Real Time Support in Middleware

Marisol García Valls

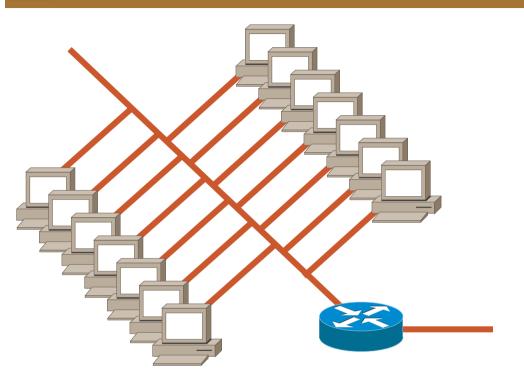
Drequiem Lab. http://www.it.uc3m.es/drequiem

Departamento de Ingeniería Telemática Universidad Carlos III de Madrid

mvalls@it.uc3m.es

Index of presentation

- Our lab
- Our view of networks for reconfigurable embedded systems
- Middleware layer
 - QoS-based reconfigurability of embedded systems
 - Dynamic composition of service-based real-time applications
 - Language-based middleware solutions
- Conclusions

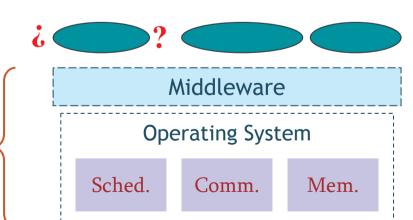


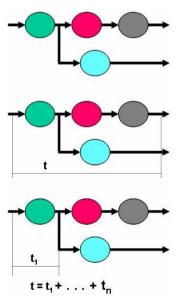
Drequiem Lab at Universidad Carlos III de Madrid

- Marisol GARCÍA VALLS (Head of Lab)
- Prof. Carlos DELGADO KLOOS (Gast Group)
- Pablo BASANTA VAL
- Iria ESTÉVEZ AYRES
- 5 Master Thesis

Our View

Node:

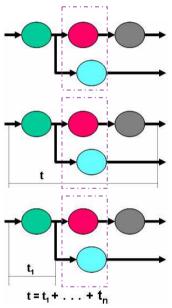

- Processing capacity
- Memory
- RT-communication, power, etc.

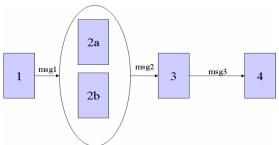

Functional Reconfiguration:

- Code paths
- Service profiles, etc.

Problems:

- Portability (VM) (arch).
- SW deployment (arch).
- Communications, etc.




Applications

- Real-time requirements
- Networked
- Based on services
- <u>Dynamically reconfigurable</u>: QoS profiles
- Portability requirements: mobile (portable) code with VMs or appropriate interface abstractions

message delivery and processing bounds (soft)

Support at middleware level

- When refering to middleware in real-time systems, the traditional focuse is on:
 - Performance
 - Network protocols
 - Real-time language interfaces
 - Non real-time centered designs of software architectures

7 Our focus

- Real-Time Support in Middleware
 - * Dynamic composition of service-based real-time applications
 - * QoS-based dynamic application management and reconfiguration
 - 1. Minimal infrastructure middleware
 - 2. Appropriate language interfaces (Object Oriented)
 - 3. Appropriate characterisation of services/applications
 - 4. Integration of real-time network protocols to assure realtime communication

8 Some problems and solutions

- Manage QoS of applications
 - Trading-off resources for the quality of the output
 - Algorithms for maximising output quality
 - Architectures of QoS manager entities

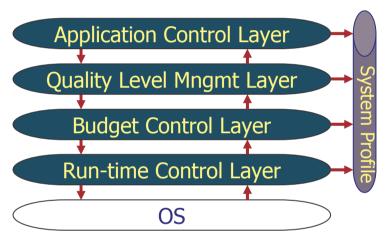
HOLA-QoS

- Basic infrastructure middleware (language-based middleware)
 - Memory management (in RTSJ)
 - Combine it with scheduling
 - Extensions to the language
 - Reimplementation of RMI with enhanced real-time support
- Dynamic composition and reconfiguration of service-based applications
 - Service composition algorithms
 - Service and application characterization

CoSeRT

Drequiemi: RT-RMI

- Appropriate architectures to include all necessary processes (discovery, download, etc.)
- Integration with real-time communications
 - Unified framework for the above
 - Integration of network protocols (RT&RMI-FTT; CoSeRT&FTT; and CoSeRT&RT-RMI&FTT)

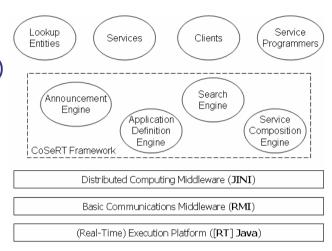

QoS management

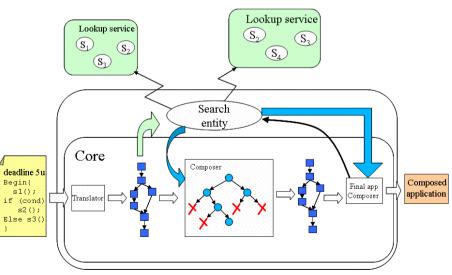
HOLA-QoS Architecture

(Homogeneous Open Layered Architecture)

- Centralised (and Multiprocessor)
- Applications based on tasks with different profiles
- Objective: maximise quality of Multimedia applications on-line
- Dificulty: application characterisation, run-time mode management
- Implementation: TriMedia Processor on pSoSystem

Dynamic composition of service-based applications

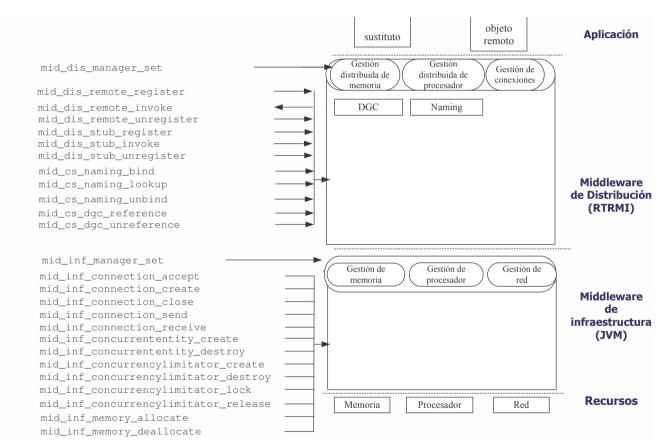

CoSeRT


(Composition of Service-based Real-Time Applications)

Distributed applications based on services

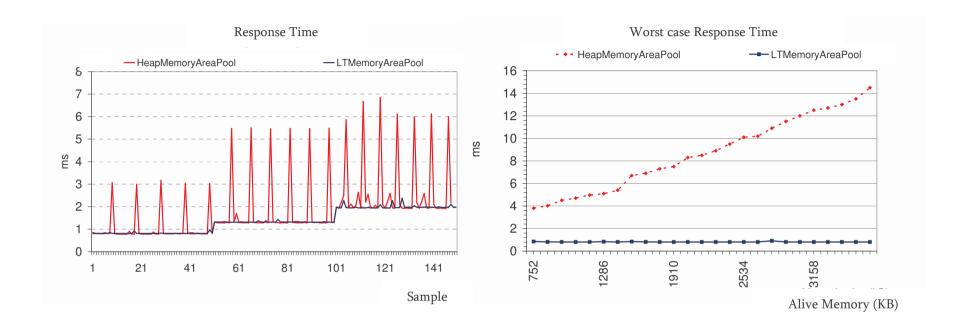
Objective: dynamic composition and reconfiguration

- Off-line service discovery
- Implementation: Jini/RMI/JVM



Real-time languages: RTSJ

πρ**Νυπίδης** de capa

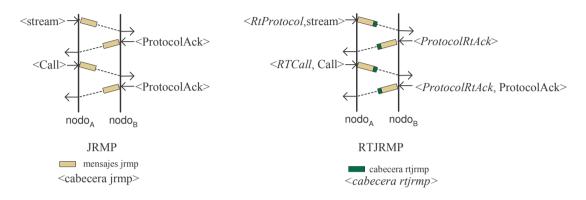

- Distributed Real-Time Java
 - Architecture for Real-Time RMI (based on SUN RMI)

- Extensions for Real-Time Specification for Java
 - AGCMemory, NoHeapRemoteObject, ExtendedPortal, RealTimeThread++

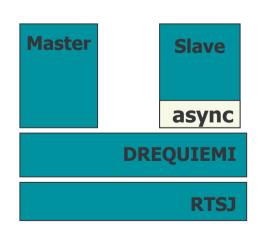
Real-time languages: improvements to middleware

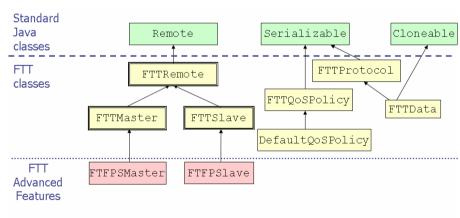
Time

Garbage Colector	peaks +5 ms
Regions/Scopes	plain


Increase of memory usage

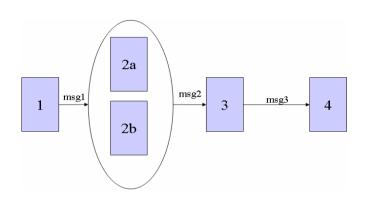
Garbage Colector	linear (+ 3,1 ms/kb)
Regions/Scopes	plain

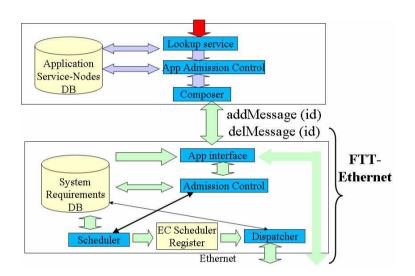

Integration of Real-Time Network Protocols

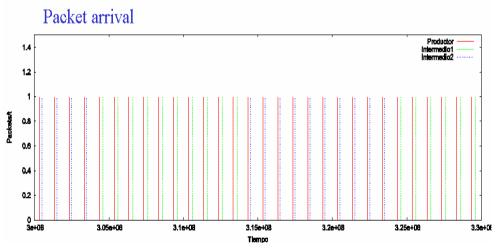


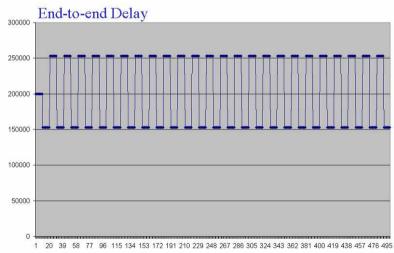
New protocols (RTJRMP) to transfer real-time parameters.

 Current approaches for DRTSJ are silent about clock synchronization






Real-time communicacion for dynamic composition



Integration of CoSeRT with FTT

15 Conclusions

- Dynamic reconfiguration of distributed embedded systems requires
 - Middleware with true real-time support
 - Frameworks and architectures for dynamic composition of functionality
- Real-time support in middleware requires working at several levels
- At Drequiem Lab, **Real-Time Distributed Embedded Systems** (Infrastructure Middleware)
 - QoS management architectures
 - **HOLA-QoS**: QoS manager for Multimedia Embedded Systems
 - Dynamic composition and reconfiguration
 - CoSeRT: Architectural framework for dynamic composition
 - Language-based middleware: Real-Time Java (RMI)
 - Memory management in RTSJ; extensions to the language
 - DREQUIEMI: Reimplementation of RMI with enhanced real-time support
 - Integration with real-time communications
 - Integration of CoSeRT with FTT
 - Integration of FTT-RMI

Future lines

- Object Oriented Infrastructure Middleware built according to real-time concepts
- Memory management techniques combined with scheaduling in middleware (interfaces + implementation)
- Further integration of network protocols and adaptation to better suit the basic middleware infrastructure needs
- Development of QoS-based architectures and frameworks for dynamic composition and reconfiguration of service-based applications