
Abstract Interpretation of Floating-Point
Computations

Sylvie Putot
Laboratory for ModElling and Analysis of Systems in

Interaction, CEA-LIST/X/CNRS

Session: Static Analysis for Safety and Performance

ARTIST2 - MOTIVES
Trento - Italy, February 19-23, 2007

Sylvie Putot Laboratory for ModElling and Analysis of Systems in Interaction, CEA-LIST/X/CNRSAbstract Interpretation of Floating-Point Computations

Outline

◮ Introduction
◮ Floating-point computations
◮ Static analysis and abstract interpretation

◮ An abstract interpretation for floating-point computations : a
relational domain relying on affine arithmetic

◮ Introduction to affine arithmetic
◮ Relational domain for real value computation

◮ arithmetic operations
◮ join, meet, order

◮ From real to floating-point computation : relational domain for
values and errors

◮ Examples

◮ References

◮ Joint work with Eric Goubault

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Floating-point numbers (defined by the IEEE 754 norm)

◮ Normalized floating-point numbers

(−1)s1.x1x2 . . . xn × 2e (radix 2 in general)

◮ implicit 1 convention (x0 = 1)
◮ n = 23 for simple precision, n = 53 for double precision
◮ exponent e is an integer represented on k bits (k = 8 for

simple precision, k = 11 for double precision)

◮ Denormalized numbers (gradual underflow),

(−1)s0.x1x2 . . . xn × 2emin

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

ULP : Unit in the Last Place

◮ ulp(x) = distance between two consecutive floating-point
numbers around x = maximal rounding error of a number
around x

◮ A few figures for simple precision floating-point numbers :

largest normalized ∼ 3.40282347 ∗ 1038

smallest positive normalized ∼ 1.17549435 ∗ 10−38

largest positive denormalized ∼ 1.17549421 ∗ 10−38

smallest positive denormalized ∼ 1.40129846 ∗ 10−45

ulp(1) = 2−23 ∼ 1.19200928955 ∗ 10−7

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Some difficulties of floating-point computation

◮ Representation error : transcendental numbers π, e, but also

1

10
= 0.00011001100110011001100 · · ·

◮ Floating-point arithmetic :
◮ absorption : 1 + 10−8 = 1 in simple precision float
◮ associative law not true : (−1 + 1) + 10−8 6= −1 + (1 + 10−8)
◮ cancellation : important loss of relative precision when two

close numbers are subtracted

◮ Some more trouble :
◮ re-ordering of operations by the compiler
◮ storage of intermediate computation either in register or in

memory, with different floating-point formats

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Example of cancellation : surface of a flat triangle

(a, b, c the lengths of the sides of the triangle, a close to b + c):

A =
√

s(s − a)(s − b)(s − c) s =
a + b + c

2

Then if a,b, or c is known with some imprecision, s − a is very
inaccurate. Example,

real number floating-point number

a = 1.9999999 a = 1.999999881...

b = c = 1 b = c = 1

s − a = 5e − 08 s − a = 1.19209e − 07

A = 3.16...e − 4 A = 4.88...e − 4

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

In real world : a catastrophic example

◮ 25/02/91: a Patriot missile misses a Scud in Dharan and
crashes on an american building : 28 deads.

◮ Cause :
◮ the missile program had been running for 100 hours,

incrementing an integer every 0.1 second
◮ but 0.1 not representable in a finite number of digits in base 2

1

10
= 0.00011001100110011001100 · · ·

Truncation error ∼ 0.000000095 (decimal)
Drift, on 100 hours ∼ 0.34s

Location error on the scud ∼ 500m

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

But also some other costly errors ...

◮ Explosion of Ariane 5 in 1996 (conversion of a 64 bits float
into a 16 bits integer : overflow)

◮ Vancouver stock exchange in 1982
◮ index introduced with initial value 1000.000
◮ after each transaction, updated and truncated to the 3rd

fractional digit
◮ within a few months : index=524.881, correct value 1098.811
◮ explanation : biais. The errors all have same sign

◮ Sinking of an offshore oil platform in 1992 : inaccurate finite
element approximation

Collection of Software Bugs at url
http://www5.in.tum.de/∼huckle/bugse.html

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

http://www5.in.tum.de/~huckle/bugse.html

Validation of accuracy “by hand” ?

◮ A popular way : try the algorithm with different precision
(using matlab for example) and compare the results

◮ Example (by Rump) : in FORTRAN on an IBM S/370,
computing with x = 77617 and y = 33096 and x1 = 61.0

11
,

f = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2)+5.5y8 + x/(2y)

gives :
◮ in single precision, f = 1.172603...
◮ in double precision, f = 1.1726039400531...
◮ in extended precision, f = 1.172603940053178...

◮ We would deduce computation is correct ?

◮ True value is f = −0.82739... !!!

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

IEEE 754 norm : correct (or exact) rounding

◮ The user chooses one among four rounding modes (rounding
to the nearest which is the default mode, rounding towards
+∞, rounding towards −∞, or rounding towards 0)

◮ The result of x ∗ y , ∗ being +,−,×, / or of
√

x , is the
rounded value of the real result (thus the rounding error is less
than the ulp of the result)

→ Allows to prove some properties on programs using
floating-point numbers

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Static Analysis

◮ Analysis of the source source, for a set of inputs and
parameters, without executing it

◮ The program is considered as a discrete dynamical system

◮ Find in an automatic, and guaranteed way :
◮ invariant properties (true on all trajectories - for all possible

inputs or parameters).
Example : bounds on values of variables

◮ liveness properties (that become true at some moment on one
trajectory).
Examples : state reachability, termination

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

But undecidable in general

Thus abstraction to compute over-approximations of sets of
values : Abstract Interpretation

y

x

Intervals

x

y

Octogons

 x

y

Polyhedrons

The analysis must terminate, may return an over-approximated
information (“false alarm”), but never a false answer

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Abstract Interpretation (Cousot & Cousot 77)

Theory of semantics approximation (operators, fixpoint transfers)

−2 −1 0 1 2

−2, −1 −2, 0 −1,0 −1,1 −1,2 −2,1 −2,2 0,1 0,2 1,2

−2,−1,0 0,1,2−2,−1,1 −2,−1,2 −2,0,1 −2,0,2 −2,1,2 −1,0,1 −1,0,2 −1,1,2

−2,−1,0,1 −2,−1,1,2 −2,−1,0,2 −2,0,1,2 −1,0,1,2

T

T T

T

0

− +

α

γ

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Fixpoint computation

To automatically find local invariants :

◮ Abstract domain (lattice) for sets of value

◮ The semantic is given by a system of equations, of which we
compute iteratively a fixpoint :

X =

X1

. . .
Xn

 = F

X1

. . .
Xn

◮ F is non-decreasing, least fixpoint is the limit of Kleene
iteration X 0 = ⊥, X 1 = F (X 0), . . . , X k+1 = X k ∪F (X k), . . .

◮ Iteration strategies, extrapolation (called widenings) to reach
a fixpoint in finite time

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Example : lattice of intervals

◮ Intervals [a, b] with bounds in R with −∞ and +∞
◮ Smallest element ⊥ identified with all [a, b] with a > b

◮ Greatest element ⊤ identified with [−∞,+∞]

◮ Partial order : [a, b] ⊆ [c , d] ⇐⇒ a ≥ c and b ≤ d

◮ Sup : [a, b] ∪ [c , d] = [min(a, b),max(c , d)]

◮ Inf : [a, b] ∩ [c , d] = [max(a, b),min(c , d)]

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Example

int x=0; // 1

while (x<100) { // 2

x=x+1; // 3

} // 4

x1 = [0, 0]
x2 =] −∞, 99] ∩ (x1 ∪ x3)
x3 = x2 + [1, 1]
x4 = [100,+∞[∩(x1 ∪ x3)

- Iterate i + 1 (i < 100) [Kleene/Jacobi/Gauss-Seidl] :

x1
2 = [0, 0]

x1
3 = [1, 1]

x1
4 = ⊥

x i+1
2 = [0, i]

x i+1
3 = [1, i + 1]

x i+1
4 = ⊥

- Fixpoint (after 101 Kleene iterates or widening) :

x∞
2 = [0, 99]; x∞

3 = [1, 100]; x∞
4 = [100, 100]

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Analysis of programs using floating-point numbers

What is a correct program when using floating-point numbers ?

◮ No run-time error, such as division by 0

◮ But also the program does compute what is expected with
respect to some tolerance (the programmer usually thinks in
real numbers)

For that, we need :

◮ Bounds of floating-point values (ASTREE, FLUCTUAT)

◮ Bounds on the discrepancy error between the real and
floating-point computations (FLUCTUAT)

◮ If possible, the main source of this error (FLUCTUAT)

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Related work and tools

◮ The ASTREE static analyzer (see references)
◮ Detection of run-time error for large synchronous

instrumentation software
◮ Using in particular octogons and domains specialized for order

2 filters (ellipsoids)
◮ Taking floating-point arithmetic into account

http://www.astree.ens.fr/

◮ CADNA : estimation of the roundoff propagation in scientific
programs by stochastic testing
http://www-anp.lip6.fr/cadna/

◮ GAPPA : automatic proof generation of arithmetic properties
http://lipforge.ens-lyon.fr/www/gappa/

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

http://www.astree.ens.fr/
http://www-anp.lip6.fr/cadna/
http://lipforge.ens-lyon.fr/www/gappa/

Analysis for the floating-point value

◮ First natural idea : Interval Arithmetic (IA) with floating-point
bounds, where min bound computed with rounding to −∞
and max bound computed with rounding to +∞

◮ [a, b] + [c , d] = [a + c , b + d]
◮ [a, b]− [c , d] = [a − d , b − c]
◮ [a, b]× [c , d] = [min(ac , ad , bc , bd), max(ac , ad , bc , bd)]

◮ Defect : too conservative, non relational
◮ extreme example : if X = [−1, 1], X − X computed in interval

arithmetic is not 0 but [−2, 2]

◮ A solution : Affine Arithmetic, an extension of IA that takes
linear correlations into account

◮ but correlations true only for computations on real numbers

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Affine Arithmetic for real numbers

◮ Proposed in 1993 by Comba, de Figueiredo and Stolfi as a
more accurate extension of Interval Arithmetic

◮ A variable x is represented by an affine form x̂ :

x̂ = x0 + x1ε1 + . . . + xnεn,

where xi ∈ R and εi are independent symbolic variables with
unknown value in [−1, 1].

◮ x0 ∈ R is the central value of the affine form
◮ the coefficients xi ∈ R are the partial deviations
◮ the εi are the noise symbols

◮ The sharing of noise symbols between variables expresses
implicit dependency

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Affine arithmetic : arithmetic operations

◮ Assignment of a of a variable x whose value is given in a
range [a, b] introduces a noise symbol εi :

x̂ =
(a + b)

2
+

(b − a)

2
εi .

◮ Addition is computed componentwise (no new noise symbol):

x̂ + ŷ = (αx
0 + αy

0) + (αx
1 + αy

1)ε1 + . . . + (αx
n + αy

n)εn

For example, with real (exact) coefficients , f − f = 0.

◮ Multiplication : we select an approximate linear form, the
approximation error creates a new noise term :

x̂ × ŷ = αx
0α

y
0 +

n
∑

i=1

(αx
i α

y
0 + αy

i α
x
0)εi + (

n
∑

i=1

|αx
i |.|

n
∑

i=1

|αy
i |)εn+1.

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Affine forms define implicit relations : example

Consider, with a ∈ [−1, 1] and b ∈ [−1, 1], the expressions

x = 1 + a + 2 * b;

y = 2 - a;

z = x + y - 2 * b;

◮ The representation as affine forms is x̂ = 1 + ǫ1 + 2ǫ2,
ŷ = 2 − ǫ1, with noise symbols ǫ1, ǫ2 ∈ [−1, 1]

◮ This implies x ∈ [−2, 4], y ∈ [1, 3]

◮ It also contains implicit relations, such as
x + y = 3 + 2ǫ2 ∈ [1, 5] or x + y − 2b = 3: we thus get

z = x + y − 2b = 3

◮ Whereas we get with intervals

z = x + y − 2b ∈ [−3, 9]

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Affine forms and existing relational domains

◮ More expressive (less abstract) than zones or octogons [A.
Mine]

◮ Close to dynamic templates [Z. Manna]

◮ Provides Sub-polyedric relations (there is a concretization to
center-symmetric bounded convex polyedra)

◮ But by some aspects better than polyhedra [P. Cousot/N.
Halbwachs]

◮ for example, to interpret non-linear computations :
◮ dynamic linearization of non-linear computations

◮ much more efficient in computation time and memory

◮ dynamic construction of relations
◮ no static packing of variables needed

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Comparative example

x = [0,2]
y = x+[0,2]

z = xy;
t = z-2*x-y;

Zones/polyhedra (with a simple semantics):

0 ≤ x ≤ 2
0 ≤ y − x ≤ 2
0 ≤ z ≤ 8
−8 ≤ t ≤ 8

Affine forms:

x = 1 + ε1 ∈ [0, 2]
y = 2 + ε1 + ε2 ∈ [0, 4]
z = 2.5 + 3 ε1 + ε2 + 1.5 ε3 ∈ [−3, 8]
t = −1.5 + 1.5 ε3 ∈ [−3, 0]

(in practice coupled with intervals, thus z ∈ [0, 8])

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Concretisation of affine forms (x,y,z)

concretization of affine form with classical polyhedron
finds z − 2x − y ∈ [−3, 0]

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Concretisation of affine forms (x,y,t)

concretization of affine form with classical polyhedron

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Implementation using floating-point numbers

◮ For the computation of the affine form for the real value, the
analyzer also uses finite precision arithmetic :

◮ Affine form with floating point coefficients (with higher
precision floating-point numbers, using the MPFR library)

◮ Uncertainty in the computation of coefficients is handled by
creating new noise terms

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Join (and meet) operations on affine forms

◮ Let [αx
i ∪ αy

i] = [αx
i , αy

i] if αx
i ≤ αy

i else [αy
i , αx

i]

◮ A natural join between x̂ and ŷ is

x̂ ∪ ŷ = [αx
0 ∪ αy

0] +
∑

i∈L

[αx
i ∪ αy

i] εi

Result might be greater than the union of enclosing intervals,
but may be more interesting to keep correlations

◮ But with interval coefficients (x̂ ∪ ŷ) − (x̂ ∪ ŷ) 6= 0

we get back to the defects of intervals

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Join (and meet) operations on affine forms

For an interval i, we note

mid(i) =
i + i

2
, dev(i) = i − mid(i)

the center and deviation of the interval.

◮ A better join is then

x̂∪ ŷ = mid([αx
0 , α

y
0])+

∑

i∈L

mid([αx
i , α

y
i]) εi +

∑

i∈L∪{0}

dev([αx
i , α

y
i]) εu

k

◮ Then we have affine forms with real coefficients again

◮ Order on affine forms considers noise symbols due to join operations
differently than noise symbols due to arithmetic operations

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Example (join)

Let x̂ = 1 + 2ε1 + ε2 and ŷ = 2 − ε1.

◮ Join on intervals : [x] ∪ [y] ∈ [−2, 4]

◮ First join on affine forms :

◮ x̂ ∪ ŷ = [1, 2] + [−1, 2]ε1 + [0, 1]ε2 ⊂ [−2, 5]
◮ larger enclosure than on intervals but it may still be interesting

for further computations to keep relations

◮ Second join on affine forms :

◮ x̂ ∪ ŷ = 1.5 + 0.5ε1 + 0.5ε2 + 2.5εu
3 ⊂ [−2, 5]

◮ same enclosure, but (x̂ ∪ ŷ) − (x̂ ∪ ŷ) = 0

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Order on affine forms with real coefficients

◮ For variable x , let αx
i , i ∈ L denote terms due to “classical”

noise symbols and βx
k denote terms due to “union” noise

symbols :

x̂ ≤ ŷ iff
∑

i∈L∪{0}

|αx
i − αy

i | ≤
∑

k

|βy
k | −

∑

k

|βx
k |

◮ Projection of “union” noise symbols on “classical” noise
symbols in arithmetic operations

◮ Then we have a complete partial order (under some
restrictions)

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Correctness of the semantics on affine forms

◮ Affine forms define implicit relations
◮ the concretization of an affine form representing a variable

must contain the concrete values of the variable
◮ and in whatever expression using the affine forms, the

concretization as interval of the expression must contain the
concrete values it can take

◮ we must not introduce non-existing relations by undue sharing

of noise symbols

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

From real to floating-point computation

◮ Affine arithmetic uses symbolic properties of real number
computation, such as associativity and distributivity of +,×

◮ These properties do not hold exactly for floating-point
numbers, thus affine arithmetic can not be directly used for
floating-point estimation

◮ Example :
◮ let x ∈ [0, 2] and y ∈ [0, 2], we consider ((x + y) − x) − y .
◮ with affine arithmetic : x = 1 + ε1, y = 1 + ε2

((x + y) − x) − y = ((2 + ε1 + ε2) − 1 − ε1) − 1 − ε2 = 0
◮ false in floating-point numbers : take x = 2 and y = 0.1, then

in simple precision ((x + y) − x) − y = −9.685755e − 08

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Overview for floating-point computation

◮ Affine arithmetic for real number estimation

◮ Estimation of the loss of precision due to the use of
floating-point numbers

◮ using ideas from affine arithmetic
◮ decomposition of errors on their provenance in the program

◮ We deduce bounds for the floating-point value

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Representation of values (concrete)

The set of floating-point values that a variable x can take is
expressed as:

f x = r x + ex
1 + ex

ho

= r x +
⊕

i∈I αx
i + ex

ho

where:

◮ r x is the real-number value that would have been computed if
we had exact arithmetic available

◮ αx
i is the coefficient expressing the first-order error introduced

by the arithmetic operation labelled i in the program,
propagated on x

◮ ex
ho is the higher-order error

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Example

float x = 0.1; // [1]

float y = 0.5; // [2]

float z = x+y; // [3]

float t = x*y; // [4]

x = 0.1 + 1.49011612e−9 [1]
y = 0.5
z = 0.6 + 1.49011612e−9 [1]+

2.23517418e−8 [3]
t = 0.06 + 1.04308132e−9 [1]

+2.23517422e−9 [3]
−8.94069707e−10 [4]
−3.55271366e−17 [ho]

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Abstraction

◮ Affine Arithmetic for the real part r x as already presented

◮ First natural idea: use interval arithmetic for coefficients αx
i

and ex
ho

◮ Rounding errors given by the IEEE 754 standard:
◮ in general, an interval of width ulp(x) when x is not just a

singleton

◮ But of course, we run into dependency problems : affine
arithmetic on errors also

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

First-order errors

Also represented in affine arithmetic (with other noise symbols):

ex
1 =

⊕

l∈L t ′
x
l ηl +

⊕

l∈L tx
l +

⊕

i∈I t ′′
x
i εi + βx

0 +
⊕

p∈P βx
p ϑp

◮ tx
l : center of the first-order error associated to the operation l

◮ t ′
x
l ηl : deviation on the first-order error associated to the

operation l

◮ the other terms are useful for modelling the propagation of
the first-order error terms after non-linear operations

◮ For instance, the term t ′′
x×y
i εi comes from the multiplication

of tx
l by αy

i εi , and represents the uncertainty on the first-order
error due to the uncertainty on the value, at label i

◮ The multiplications εiηl cannot be represented in our linear
forms: we use a new noise symbol ϑp

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Example : a non linear Newton scheme

Computes the inverse of A, that can take any value in [20,30] :

double xi, xsi, A, temp;

signed int *PtrA, *Ptrxi, cond, exp, i;

A = __BUILTIN_DAED_DBETWEEN(20.0,30.0);

/* initial condition = inverse of nearest power of 2 */

PtrA = (signed int *) (&A);

Ptrxi = (signed int *) (&xi);

exp = (signed int) ((PtrA[0] & 0x7FF00000) >> 20) - 1023;

xi = 1; Ptrxi[0] = ((1023-exp) << 20);

temp = xsi-xi; i = 0;

while (abs(temp) > e-10) {

xsi = 2*xi-A*xi*xi;

temp = xsi-xi;

xi = xsi;

i++;

}

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Analysis of the inverse computation

◮ Symbolic execution

◮ A = 20.0 : i = 5, xi = 5.0e-2 + [-2.82e-18,-2.76e-18]
◮ A = 30.0 : i = 9, xi = 3.33e-2 + [-5.28e-18,6.21e-18]

◮ Static analysis for A in [20.0,30.0] :

◮ Non relational : analysis does not prove termination of the
Newton algorithm

◮ Relational (with 10000 subdivisions) : analysis finds

i in [5,9], xi in [3.33e-2,5.0e-2]+ [-4.21e-13,4.21e-13]

◮ Study of this algorithm is not obvious (for example, execution of the
same algorithm but with simple precision float variables does not
always terminate)

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Example : second-order filter

A new independent input E at each iteration of the filter:

double S,S0,S1,E,E0,E1;

int i;

S=0.0; S0=0.0;

E=__BUILTIN_DAED_DBETWEEN(0,1.0);

E0=__BUILTIN_DAED_DBETWEEN(0,1.0);

for (i=1;i<=170;i++) {

E1 = E0;

E0 = E;

E = __BUILTIN_DAED_DBETWEEN(0,1.0);

S1 = S0;

S0 = S;

S = 0.7 * E - E0 * 1.3 + E1 * 1.1 + S0 * 1.4 - S1 * 0.7 ;

}

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Second-order filter

Relational analysis on values and errors :

Values in [-1.09,2.76] Error in [-1.1e-14,1.1e-14]

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

Second-order filter

Propagation of an error on the input:

◮ Each input has now an error in [0,0.001]

◮ Relational on errors : S in [-1.09,2.76], with a stabilized error
in [-0.00109,0.00276]

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

References

◮ What Every Computer Scientist Should Know About
Floating-Point Arithmetic, by D. Goldberg, ACM Computing
Surveys, 1991

http://cch.loria.fr/documentation/IEEE754/ACM/goldberg.pdf

◮ An Introduction to Affine Arithmetic, by J. Stolfi and L.H. de
Figueiredo, TEMA 2003

http://www.sbmac.org.br/tema/seletas/docs/v4 3/101 01summary.pdf

◮ Abstract Interpretation: Achievements and Perspectives, by P.
Cousot, SSGRR 2000

http://www.di.ens.fr/∼cousot/COUSOTpapers/SSGRRP-00-PC.shtml

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

http://cch.loria.fr/documentation/IEEE754/ACM/goldberg.pdf
http://www.sbmac.org.br/tema/seletas/docs/v4_3/101_01summary.pdf
http://www.di.ens.fr/~cousot/COUSOTpapers/SSGRRP-00-PC.shtml

References

◮ A static analyzer for large safety-critical software, by B.
Blanchet, P. and R. Cousot, J. Feret, L. Mauborgne, A. Min,
D. Monniaux and X. Rival, PLDI 2003

http://www.di.ens.fr/∼cousot/COUSOTpapers/PLDI03.shtml

◮ Static analysis-based validation of floating-point computations, by
S. Putot, E. Goubault and M. Martel, Dagstuhl Seminar, LNCS
2991, Springer-Verlag, 2004.

http://www.di.ens.fr/∼goubault/papers/SPutot DagstuhlFinal.ps.gz

◮ Static Analysis of Numerical Algorithms, by E. Goubault and S.
Putot, SAS 2006

http://www-ist.cea.fr/publicea/exl-php/

200600004467-static-analysis-of-numerical-algorithms.html

Sylvie Putot MEASI, CEA-LIST/X/CNRS Abstract Interpretation of Floating-Point Computations

http://www.di.ens.fr/~cousot/COUSOTpapers/PLDI03.shtml
http://www.di.ens.fr/~goubault/papers/SPutot_DagstuhlFinal.ps.gz
http://www-ist.cea.fr/publicea/exl-php/
200600004467-static-analysis-of-numerical-algorithms.html

