TECHNISCHE UNIVERSITAT /5140
CAROLO-WILHELMINA ggay:

7ZU BRAUNSCHWEIC &t

SymTA/S
Symbolic Timing Analysis for Systems

ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark

Razvan Racu

INSTITUTE OF
EOMPUTER AND

A r n e H am an n 4 COMMUNICATION

NETWORK ENGINEERING



Day schedule

0900 — 0945 Introduction to system performance verification
1000 — 1045 Compositional performance analysis

1100 — 1200 Hands-on tutorial 1: Basics SymTA/S

1330 — 1415 Sensitivity analysis
1430 — 1515 Design space exploration and robustness optimization
1530 — 1630 Hand-on tutorial 2: Advanced SymTA/S features

1630 — 1700 Discussion
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System design challenges




Functional vs. performance verification

= Separate function verification from performance
verification

= functional verification/test determines functional
correctness independent of the target architecture

= performance verification/test determines platform
adherence to

= |oad conditions and response times (deadlines)
= jitter bounds

= puffer sizes

This presentation is about performance verification !!
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Embedded system platform properties

= ES platforms are heterogeneous
= components
= networks
= communication

= scheduling (static, dynamic, event-, time-driven, ...)

= Heterogeneity results from

= hardware and software component specialization
(cost, power, dependability)

= HW/SW reuse
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Heterogeneous resource sharing

static priority
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Exemple 1 : MPSOC

= Heterogeneity resulting from |
multilayered SW

= hardware and software
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Example 2: Automotive Platform

= Heterogeneous
= 50+ ECUs
= many suppliers

= several RTOSes and
protocols

engine -

= strongly networked control

CAN, CAN,

+ Complex
= end-to-end deadlines

= hidden dependencies

|
= global memories o] vateway |

FlexRay

©

r,, IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark




End-to-end times do not easily compose

Function 1 } Function 2 } Function 3

1:RFunctionl T tRFunctionZ T tRFunction3 a tRe nd —to—end

If;l Function 1 !Function Zf Rend -to—end unction 3

BSW / BSW 3 BSW ‘\;

CAN
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Design as integration problem

= System design is to a large extend an integration
problem

\7@ subsystem 2

W@QH Mg |[:> Integration <; B

" -

“:*} IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark

i




Coupling effects — a closer look

= Example: 3 periodic tasks on CPU send data over the
bus

= Static priority scheduling on CPU: P1 > P2 > P3

0,98
ﬁﬂk
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Coupling effects — creation of bursts
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= Complex execution traces with dynamic behavior

= Burst events at the output

= Conseguences: transient overload, missed deadlines,
data loss, ...
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Scheduling anomalies

= System corner-cases different of component
corner-cases

maximum
execution time

EEEE

I minimum!

. bus load

1w BB EE

minimum
execution time

maximum

! r” IDA, TU Braunschweig

ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark

14



Key platform design challenges

= Increasing system complexity
= from single processor to multi-processor (MpSoC)

= from buses to networks (NoC)
= Complex dependencies and modifications threaten design robustness
= Global end-to-end constraints added for control applications

= [ntegration under optimization requirements
= cost (memory, power, ...)
= robustness

= extendibility — consider upcoming features, SW updates, platform
updates in product lines

= Reliable system integration is key requirement

= Performance verification required at every design stage
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Timing Is everywhere

Requirements Requirements Test
Architect_u re System-
Exploration Timing

Verification

System Desig

n System Test
Network Timing
Estimation

Network Timing
Verification
Module Design Module Test

ECU Timing ECU Timing
Estimation Verification

Function Design Function Test

QU
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Performance verification flow




Target architecture performance — general view
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Process execution model

= Influenced by

execution path
= data dependent

else { _ o
send(...): execution path timing

receive (...); = target architecture dependent

\_
®

process communication
(here: message passing)

= execution path dependent

communication volume
- v = data and type dependent
!

'
I execution time analysis I
: :
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Process timing and communication

= State of industrial practice - simulation/performance
monitoring
= trigger points at process beginning and end
= data dependent execution = upper and lower timing bounds

= simulation challenges
= coverage”?

= cache and context switch overhead due to run-time
scheduling with process preemptions

= Alternative - formal analysis of individual process
timing
= provides conservative bounds
" Serious progress in recent years
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Formal process execution time analysis

Active research area with dedicated events
(e.g. Euromicro WS)

Formal analysis using simple processor models
= Li/Malik (Princeton) (95): Cinderella

Detailed execution models with abstract interpretation

= Wilhelm/Ferdinand (97 ff.): commercial tool Absint

Combinations with simulation/measurement of
program segments

= Wolf/Ernst (99): SymTA/P

All tools provide (conservative) upper execution time
bounds (WCET) or time intervals (WCET/BCET)

ﬁ;}r IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
R I_k“-

21



Component and communication execution model

* [Influenced by

= resource sharing strategy

= process activation
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Component and communication execution model

= Resource sharing strategy

-> process and communication scheduling
= static execution order

= time driven scheduling
= fixed: TDMA
= dynamic: Round-Robin

= priority driven scheduling
= static priority assignment: RMS, SPP
= dynamic priority assignment: EDF

= Timing depends on environment model

= determines frequency of process activations or
communication
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Scheduling Analysis Techniques

Buttazzo 1993

Liu/Layland 1973

—
) / : : \ . :
i\ C 4 :
" a N n
L] L ] 'l
L] LA []
. ] []
. L [
. : 3 % :
- . & . n
- L] : - L
: O L
= n L] ol - n
[ u N
= [] L N . L]
L " L - L ]
-

CoPro RISC MEM

Kopetz 1993

from IP vendor

Lee/Messerschmidt
1989

g&th DA, TU Braunschwelg
el

Sha 1994

ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark 24



Example: Rate Monotonic Scheduling (RMS)

= Very simple system model
= periodic tasks with deadlines equal to periods
= fixed priorities according to task periods

= N0 communication between tasks

(theoretically) optimal solution for single
processors

= several practical limitations but good starting point

= Schedulability tests for RMS guarantee correct timing
behavior

= processor utilization (load) approach

= response time approach (basis for many
extensions)
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RMS Theory — The response time approach

= Critical instant:
all tasks start at t=0 (,synchronous assumption® to ensure
maximum interference in the beginning of task execution)

= when each task meets its first deadline, it will meet all other
future deadlines (proof exists!)

= test by ,unrolling the schedule” (symbolic simulation)

iantt Charts - CPUD Car M
settings
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RMS Theory — The response time formula

fix-point problem
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Example: Static priority w/ arbitrary deadlines

= Assume:
= tasks with periods T, worst-case execution times C
= static priorities

= deadlines (arbitrary) larger than the period

‘111‘01{ Tl?c;*

priority
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Analysis uses “Busy Window” approach (Lehoczky)

T % T o
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Other Extensions in Literature

= Jitter and burst activation

= Static and dynamic offsets between task activations
= Different task modes

= EXxecution scenarios

= Blocking and non-preemptiveness

= Scheduling overhead - context switch time

= eflc...
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Global system execution model

= influenced by
= communication pattern
= shared memory access

= environment model
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System performance analysis




System performance analysis - state of the art 1/2

= Current approach: target architecture co-simulation, performance
simulation

= Simulation challenges

= identification of system performance corner cases
= different from component performance corner cases

= complex phase and data dependent “transient” run-time effects w.
scheduling anomalies

= target architecture behavior unknown to the application function
developer

= test case definition and selection?

= simulation of incomplete application specifications ?

= how to do design space exploration before code implementation is
available?
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System performance analysis - state of the art 2/2

= Load analysis

= Example: “all deadlines are met if the resource load
IS below 69%”

= Consider only average scenarios (no transient load)
= No performance metrics = no constraint validation
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Conservative design

= Popular as a system level technique for safety critical
systems design

= Strict separation of subsystems
= fixed allocation of memory
= fixed allocation of communication resources
= fixed allocation of computation resources

= Spatial and temporal decoupling of resources
= not-in-use allocated parts are locked
= no coupling effects

= Requires system synchronization ...

... paid by timing overhead
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TDMA 1/2

time slot assighed to sender P1

context switching time

Time Triggered System (TDMA)

= periodic assignment of fixed time slots for
communication and processing

= unused slots remain empty
= reqguires system synchronization

= no coupling effects
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TDMA 2/2

= Predictable, independent system capacity

C
R = C + (toma — tp) X .
Pi

R, response time P, C, core execution time P,

= Used in avionics and automotive (TTP, FlexRay)

= Can be used at system level (Giotto - Berkeley)

ﬁ;}r IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark 37
B! I.k‘"



Conservative design - Summary

= Limitations

low resource utilization

extended response times (problem for adaptive
control engineering)

requires general time base (scalability?)
little flexibility (fixed time slots)
not a general solution

Inefficiency (performance, bandwidth, costs, power)
Increases with system size

= Time-triggered systems are a good example for
systematic integration, but...

reliable integration does not necessarily require

conservative design style
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System level performance analysis

= Global approach (,, Holistic*)

= local analysis scope extension to several
subsystems

= Compositional approach

= global flow analysis combined with local scheduling
analysis
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Analysis scope extension — , Holistic"

= Coherent analysis (,, holistic* approach)

= Example: Tindell 94, Palencia/Harbour 98, Pop/Eles (DATE 2000,
DAC 2002): TDMA + static priority —automotive applications

static priority
process scheduling

static priority

gueueing
T: Transmitter
process
TTP bus TTP bus
L1 queue interface interface

TTP bus (TDMA)

= Problem: scalability
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Analysis scope extension (cont‘d)

= Benefit: scope extension can take global system knowledge into
account

= Example: using dependency information to detect that P2 can
send in the same TDMA round as P1, if Ry, < tp; + tp,, Where R, IS
the worst-case response time of P2

TDMA bus St . t to. it )t

P2
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Compositional performance analysis

After the break!
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Multiple Scheduling Strategies

static priority
FCFS scheduling scheduling 'Q_’
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Corresponding Analysis Techniques

Buttazzo 1993

Liu/Layland 1973
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=

Integration ?7??

from IP vendor

Buttazzo 1993

Liu/Layland 1973 ’O—’

Lee/Messerschmidt
1989

P

Sha 1994
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Compositional approach

A/

Wy

W

iy

system input

fixed priority system output

= Tasks are coupled by event sequences

= Composition by means of event stream propagation

= apply local scheduling techniques at resource level

= determine the behavior of the output stream

= propagate to the next component
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ldea

= Use network calculus + additional information as
intermediate mathematical formalism

= Arrival curve functions of network calculus

= n*(At) maximum number of activating events
occuring in time window At

" n(At) minimum number of activating events
occuring in time window At

= d- minimum event distance - limits burst density
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Event specification

= Derive event stream models with parameters

* individual events replaced by stream variables
(vectors) with stream parameters period, jitter, min.
distance, ...

= derive arrival curve functions from model
parameters

At . At+J T: period
"(,\) n (At)={T] At+J J: jitter

b) \ T‘\ I
~ ’/’ /’
\ -

" |
3 i . G ,I’\' lower bound

upper bound | - At—J
[ —— ’z’ ’z’ _
& j/ T I U(At){m JJ T
Ty 7
— - O >At
Jo! +J
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SymTA/S standard event models

= Required by RTA
= Periodic/sporadic
= Periodic/sporadic with jitter
= Periodic/sporadic with burst

Increasing jitter due to execution/scheduling

Conditional output
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Input — output event model relation

= Any scheduling increases jitter
= Jitter grows along functional path

* Increasing jitter leads to

= burst and transient overloads

= higher memory requirements scheduling PE
= power peaks
T1
S —
T "_':_l:'i:‘_‘_:‘_::‘_'_i‘_:‘_]g
e T P
— T ]
Y O
busy period >
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System analysis loop

environment model

map to input
event model

local analysis I'l-l

configuration

misesilole schedulability?

derive output
event model

configuration

feasible NO

convergence?
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Reducing transient load in design

= Re-synchronization
= Minimum event separation using ,,traffic shaping“

= Requires memory and possibly increases latency

T 11— deleleld — M1 1

shaper
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example

Traffic shaping

12
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Optimization potential of Traffic Shaping
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RTA event models are not sufficient

= Event model transitions needed to couple different
subsystems and scheduling domains

= More complex activation models needed

= OR activation

= typical in event driven systems

= AND activation and loops

= typical for signal processing @ :@
/
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Analysis extensions




System analysis loop

environment model

environment model

map to input
event model

local analysis I'l-l II
|
|

map to input
event model

analysis

context-aware 'h

derive output
event model

derive output
event model

NO

convergence? convergence?
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Taking global dependencies into account

= intra-context” dependencies

= different events in a single event stream often
activate different task behaviors with different
execution times or communication loads

winter-context” dependencies

= activating events in different event streams are often
time-correlated which rules out the simultaneous
activation of all tasks

= can be combined leading overall to less conservative
analysis results
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Motivating Example

@
CET=[22] CET = [2,2]
Priority=Low Priority=Mid

50 4 )
J3 I 8
CET =[0,2] CET =[2,2] CET =[10,10]
Priority=High Priority=High Priority=High
q>I= 50 |CET=[28] =50
g =0 Priority=High ks’: 6 ‘ E

CET =[2,2]
Priority=Low

«Static priority preemptive scheduling on all resources

CET =[2,2]
Priority=Low

CET =[2,2]
Priority=High

Compositional performance analysis approach (Richter)
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Lehoczky (1990)

Priority=Low Priority=Mid

50
Q-
CET =[2,2]

Priority=High

CET =[0,2]
Priority=High

R

P=50 |CET=[28] ds0
9 =0 Priority=High 6
CET =[2,2] CET =[2,2]
Priority=High Priority=Low

elgnore correlation between tasks!

——¢ =7
oo
CET =[2,2] CET =[2,2]
-0

N\

CET =[10,10]
Priority=High

_.e

CET =[2,2]
Priority=Low
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Lehoczky (1990)

ol

)

CET =[2,8]
Priority=High

o W

CET =[2,2]
Priority=Low

CET =[0,2]
Priority=High

)

CET =[2,2]
Priority=High

o

R

CET =[2,2]
Priority=Mid

50

CET =[2,2]
Priority=High

CET =[2,2]
Priority=Low

elgnore correlation between tasks!

-

=350
5
.75 =4

)
CET =[10,10]
Priority=High

Q-

CET =[2,2]
Priority=Low

% IDA, TU Braunschweig

ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark

20



Lehoczky (1990)

«

@, =50

J3=8 |

@, = 50

critical instant Js=6_|

9

CET =[2,2]
Priority=Mid

CET =[2,2]
Priority=High

CET =[2,2]
Priority=Low

ole

M t=
> 8 A
| T, 2
9 M t=
a 8 f ____________________
ST 2
T, , .
v Mﬁ
6 ; RW8 =6
21
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Tindell (1994)

CET = [2,2] CET =[2,2]
Priority=Low Priority=Mid
( )
CET =[0,2] CET =[2.,2] CET =[10,10]
Priority=High Priority=High Priority=High
P=350 CET =[2,8]
9 =0 Priority=High E
CET =[2,2] CET =[2,2] CET =[2,2]
Priority=High Priority=Low Priority=Low

*Periodic arrival of events at system inputs as timing-reference
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Tindell (1994)

Global Offset @;

)

@._

CET =[2,2]
Priority=Low

CET =[2,2]
Priority=Mid

CET =[0,2]
Priority=High

CET =[2,2]
Priority=High

CET =[2,2]
Priority=High

CET =[10,10]
Priority=High

4_,@

CET =[2,2]

Priority=Low

-

CET =[2,2]
Priority=Low

earliest activation time of T, relative to
the periodical arrival of an external
event at the system input
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Tindell (1994)

SR ?5 =0
Os=14
CET =[2,2]
Priority=Mid
®,=50
=8
D3=2
CET =[2,2]
Priority=High
®, =50

external event arrival critical instant 6 |
\ PDs

AN

||QT
!

CET =[2,2]
Priority=Low

: t'
> s i 1
- 5 e
o —
.= » : >
E OF E t
N I — ; |
8 1 v
v € Ds > E t
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Tindell (1994)

external event arrival

)
«—e@—
Os=14
CET =[2,2]
Priority=Mid
®,=50
=8
7, __.@__.
D3 =2
CET =[2,2]
Priority=High
@, = 50
critical instant Js = __,@__;
\ Ps =4
CET =[2,2]
Priority=Low
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Further Techniques

= Relative offsets and relative jitter
= Extends idea of global offsets

= Describes the earliest activation time of a task
relative to a timing-reference ref

= Reference is not necessarily a periodic external
event

= Enables tighter response time calculation

= Precedence relations

= Explicitly considers precedence relations between
tasks (i.e. task i cannot start until task j has finished
execution)

= Orthogonal to offset based techniques
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Set-top box

Encrypted MPEG-2 —
Decrypted MPEG-2 =

IP-traffic —_ RF

Te
O

..IPBBIP... ‘J

e

decryption
unit

= set top box: decript video + download file via IP
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Intra context dependencies

| | | |
Cencr:)pt :’ . .
classical analysis:

Coonpr T:::::! T:::::- T::::_. T:::::. each frame is assumed

L v L
Cie T::::::::::-::::::::::.::::::::::-::::::::::l
) 3
worst-case response time .
A -
t
C . .
enenpt intra context analysis:
C information about frame
decrypt types allows accurate
load calculation
Cre

worst-case response time

t
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That's all !
Hands-on Session




SymTA/S Tool




SymTA/S Tool Suite

flow integration:
e data bases
* tools

idea, specification,
sketch, existing system

EXpleramion
3rd party

interfaces = = = = = =

S9ZI|)N

|

- open

analysis libraries for
ECUs, buses, etc ...

« SPP/DMA/RMA
 EDF

« TDMA

* RR

Industry related:
 OSEK flavours
 CAN

SENSITIVILY.
Analysiis

verified system
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Sensitivity Analysis




Challenges

= Heterogeneous

= Hundreds of functions

50+ ECUs

= Several RTOSes

and protocols

= Many suppliers

= Complex performance requirements

engine
control

Strongly networked

= End-to-end deadlines

= Hidden timing dependencies

powertrain
control

CAN, CAN,
ECU,

ECU,

00

diagnosis

ECU,

I gateway |

ECU,

I
i

FlexRay

! r” IDA, TU Braunschweig
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Motivation

= Modifications of design properties

= During the design process
Refinement of early design data estimations

Refinement and changes of specification
Exchange of platform components: replace CPU or memory type

= |n the product lifecycle
Product updates (HW, firmware and SW)
Integration of new components or subsystems

Change in the environment: applications (smart phone), technical
system (motor speed)

= |n the field

Dynamic systems
Unplanned environment situations (resilience)

= Such changes introduce uncertainties and increase design risk

| : IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark




Domino effects due to parameter changes

CAN,

(T1) —

ECU,

ECU,

overload

"h
o \\‘

overload

Flex Ray
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Multi-dimensional sensitivity analysis

CAN, CAN,

- .
‘;3\’ FlexRay Integrathn of
- new applications
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Example: WCET variation

15 ~

14,5

end-to-end deadline

[y
N

[y

L

a1
1

[any
w

Latency (T2->T1)

12,5

12

11,5 T T T T T T T

0,8 0,9 1 11 1,2 13 14 1,5

—6— WCET (T1) —#— WCET(T2)]

1,6

1,7
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Sensitivity analysis

= Sensitivity analysis identifies limits of feasible design

= How far can system properties be changed before
the system fails = slack ?

= What is the impact of property changes on the
performance metrics?

B ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Sensitivity analysis key features

= Evaluates design risk linked with a specific component
= helps to controls parameter changes
= captures ,domino“- effects

= metric for design robustness

= Assistance for system dimensioning/configuration

= choose optimal bus bandwidth, CPU clock speed

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark 10



Design properties considered

= All design data can be subject to changes - complex issue

= Here we assume
= Fixed architecture
= Fixed mapping of functions to components

= Modification of performance related SW and HW component
properties

= Platform component performance (processor and
communication links)

= Execution times of individual processes
= Process communication volumes

= Considered performance metrics
= Predictable design = worst case data
= Response times
= End-to-end latencies

ﬁ;}r IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Sensitivity analysis framework in SymTA/S

automatic selection

Sensitivity
Algorithms

=5 2
Selected & % < g
Sensitivity Tuples < 3 :
4 4 )
19 8| o . | |
p3 p4 Sensitivity 4. Feasible / Infeasible Scheduling
1 1 p? 7 n8 2. Send tuple > : _
PL || PL P< ]| P/ pc ¢ Analysis 3. Apply configuration Analysis
p3 || p6 p4d p2 || p7 Controller Engine
< —~/ . . J
r T . Y )
= 9 | f5) ®
B8  Lautomatioselestion _________ 1 N -
System Properties Result database r
S0 [StpLpa | [S(p0)] | 20wy | Visuaizaton
Algorithms
aEEn ) [wom]| |

Sensitivity Analysis Loop —~
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Sensitivity Analysis Framework

= Based on SymTA/S analysis engine

= Formally derived search space boundaries
= based on load conditions
* finds discontinuity points (scheduling anomalies)

= Binary search technique
= optimal = minimum number of search steps

= bidirectional search space
= feasible = infeasible
= |nfeasbile - feasible

= transparent with respect to scheduling algorithms

= applicable only on monotonic search spaces

= if non-monotonic behavior, then split search space in
monotonic sub-spaces

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Sensitivity Analysis - Algorithms

= One dimensional analysis
= Formally derived search space boundaries

= Binary search like search

= Two dimensional analysis
= Divide-and-conquer like search algorithm

= Parameter specific heuristics for search space
reduction

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Design Space Exploration Framework




QOutline

= SymTA/S design space exploration framework
= Problem independent selector algorithms

= Example application: Timing optimization in SymTA/S

i :;} IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Design Space Exploration Framework

= Compositional search space encoding scheme

= Dynamic search space modification
= user-controlled exploration

= automatic search space adaptation
= High flexibility and extensibility

= Pareto-optimization of arbitrary optimization objectives
= Evolutionary search techniques, PISA, ETH Zurich

= Exploration speed-up through meta-heuristics
= problem independent
= problem dependent

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark 4



Exploration loop

(O) Explored System gggﬁf;‘;gﬂlmtlal

Exploration Loop 5
—GETEED—— popuizticr

1.Apply Chromosomes i New i . . e
pply AEH:|iV:;S (D Individuals Individual 1 Individual M . @ Modified Search
- — e N " |(mA) - (MmN SBace
Individual K u EQ >
3 %E (A:;Id / Remove A
o 33 romosomes
e tn o 7'y
7 —N ":\"iﬁ_ )
Objectives 2
4. Annotate o000 %E ?neéﬁﬁtt:ﬁj%ls
\_ Objective Values ~/ o o
Individuals %5 v Individuals
e (0ffsprinq1 Offsprinqh Fix Parameters .
[ Optimization e Fixed P P
< IXe arameters
Controller J Fix Parameters .
A .
Individuals Individual 1 ~
+ Fitness Selection » Fixed Parameters K
y Cross/Mutate .
Evolutionary :
Optimizer oo 0o < Fixed Parameters N
Parent 2

Parent 1
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Selector example: FEMO

= Fair Evolutionary Multi-objective Optimizer (FEMO)
= Developed by Zitzler and Thiele (~2002), ETH Zlrich

= |dea: Offspring based selection

= Count for each individual the number of his
offsprings

= Select individuals with equal rate for procreation -
Fairness

= Remove all dominated (i.e. not Pareto-optimal
individuals) after each generation - variable
population size

= All individuals in population are Pareto-optimal,
none is “better” than another

= Possible problem: search space coverage

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark



FEMO Algorithm

= Add random initial individuals to the population

= Repeat until stop condition:
= Select individual | with the least offsprings
= Create offspring i’ through crossover and mutation

= Remove all individuals from population that are
Pareto-dominated by I’

= Add I’ to the population if it is not Pareto-dominated
by any other individual

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark



FEMO: Evolutionary Search Strategy

= Diversity vs. Convergence speed

f,(X) Elimination of
d

ominated Individuals

Loss of Diversity!

e e e e ?;://___

f,(x)
>

Pareto-Front
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Exploration control

« Compositional encoding

Search Space

e Search space adaptation

cilcolcs) cilcolcs) cilcolcs)
4N csNCe Qe OO
@D DD @D @D

3

Step 1 Step 2 Step
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J_I#

Application domains

System optimization

= timing (jitter, end-to-end deadlines)
= puffer sizes

= power dissipation

" mapping

Robustness optimization

Multi-dimensional sensitivity analysis

System generation

:1‘.( IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Example application: Timing optimization 1/2

= Search space

scheduling parameter for various policies: SPP, TDMA |RR,
EDF

optimization of parameters for real world RTOSes and bus
protocols: ERCOSEK, CAN

optimization through traffic shaping
mapping optimization

= QOptimization Objectives

end-to-end latencies, worst-case response times
buffer sizes

power consumption

system cost

# parameter changes

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark 11



Example application: Timing optimization 2/2

Pareto-front: end-to-end
deadline vs. # parameter
changes

# Parameter Changes

Sensor! -+Update

| Waorking ® MNon-working — Pareto Front

1800

Hevws + Src1= T3
1600 & e -

. 4 Src2=>T5

1400

1200 Lad

*
1000 -

Influence of Traffic Shaping
on System Performance

Latency
*

800 bt 7=~ 7

600 - s vee
400

200

'] T T T T T T T T T T T T T T T
25 30 35 40 45 50 55 60 65 TO 75 80 85 90 95 100
d-
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Robustness Optimization




QOutline

= System property variations
= Sensitivity Analysis
= Stochastic Multi-dimensional Sensitivity Analysis

= Robustness Metrics
= Hypervolume calculation
= Minimum Guaranteed Robustness (MGR)
= Maximum Possible Robustness (MPR)

= Experiments

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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System Property Variations (1)

= Two types of system property variations

= Variations influencing the system load
= Software execution path length
= Communication volumes
= Input data rates

= Variations influencing the system service capacity
= Processor clock-rate
= Communication link performance

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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System Property Variations (2)

= Why do system property variations occur?

= Specification changes, late feature requests,
product variants, software updates, bug-fixes

= Robustness to property variations
= decreases design risk, and

= increases system maintainability and extensibility

= Property variations can have severe unintuitive effects
on system performance

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark 16



Example: WCET Variation

= End-to-End latency S3->T4 as a function of execution
demand of T2

CET=[10,10]
Priority=HIGH

CET=[4,4]
Priority=MID

CET=[11]
Priority=LOW

CET=[10,10]

Priority=HIGH

90

80
o 70
T 60
A 50
>40
¢ 30
- 20

10

o

reeed

/

¢

4 414243 444546474849 5

WCET T2

% IDA, TU Braunschweig

ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark

17



System Property Variations (3)

= Property variations invalidate the assumption under
which the system was dimensioned and configured

= —->Correct function and performance of the system is
put at risk

= How can we increase the robustness of the system to
property variations ?

= Adaptivity: feedback-based scheduling, self-
organizing systems,...

= Sensitivity analysis: achieve robustness without on-
line parameter adaptation

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark 18



Problem Formulation

= Find parameter configuration that ...

= ... maximizes the robustness of the given system w.r.t.
changes of several properties

= Robustness = the system can sustain a certain degree
of property variations without severe performance
degradation

= >Multi-dimensional optimization problem

= Not included: dynamic parameter adaptations as a
reaction to property variations

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark 19



Sensitivity Analysis (1)

= Calculates maximum/minimum admissible values for
given system properties

= Supported system properties
= WCETs / BCETs
= Communication volume
= CPU clock rate
= Bus throughput, ...

o

.,;‘jr IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Sensitivity Analysis (2)

= One-dimensional case

= maximum/minimum feasible property value

= Multi-dimensional case

= front separating feasible and non-feasible system
property combinations: sensitivity front

37 1
O 32 \
E \ :" a5
= 27 \\ -
..
22 > [

14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

WCET C1 & ,/J'.,;Z
n / ~
@ //I/“j 1578

./I

" -, - T4
WEETCS a r\\.ﬁ__,/"’!.z., WCET T
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Sensitivity Analysis (3)

= Recent results:

= One-dimensional sensitivity analysis
= Calculates slack for a single system property

= Vestal: Trans. on Software Engineering 1994
= Racu: RTAS 2005

= Multi-dimensional sensitivity analysis

= Considers interdependencies between multiple system
properties

= Racu / Hamann: ECRTS 2006

= Problem: computational effort grows exponentially
with problem dimension

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Stochastic Sensitivity Analysis (1)

= Solution: scalable stochastic analysis to bound
system sensitivity

= Sensitivity analysis formulated as multi-objective
optimization problem

= Search space: System properties including WCETS,
Periods, Jitters, ...

= Optimization objectives: maximization / minimization
of considered system properties

= Pareto-optimization

—>Pareto-front of optimization task corresponds to
sought-after sensitivity front

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Stochastic Sensitivity Analysis (2)

= Uses multi-criteria evolutionary algorithms to
approximate sensitivity front

= responsible for sensitivity front coverage

= Currently used SPEA2 (ETH Zurich): diversified
sensitivity front approximation through Pareto-
dominance based selection and density
approximation

= Can be used for system properties subject to
maximization (e.g. WCETs) and minimization (e.g.
Periods)

= |n the following: properties are subject to
maximization

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Creation of the Initial Population

= Creates a certain number of points representing a first
approximation of sensitivity front

= Uses 1-dim sensitivity analysis

= to bound the search space in each dimension
(bounding hypercube)

= t0 generate points representing the extrema of the
sought-after sensitivity front

= Randomly place the rest of the initial points in
bounding hypercube

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark 25



Initial Population - Example
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Bounding the Search Space (1)

= Extension for stochastic sensitivity analysis for
robustness optimization

= |dea: bound search space containing the sought-after
sensitivity front

= Bounding working Pareto-front &n

= evaluated Pareto-optimal working points

= Bounding non-working Pareto-front #nw

= evaluated Pareto-optimal non-working points

= Bounding Pareto-fronts can be used to derive multi-
dim. robustness metrics (later)

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Bounding the Search Space (2)

= Space between bounding Pareto-fronts is called
Interesting region

= Variation operators use algorithm ensuring that
generated offsprings (points) are contained In
Interesting region

= Below bounding non-working Pareto-front

= Above bounding working Pareto-front

-> Efficiently focuses exploration effort

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Bounding the Search Space (3)
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Random Crossover (1)

= Takes as input two parent points to create two
offspring points

= The two parent points define hypercube in which the
created offspring points are randomly placed

= Simple standard operator that locally refines the
approximation of the sought-after sensitivity front

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Random Crossover (2)
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Random Crossover (3)
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Front Convergence Mutate (1)

= Takes as input one parent point to produce one
offspring point

= Heuristic operator adapted to optimization problem
= |ncreases convergence speed

= Directly supports the convergence of the bounding
Pareto-fronts

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark

33



Front Convergence Mutate (2)

= Strategy:
= Determine X closest points on opposite Pareto-front
= Choose randomly one of these points

= Place offspring point randomly on straight line
connecting the parent point and the chosen random
point
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Front Convergence Mutate (3)

10,85 O"g V"0 " 0 "F V"0 "F 9"0 V" 0"F V"0 W

10,5 -

10 -

Property 2

6 I I I

9 10 11 13 15 17 19 21 23 25 26,2
Property 1

IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark 35



Front Convergence Mutate (4)
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Hypervolume Calculation

= Hypervolume as basis of the proposed robustness
metrics

= Hypervolume is defined in a given hypercube and
associated to a point set

= Two different notions of hypervolume

" inner hypervolumeﬂ,_: Volume of space Pareto-
dominated by the given points inside the given
hypercube

= outer hypervolumeﬂj Volume of space Pareto-
dominated by all points not Pareto-dominating any
of the given points

% IDA, TU Braunschweig ARTIST2 PhD Course, June 12, DTU Copenhagen, Denmark
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Hypervolume Calculation (2)

= 2D-case

* inner hypervolume: lower step function

= outer hypervolume: upper step function
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Robustness Metrics

= Given a set of properties we want to achieve
robustness for ...

= ... Uuse stochastic sensitivity analysis to derive upper
and lower robustness bounds

= Minimum Guaranteed Robustness (MGR)

= Defined as inner hypervolume of the bounding working
Pareto-front FW

= Maximum Possible Robustness (MPR)

= Defined as outer hypervolume of the bounding non-
working Pareto-front "
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Robustness Metrics (2)
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Obviously: MGR <= Real Robustness <= MPR
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Robustness Exploration

= |dea: Pareto-optimize MGR and MPR

= Advantages
= Stochastic sensitivity analysis is scalable

—Little computational effort necessary to reasonably
bound robustness potential of given configuration

* |In-depth analysis can be performed once interesting
configurations are identified (i.e. high MGR or high
MPR)

—>Perfectly suited for robustness optimization
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Example System

= Distributed embedded
system

= 4 computational resource ... _@ : T,

= ... connected via CAN bus ,\’A"c;}._ -k, T, 4= S5ens
= 3applications R & ﬁ *
= Sens—>Act
. Sinesout
= Cam=>V
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Approximation Quality (1)

= Approximation after 100
evaluations (20 sec)

= MGR = 2447
= MPR =2937

= Approximation after 200
evaluations (40 sec)

= MGR = 2580
= MPR =2813
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Approximation Quality (2)

= Approximation after 300
evaluations (60 sec) w0

= MGR =2632
= MPR=2777

T8
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3D - Robustness Maximization (1)
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Optimized configuration
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3D - Robustness Maximization (2)
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Conclusion

= Robustness to system property variations

= Scalable stochastic sensitivity analysis perfectly
suited for robustness optimization

= Metrics expressing lower and upper system
robustness bounds ...

= ... enable efficient integration of robustness criteria
Into design space exploration
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