout this paper, we assume the underlying
scheduling policy to be the earliest deadline first (EDF).
Again, our algorithm can be suitably modified to handle
other scheduling policies as well. Assuming that for all
tasks Ti, Di ≥ Pi, the schedulability of the task set τ can
be given by the following condition.

Theorem 1 A set of sporadic tasks τ is schedulable under
EDF if and only if

(U =
m∑

i=1

Ei

Pi
) ≤ 1

where U is the processor utilization due to τ [3, 12].

3 The Single-Criteria Problem

In this section, we formally state the single-criteria ver-
sion of the problem along with an illustrative example. We
then show that this problem is intractable even for the sim-
ple sporadic task model described in Section 2. Finally, we
derive a fully polynomial-time approximation scheme (FP-
TAS) [10] for solving it.

Recall that we are given a processor P with a predefined
clock frequency, and a specified number of subtasks of each
task Ti which can be implemented in hardware. Our goal
is to identify the implementation choices that lead to the
minimum hardware cost, provided the portions of the tasks
mapped onto P are schedulable.

If the task set is entirely schedulable on the processor
P (i.e. U ≤ 1), then the problem is trivial and we need
not incur any hardware costs. However, if the entire task
set is not schedulable on P , then certain portions of some
of the tasks in the set will have to be implemented in hard-
ware to reduce the load on P . The problem is then that of
identifying which portions or subtasks of each task should
be mapped onto hardware such that the minimum hardware
cost is incurred.

For each task Ti, let there be ni hardware implementa-
tion choices. Each of these ni choices is associated with

a certain hardware cost. Choosing the jth implementa-
tion choice for the task Ti lowers its execution require-
ment on P from Ei to ei,j . Equivalently, the amount by
which the execution requirement of Ti gets lowered on P
is δi,j = Ei − ei,j . Hence, for each task Ti we have a set
of choices Si = {(δi,1, ci,1), . . . , (δi,n1 , ci,n1)}, where ci,j

is the hardware cost associated with the jth implementation
choice. The goal is to identify one choice for each task,
which would lower the processor utilization to less than or
equal to one, and minimize the total hardware cost. In what
follows, we shall refer to this as the minimum cost schedu-
lability analysis problem.

We now illustrate this problem with the help of an ex-
ample. A task set τ has three tasks {T1, T2, T3} with
{E1 = 12, P1 = 40}, {E2 = 6, P2 = 16}, and {E3 =
11, P3 = 25}. Clearly the processor utilization U > 1
and hence this task set is not schedulable, without some of
the subtasks being mapped onto hardware. The different
possible hardware implementation choices for each task in
this set is shown in Table 1. Each row of this table shows
the new execution requirement of a task on P after a part
of this task is implemented in hardware, and the associated
hardware cost. Note that as the execution requirement or
workload of a task decreases, its associated hardware cost
increases.

Following the notation we introduced above, for T1 we
have e1,1 = 10, e1,2 = 8 and e1,3 = 4. The corresponding
hardware costs are c1,1 = 15, c1,2 = 45 and c1,3 = 90.
Hence, the implementation choices for T1 are given by the
set S1 = {(2, 15), (4, 45), (8, 90)}. The choices for T2 and
T3 can be similarly computed from this table. Note that
while T1 and T3 have three choices each, T2 has only two
choices. Thus, n1 = n3 = 3 and n2 = 2. The goal is to
select one choice from each set S1, S2 and S3, such that we
obtain a minimum-cost schedulable system.

3.1 NP-hardness

We show that the minimum cost schedulability analysis
problem is NP-hard using a polynomial-time transformation
from the 0-1 knapsack problem [10].

Theorem 2 The minimum cost schedulability analysis
problem is NP-hard.

Proof: The decision version of the minimum cost schedula-
bility analysis problem asks whether there is a set of choices
of the execution requirements such that the condition U ≤ 1
is satisfied, and the total cost is ≤ C.

The knapsack problem specifies m items with integral
weights wi and profits pi, i = 1, 2, . . . , m, an integral
weight constraint W and a profit goal G. Let the m binary
variables xi ∈ {0, 1} correspond to the selection of the ith
item. The knapsack decision problem asks if there exists a

subset of items, the sum of whose profits
∑m

i=1 pixi ≥ G
and the sum their weights is

∑m
i=1 wixi ≤ W .

We transform the knapsack problem into a special in-
stance of our problem which is obtained by setting ni = 1,
for i = 1, 2, . . . , m. Towards this, let δi,1 = pi and
ci,1 = wi. Hence, corresponding to each item i in the knap-
sack problem with weight wi and profit pi, there is a task
Ti with δi,1 = pi and cost ci,1 = wi. For this problem in-
stance, let all the m tasks in the task set τ have the same
deadline D. Further, let all the periods be equal to their
deadlines, i.e. Pi = D for all {i = 1, 2, . . . , m}. The val-
ues D and Ei are chosen such that the

∑
Ei − D = G.

Our claim is that the minimum cost schedulability analy-
sis decision problem returns a Yes answer if and only if
the knapsack problem returns a Yes. To verify this, let us
first consider the if direction. This immediately implies that∑m

i=1 cixi ≤ C for the problem instance we constructed.
For our special instance, where ni = 1, the binary vari-
able xi ∈ {0, 1} corresponds to the selection of the {i, 1}th
choice. Again, a solution to the knapsack problem also im-
plies that:

m∑
i=1

pixi ≥ G

⇒
∑

δi,1xi ≥
∑

Ei − D

⇒
∑

Ei −
∑

δi,1xi ≤ D

⇒(E1 − δ1,1x1) + (E2 − δ2,1x2) + · · · + (Em − δm,1xm) ≤ D

⇒U ≤ 1

The claim can be similarly verified in the other direction.
Thus, the special case of the minimum cost schedulability
analysis problem is NP-hard and the theorem follows. ��

3.2 Approximating the Minimum Cost
Schedulable Solution

In this section we first present a dynamic programming
algorithm (Algorithm 1) to compute the minimum cost that
must be incurred to obtain a schedulable task set. This al-
gorithm runs in pseudo-polynomial time. We then use this
algorithm to derive a fully polynomial-time approximation
scheme (FPTAS) for the same problem.

Let Ui,j be the minimum utilization that might be
achieved by considering only a subset of tasks from
{1, 2, . . . , i} when the cost is exactly j. If no such sub-
set exists we set Ui,j = ∞. Let the maximum cost be C
i.e. C = max(i=1,2,...,n;j=1,2,...,ni)ci,j . Clearly, mC is an
upper bound on the total cost that might be incurred. All
other notations used are as introduced in Section 3.

Lines 1 to 5 of Algorithm 1 initialize U0,0 to∑m
i=1 Ei/Pi, and U0,j to ∞ for j = {1, 2, . . . , mC}. The

Algorithm 1 Minimum-cost schedulability analysis
Input: The task set τ , and a set Si for each task Ti.

1: U0,0 ←
�m

i=1 Ei/Pi

2: tagj ← 1
3: for j ← 1 to mC do
4: U0,j ← ∞
5: tagj ← 1
6: end for
7: for i ← 1 to m do
8: for j ← 0 to mC do
9: if tagj = 1 then

10: Ui,j = Ui−1,j

11: else
12: tagj = 1
13: end if
14: For each pair (δi,k, ci,k) that belongs to the set Si

15: if (j + ci,k) ≤ mC then
16: if tagj+ci,k = 1 then
17: Ui,j+ci,k ← min{Ui−1,j+ci,k , Ui−1,j − δi,k/Pi}
18: if Ui,j+ci,k = Ui−1,j − δi,k/Pi then
19: tagj+ci,k = 0
20: end if
21: else
22: Ui,j+ci,k ← min{Ui,j+ci,k , Ui−1,j − δi,k/Pi}
23: end if
24: end if
25: end for
26: end for
27: MinCost ← min{j |Un,j ≤ 1}

values Ui,j for i = 1 to i = m are computed using the it-
erative procedure in lines 7 to 26. For an iteration where
(i = i′) and (j = j′), we say that Ui′,j′+ci,k

is updated
using the recursive computation in lines 16 to 23 where
Ui′,j′+ci,k

is assigned the value {Ui′−1,j−δi′,k/Pi′}. Thus,
Ui′,j′+ci,k

�= Ui′−1,j′+ci,k
, i.e. Ui′,j′+ci,k

does not carry the
value from the previous iteration but is updated with a new
value. When such an updated entry is accessed after a few
iterations (i.e. when j = j′+ci,k), this updated value should
not get re-initialized to its previous value (line 10). This is
taken care of in lines 9 to 12 with the help of the if-else con-
ditional statements on the variable tagj . Towards this, the
value tagj is set to 0 for updated entries in lines 18 to 19. It
can be easily verified that the running time of Algorithm 1
is O(nmC), where n =

∑m
i=1 ni, and its space complexity

is O(m2C).
Next, we present an FPTAS for the minimum cost

schedulability analysis problem. Towards this, we divide
the cost space between 1 and mC into O(n log1+ε mC) in-
tervals as (1, (1 + ε)1/n], ((1 + ε)1/n, (1 + ε)2/n],

Our FPTAS is based on Algorithm 1. But instead of run-
ning it for all possible cost values, from 0 to mC, we only
consider the value 0 and the upper end points of the par-

titioned intervals we described above. Let Ũi,�j , represent

the utilization value with the cost at most j̃, where j̃ always
takes the value 0 or the value of one of the upper endpoints
of the abovementioned intervals. During the iteration for the
current entry Ũi,�j , the following procedure is executed for
the recursive equations in lines 17 and 22 of Algorithm 1.
The cost of [̃j + ci,j] is rounded up to the next upper end-
point ũ. The value in this entry i.e. Ũi−1,�u is compared
with Ũi,�j −δi,j/Pi, and the minimum of the two is stored in

Ũi,�u. This explains how to update the main recursive equa-
tion in lines 15 and 17. The value for tagj can be updated
in a similar way (lines 19 and 20). The running time of the
resulting algorithm is O(n2 log1+ε mC) (which is bounded
by a polynomial in the problem size and in 1

ε).

Theorem 3 Our approximation algorithm for the mini-
mum cost schedulability analysis problem is a (1 + ε)-
approximation scheme.

Proof: The algorithm can be proved to be a (1 + ε)-
approximation scheme if we can show that j̃ ≤ (1 + ε)j.
This is achieved by proving the following two properties
for all values of i and j.

Property 1: Ũi,�j ≤ Ui,j

Property 2: j̃ ≤ (1 + ε)i/mj

We will prove these two properties using induction on i.
First, consider the items only from the task T1, i.e. i = 1.
This implies that in the exact algorithm, there will be an up-
date for Ui,p1,k

corresponding to all k = {1, 2, . . . , n1}.
Property 1 holds by equality. We can easily verify that
j̃/(1 + ε)1/n ≤ ci,k (Property 2) follows from the fact that
j̃ is the upper bound in the same interval as j, and hence
j̃/(1 + ε) will definitely be in the preceding interval.

Let us now consider the induction step for any i > 1,
assuming that both the properties hold true for i−1, i.e. we
have dealt with the tasks T1 to Ti−1. This step considers the
pairs (δi,k, ci,k) in the set Si. The entries in the array Ui,j

which are not updated definitely satisfy both the properties.
Now consider entries which are updated i.e. an item

(δi,k, ci,k) was added to Ui,j such that Ui,j+ci,k
was up-

dated. Since the claim is true for i − 1, there exists Ũi−1,�j

such that j̃ ≤ (1 + ε)i−1/nj. Now, we consider ci,k which
will be added to j̃, and is rounded up to ũ. Given the manner
in which we constructed our intervals, we have

ũ/(1 + ε)1/n ≤ j̃ + ci,k ≤ j̃(1 + ε)i−1/n + ci,k

ũ/(1 + ε)1/n ≤ (j̃ + ci,k)(1 + ε)i−1/n

⇒ ũ ≤ (j̃ + ci,k)(1 + ε)i−1/n

Property 1 can be verified using the following steps, where

the inequality holds by induction.

Ũi,�j = min{Ũi,�j, Ui−1,�j − δi,�j/Pi}
≤ {Ui−1,j − δi,j/Pi} = Ui−1,j+ci,k

��

4 Multicriteria Schedulability Analysis

In the previous section we addressed the single-criteria
version of the problem, namely we assumed the processor’s
clock frequency to be prespecified. In this section, we re-
lax this assumption and present a scheme to compute the
Pareto curve containing the Pareto-optimal set of perfor-
mance vectors {(c1, f1), . . . , (cn, fn)}, where (ci, fi) de-
notes the hardware cost and the clock frequency for a par-
ticular schedulable implementation (recall the definition of
Pareto optimality from Section 1).

For simplicity of exposition, we will henceforth assume
that the processor P ’s clock frequency is constant and all
the execution times of the tasks are specified with respect
to this clock frequency. Our objective will be to minimize
P ’s utilization (by mapping certain subtasks onto hard-
ware) and at the same time also minimize the total hard-
ware cost. In other words, our goal is to compute the cost-
utilization Pareto curve {(c1, u1), . . . , (cn, un)} for a pre-
specified clock frequency of P . It is straightforward to see
that such a Pareto curve can be easily transformed into a
cost-frequency Pareto curve with P ’s utilization being ≤ 1
for the different frequency values.

Unfortunately, computing the exact cost-utilization
Pareto curve is computationally intractable. This can be
easily verified from the following two facts. First, the Pareto
curve would typically contain an exponential number of
points (which obviously cannot be computed in polynomial
time). Second, computing any one point on the Pareto curve
is NP-hard, as we showed in Section 3. Hence, our goal is
to approximately compute this curve in polynomial time.

Recent work by Papadimitriou and Yannakakis [14] has
shown that for any multiobjective optimization problem,
there exists a polynomial-sized ε-approximate Pareto curve
Pε for any given ε. Further, [14] showed that a necessary
and sufficient condition for computing such a Pε in polyno-
mial time is the existence of a polynomial-time algorithm
for solving, what was referred to as the GAP problem. In
what follows, we state the version of the GAP problem that
arises in our setting and show that it can be solved in poly-
nomial time.

4.1 The GAP Problem
For a two-dimensional multiobjective optimization prob-

lem, the GAP problem can be stated as follows: Given a
vector b = (b1, b2), either return a solution whose vec-
tor dominates b, or report that there is no solution whose

Figure 2. The GAP problem corresponding to our cost-
utilization tradeoff problem.

Figure 3. An FPTAS for computing Pε using an algo-
rithm for solving GAP.

vector is better than b by at least a factor of 1 + ε in
both dimensions. In our setup, the objective is to mini-
mize the utilization U(S) =

∑m
i=1

Ei−xi,jδi,j

Pi
and the cost

C(S) =
∑m

i=1 ci,jxi,j , where S is the chosen implemen-
tation among the various available options (see Table 1).
Hence, the corresponding GAP problem can be stated as:
Given a cost c, a utilization u and an ε ≥ 0, either return a
solution S such that C(S) ≤ c and U(S) ≤ u, or else de-
clare that there is no solution S such that C(S) ≤ c

1+ε and
U(S) ≤ u

1+ε (see Figure 2). In this section, we will show
that there exists a polynomial-time algorithm to solve this
GAP problem.

Note that a polynomial-time algorithm to solve the GAP
problem implies an FPTAS for computing Pε. This is be-
cause the following FPTAS can be devised using the algo-
rithm for solving GAP (shown schematically in Figure 3).
First, geometrically partition the objective space along all
dimensions with a ratio 1+ε′, where ε′ = (1+ε)1/2−1. For
each corner point of this grid, call the GAP routine (i.e. the

Figure 4. Solving the GAP problem for the corner point
A will either return a dominating solution or declare that
there is no solution in the shaded area.

algorithm for solving GAP) with the parameter ε′, and keep
all the undominated solutions (see Figure 4 for an illustra-
tion of this procedure). This implies that for each rectangle
which contains a solution in the exact Pareto curve, there
will also be a solution within the same rectangle which be-
longs to Pε. The distance between these two solutions can
be bounded using the dimensions of the rectangle. Hence,
for every solution s in the Pareto curve, there exists a so-
lution q in Pε such that q

(1+ε) ≤ s. Moreover, because the
number of rectangles is polynomially bounded, it follows
that the number of points in Pε will also be a polynomial.

Theorem 4 There exists an algorithm for constructing the
cost-utilization ε-Pareto curve, which runs in time polyno-
mial in the size of the input and in 1

ε .

Proof: As discussed above, a necessary and sufficient
condition for the existence of an FPTAS for computing
the approximate cost-utilization Pareto curve Pε is that the
following GAP problem should be solvable in time, which
is polynomial in the input size and in 1/ε.

Problem Statement: Given a cost c, utilization u and an
ε ≥ 0 either return a solution S such that C(S) ≤ c and
U(S) ≤ u, or else declare that there is no solution S such
that C(S) ≤ c

1+ε and U(S) ≤ u
1+ε .

Solution to the GAP Problem: We now present a
polynomial-time algorithm to solve this GAP problem. It
involves the following two steps:

• Transforming Costs
Let r =

⌈
m
ε

⌉
. Modify each cost ci,j to c′i,j such that

c′i,j =
⌈ ci,jr

c

⌉
. This leads to the following properties:

(a) If a solution with the transformed costs satisfies
C′(S) ≤ r, then C(S) ≤ c.

Proof of Property (a):∑
c′i,jxi,j =

∑ ⌈ci,jxi,jr

c

⌉
≥ r

c

∑
ci,jxi,j

Hence, C′(S) ≤ r ⇒ r

c

∑
ci,jxi,j ≤ r

This implies that C(S) ≤ c.

(b) If the solution satisfies C(S) ≤ c
1+ε , then

C′(S) ≤ r.
Proof of Property (b):

C(S) ≤ c

1 + ε
⇒

∑
ci,jxi,j ≤ c

1 + ε

⇒
∑ ci,jxi,j

c

m

ε
≤ m

ε(1 + ε)

⇒
∑ ⌈ci,jxi,jr

c

⌉
≤

⌈
m

ε(1 + ε)

⌉

⇒C′(S) ≤
⌈m

ε

⌉
= r ⇒ C′(S) ≤ r

Consider the problem of determining if there exists a
solution with the modified costs such that C′(S) ≤ r.
Let us call this problem GAP′. From property (a), we
know that if this problem returns an affirmative answer
then the GAP problem would also return a dominating
solution. On the other hand, if GAP′ returns a negative
answer then property (b) leads to the conclusion that
there is no solution with cost ≤ c/(1+ε). Hence, from
the above properties we can infer that solving GAP′ is
equivalent to solving the original GAP problem.

• Solving GAP′

We present a dynamic programming algorithm to solve
the GAP′ problem. This algorithm can be constructed
with the following adjustments to Algorithm 1.

1. Run Algorithm 1 with the modified costs c′i,j .

2. Instead of iterating over all the cost values up to
mC, iterate only up to a cost value of at most r.

3. Finally, if the minimum value in the final array
Un,{1,...,r} is such that it is ≤ u, then return the
solution otherwise declare that there is no solu-
tion.

Computing each row of the table built by this dynamic
programming algorithm requires O(nir) running time.
Hence, this algorithm runs in time O(nm/ε), where
n =

∑
ni.

Hence, a polynomial-time algorithm exists for solving the
GAP problem, which in turn proves our theorem. ��

Now that we have presented the GAP subroutine for
our problem, we can present the full algorithmic details for
computing the cost-utilization Pareto curve. Recall that we

Algorithm 2 Approximating the Pareto curve.
1: Partition the range of costs from 1 to mC geometrically

with a ratio 1 + ε′ = (1 + ε)1/2, thus dividing the cost
space into O(log1+εmC) coordinates.

2: For each coordinate b, call Algorithm 1 with trans-
formed costs c′i,j =

⌈ ci,jr
b

⌉
, where r =

⌈
m
ε′

⌉
.

3: For each run of Step 2, find the solution with the mini-
mum utilization.

4: Retain all the undominated solutions from the solutions
found in Step 3. This will represent a ε-Pareto curve.

already outlined this scheme in Figure 3. Algorithm 2 spec-
ifies the steps to compute the ε-approximate cost-utilization
Pareto curve in some more detail. Note, that in step 1 of
Algorithm 2 we partition only the cost space (and not both
utilization and cost space). This is because if a point (c, u)
dominates the corner (c1, u1) and u1 < u2, then (c, u) def-
initely dominates (c1, u2) . In steps 2 and 3, we scale the
costs, run Algorithm 1 for every co-ordinate in the parti-
tioned cost space and retain the minimum utilization at each
co-ordinate. The runtime complexity of this algorithm is
O(nm

ε log1+εmC).

5 Experimental Results
In this section we report some of the experimental results

that we obtained by running our approximation algorithm
on a set of synthetic task sets. (Note that to compute the ex-
act Pareto curve, we need to run the Algorithm 1 and then
retain all the undominated solutions.) We also compared
these results with those obtained by running the optimal al-
gorithm. In Section 5.1 we show the running times of the
optimal and the approximation algorithms. In Section 5.2
we illustrate the difference in the sizes of Pε and the exact
Pareto curve.

For our experiments we randomly generated tasks with
execution requirements between 200 and 600 time units; the
periods were between 600 and 20000 time units. The num-
ber of hardware implementation choices associated with
any task was varied between 1 and 10, i.e. 1 ≤ ni ≤ 10.
The parameter C, which is the maximum cost associated
with any implementation choice was set to 5000 for our ex-
periments. For each choice, the maximum value associated
with any δi,j was set to Ei.

All the CPU times reported below were measured on a
machine with Windows XP, running on a 3.0 GHz CPU with
1 GB RAM. All the implementations were done in C++.

5.1 Running Times
Figure 5 shows the running times involved in comput-

ing the exact Pareto curve and the FPTAS for three different
values of ε when the number of tasks in the task set is pro-
gressively increased from 10 to 50. These task sets were

Figure 5. Graph comparing the running times of the exact
and the approximate algorithms for various task sets with
C = 5000.

generated with the parameter C = 5000. It can be seen that
even for small values of ε (e.g. when ε = 0.69) the approx-
imate algorithm runs about 20 times faster than the exact
algorithm. For larger values of ε (e.g. ε = 3), the speedups
are even more significant (note that ε need not be ≤ 1).

The reason behind choosing the values 0.21, 0.44, and
0.69 for ε is as follows. Our approximation algorithm in-
volves the computation of the value (1 + ε)1/2. This value
might turn out to be an irrational number if ε is not carefully
chosen. Hence, to avoid any possible rounding-off errors in
our implementation, the above values were chosen for ε.

5.2 Size of the Pareto Curves

As discussed in Section 4, the cost-utilization Pareto
curve typically contains an exponential number of points.
The approximation algorithm generates a polynomial-sized
ε-approximate Pareto curve. In this section, we compare
the number of points in the exact Pareto curve and in Pε. To
help visualize the difference in their sizes, Figure 6 shows
the exact Pareto curve and the Pε generated by our algo-
rithm for task sets with 10 tasks in each set and C = 5000.

The following two observations can be easily visualized
from these graphs: (i) the number of points in Pε decrease
with a corresponding increase in the value of ε, and (ii) the
gap between the exact and approximate curves widens with
larger values of ε, implying that the relative error indeed
increases.

These graphs show the Pareto curves for a task set with
10 tasks. Table 2 lists the number of points in the exact
Pareto curve and in Pε for task sets with 10, 20, 30, 40
and 50 tasks. From this table it can once again be seen
that as the relative error is allowed to increase, the size of
the approximate Pareto curve decreases. Note from Table 2
that for small values of ε (e.g. ε = 0.21), the size of the
Pε contains up to 96% less points compared to the optimal
Pareto curve.

Task Sets ε # Points on Pε

0.21 40
tasks in the task set τ1 = 10 0.44 26

points in the exact Pareto curve 0.69 22
= 62 3 9

0.21 60
tasks in the task set τ2 = 20 0.44 38

points in the exact Pareto curve 0.69 26
= 239 3 11

0.21 63
tasks in the task set τ3 = 30 0.44 37

points in the exact Pareto curve 0.69 27
= 828 3 12

0.21 76
tasks in the task set τ4 = 40 0.44 44

points in the exact Pareto curve 0.69 31
= 1061 3 12

0.21 72
tasks in the task set τ5 = 50 0.44 42

points in the exact Pareto curve 0.69 30
= 2033 3 12

Table 2. Number of points in Pε generated by our
proposed approximation algorithm, versus the number of
points in the optimal Pareto curve. This table shows the
results for five task sets generated with C = 5000, where
each set contains between 10-50 tasks. The numbers in the
rightmost column are the number of points in Pε when the
value of ε is set to 0.21, 0.44, 0.69, and 3.

6 Concluding Remarks

In this paper we introduced a multicriteria version of
the classical schedulability analysis problem. We showed
that this problem is NP-hard even for simple task models
and presented an approximation algorithm for solving it.
Our approximation algorithm is not only computationally
efficient, but also returns more meaningful results from a
practical performance-debugging perspective (as discussed
in Section 1.1).

There are a number of directions in which our work can
be extended. The most notable among these being a possi-
ble extension of our scheme to account for communication
costs and dependencies between parts of a task, some of
which are implemented in hardware and the remaining in
software. Such details were abstracted away in this paper
for the sake of a clean theoretical formulation.

Lastly, it may be noted that although our algorithm gen-
erated polynomial-sized Pε curves, they need not necessar-
ily contain the fewest possible points required to represent
an ε-approximate Pareto curve. It would be interesting to
see whether it is possible to generate the smallest sized Pε

in our setting, based on the recent results from [19].

(a) ε = 0.21, C = 5000 (b) ε = 0.44, C = 5000

(c) ε = 0.69, C = 5000 (d) ε = 3, C = 5000

Figure 6. The exact and approximate Pareto curves for a task set with 10 tasks and C = 5000, for different values of ε.

References
[1] S. Baruah. Dynamic- and static-priority scheduling of re-

curring real-time tasks. Real-Time Systems, 24(1):93–128,
2003.

[2] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized
multiframe tasks. Real-Time Systems, 17(1):5–22, 1999.

[3] S. Baruah, A. Mok, and L. Rosier. Preemptively schedul-
ing hard-real-time sporadic tasks on one processor. In IEEE
Real-Time Systems Symposium (RTSS), 1990.

[4] G. Bernat and A. Burns. Three obstacles to flexible
scheduling. In Euromicro Conference on Real-Time Systems
(ECRTS), 2001.

[5] E. Bini and M. D. Natale. Optimal task rate selection in fixed
priority systems. In IEEE Real-Time Systems Symposium
(RTSS), 2005.

[6] E. Bini, M. D. Natale, and G. C. Buttazzo. Sensitivity analy-
sis for fixed priority real-time systems. In Euromicro Con-
ference on Real-Time Systems (ECRTS), 2006.

[7] G. Buttazzo. Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. Kluwer
Academic Publishers, Boston, 1997.

[8] C. A. C. Coello, A. H. Aguirre, and E. Zitzler, edi-
tors. Proc. Third International Conference on Evolutionary
Multi-Criterion Optimization. Lecture Notes in Computer
Science 3410, Springer-Verlag, 2005.

[9] K. Deb. Multi-Objective Optimization Using Evolutionary
Algorithms. John Wiley & Sons, 2001.

[10] D. Hochbaum, editor. Approximation Algorithms for NP-
Hard Problems. PWS Publishing Company, Boston, 1997.

[11] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combin-
ing convergence and diversity in evolutionary multiobjective
optimization. Evolutionary Computation, 10(3):263–282,
2002.

[12] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of
the ACM, 20(1):46–61, 1973.

[13] A. Mok and D. Chen. A multiframe model for real-
time tasks. IEEE Transactions on Software Engineering,
23(10):635–645, 1997.

[14] C. H. Papadimitriou and M. Yannakakis. On the approxima-
bility of trade-offs and optimal access of web sources. In
Foundations of Computer Science (FOCS), 2000.

[15] S. Punnekkat, R. Davis, and A. Burns. Sensitivity analysis of
real-time task sets. In Asian Computing Science Conference
on Advances in Computing Science (ASIAN), 1997.

[16] R. Racu, A. Hamann, and R. Ernst. A formal approach
to multi-dimensional sensitivity analysis of embedded real-
time systems. In Euromicro Conference on Real-Time Sys-
tems (ECRTS), 2006.

[17] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity
analysis in real-time distributed systems. In Real-Time and
Embedded Technology and Appl. Symp. (RTAS), 2005.

[18] V. T’kindt, J. C. Billaut, and H. Scott. Multicriteria Schedul-
ing : Theory, Models and Algorithms. Springer, 2006.

[19] S. Vassilvitskii and M. Yannakakis. Efficiently computing
succinct trade-off curves. Theoritical Computer Science,
348(2), 2005.

[20] S. Vestal. Fixed-priority sensitivity analysis for linear com-
pute time models. IEEE Trans. Softw. Eng., 20(4):308–317,
1994.

