

scuola superiore Sant'Anna di studi universitari e di perfezionamento

Tullio Facchinetti and Giorgio Buttazzo

Reconfigurability issues in MANETs

Mobile Wireless Networks

Wireless ad hoc networks of **mobile** nodes (MANETs) equipped with:

- sensors
- actuators
- processing units
- communication devices

Actuators

- for driving wheels or legs to move the node
- for sensor orientation
- grippers
- small manipulators

Examples of nodes

Mobility allows reconfiguration

Mobility allows reconfiguration

New issues by mobility

- Energy-aware policies at different levels
- Self-localization
- Reachability and dynamic routing
- Message scheduling
- Dynamic formation (nodes may join and leave)
- Topology management

Energy requirements

Autonomous robots are operated by batteries, hence they must apply **energy-aware strategies** to prolong their **lifetime** as much as possible.

Energy can be saved at different levels:

- Hardware: using low power components
- Devices: disabling specific functions and devices
- Kernel: voltage scheduling
- Application: changing operating modes
- Communic.: selecting transmission ranges and instants
- Mobility: maintaining energy-aware configurations

Energy vs. performance

Power consumption

 In CMOS circuits, the power consumption increases with the supply voltage:

$$P \propto C_{load} \cdot f_c \cdot V_{dd}^2$$

• Moreover, the supply voltage also affects the circuit delay (hence the max clock frequency):

$$f \propto \frac{V_{dd}}{\left(V_{dd} - V_t\right)^2}$$

Dynamic Voltage Scaling (DVS)

Energy can be controlled by the speed and the voltage at which the processor operates:

Transmission power control

Using longer transmission ranges allows to reach far nodes in fewer hops

... but consumes more power

Transmission power control

Using shorter transmission ranges consumes less power

... but requires more hops

New issues by mobility

- Real-time motion control
- Energy-aware policies at different levels
- Self-localization
- Reachability and dynamic routing
- Message scheduling
- Dynamic formation (nodes may join and leave)
- Topology management

Self localization

When nodes move they need to keep track of their position. Odometers (i.e.) are not precise and prone to drift:

Triangulation can be used when the position of other nodes is known.

Triangulation

If the position of 3 nodes is known, then a node position can be computed through the distances (d_1, d_2, d_3) from those nodes:

Measuring the distances

Distances can be measured by acoustic methods:

- \Rightarrow At time t₀, node Z emits a sound beacon and a radio signal, simultaneously
- \Rightarrow The radio signal allows nodes to keep track of t₀
- \Rightarrow Each node i takes the time t_i at which the sound is detected
- ⇒ The distance d_i is computed as $d_i = (t_i t_0) V_s$, where V_s is the speed of sound

New issues by mobility

- Real-time motion control
- Energy-aware policies at different levels
- Self-localization
- Reachability and dynamic routing
- Message scheduling
- Dynamic formation (nodes may join and leave)
- Topology management

Connection can be lost due to many reasons

Connection can be lost due to **obstacles**:

Reachability

... or to long distance:

... or to long distance:

Reachability

\Rightarrow An alternative path has to be found.

New issues by mobility

- Real-time motion control
- Energy-aware policies at different levels
- Self-localization
- Reachability and dynamic routing
- Message scheduling
- Dynamic formation (nodes may join and leave)
- Topology management

Message scheduling

Predictability in communication requires absence of conflicts in accessing the channel.

Possible solutions:

- 1. TDMA: very predictable, but
 - \Rightarrow requires precise clock synch.
 - \Rightarrow unflexible for dynamic changes (static, table-driven)
- 2. Token passing: no synch. required, but
 - \Rightarrow Unsuitable for stringent RT requirements
 - \Rightarrow Need to handle token loss
- 3. Implicit schedule: flexible to changes
 - \Rightarrow Requires consensus at every change
 - \Rightarrow Not very scalable, requires hierarchical approaches

New issues by mobility

- Real-time motion control
- Energy-aware policies at different levels
- Self-localization
- Reachability and dynamic routing
- Message scheduling
- Dynamic formation (nodes may join and leave)
- Topology management

Dynamic scheduling

Needed for:

- Admitting an external node to join the team
- Excluding a node (crash, low battery moving policy, ...) and free the unused bandwidth
- Dynamically updating bandwidth requirements (changing rates or messages)
- Changing transmission frequency (due to high noise or interference) without resetting the communication

Dynamic team formation

Joining a team

- ⇒ Everybody must agree to accept the new node
- ⇒ If a cooperative implicit schedule is used, all nodes must update the schedule simultaneously

Dynamic team formation

Leaving a team

- \Rightarrow Everybody must be notified about the leaving node
- ⇒ If a cooperative implicit schedule is used, all nodes must update the schedule simultaneously

Dynamic team formation

Excluding a node from team

- \Rightarrow Node exclusion can be triggered after a node crash
- \Rightarrow Everybody must be notified about the node exclusion

Distributed consensus

Very recent and huge research has been started in the field of distributed consensus problems for multi-agents

Sample applications are

Distributed consensus

The i-th agent has its own state x_i .

 $\dot{x}_i(t) = u_i(t)$ where u_i is the local protocol

We want
$$\forall i, j : |x_i(t) - x_j(t)| \to 0$$
 for $t \to \infty$

The analisys is based on

- algebraic graph theory
- matrix theory
- control theory (convergence, stability, etc.)

New issues by mobility

- Real-time motion control
- Energy-aware policies at different levels
- Self-localization
- Reachability and dynamic routing
- Message scheduling
- Dynamic formation (nodes may join and leave)
- Topology management

Why managing topology?

- strategy for moving the team units
- better estimation of the agreement time
- detecting silent nodes
- reducing tx power for the same connectivity
- better bandwidth usage
 (simultaneous tx by distant nodes)

