Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Martin Fränzle

Carl von Ossietzky Universität
Dpt. of Computing Science
Res. Grp. Hybride Systeme
Oldenburg, Germany
What you’ll learn

1. Rationale behind declarative specifications:
 - Why operational style is insufficient

2. Computation Tree Logic CTL:
 - Syntax
 - Semantics: Kripke models

3. Explicit-state model checking of CTL:
 - Recursive coloring
Operational models

Nowadays, a lot of ES design is based on executable behavioral models of the system under design, e.g. using

- Statecharts (a syntactically sugared variant of Moore automata)
- VHDL.

Such operational models are good at

- supporting system analysis
 - simulation / virtual prototyping
- supporting incremental design
 - executable models
- supporting system deployment
 - executable model as “golden device”
 - code generation for rapid prototyping or final product
 - hardware synthesis
Operational models

...are bad at

- supporting non-operational descriptions:
 - *What* instead of *how*.
 - E.g.: Every request is eventually answered.

- supporting negative requirements:
 - “Thou shalt not...”
 - E.g.: The train ought not move, unless it is manned.

- providing a structural match for requirement *lists*:
 - System has to satisfy R_1 and R_2 and ...
 - If system fails to satisfy R_1 then R_2 should be satisfied.
Multiple viewpoints

Aspects
"What?"

Algorithmics
"How?"

Tests & proofs
"Consistent?"

Requirements analysis

Programming

Validation / verification
Model checking

Device Description:

architecture behaviour of processor is

process fetch
 if halt=0 then
 if mem_wait=0 then
 nextins <= dport

...
Exhaustive state-space search

Automatic verification/falsification of invariants
Safety requirement: Gate has to be closed whenever a train is in “In”.
The gate model

Opening

Open

~enter?

enter?

Closing

Empty

Appr.

In

leave!

enter!

~leave?

Track model

— safe abstraction —
Gate reaction: Open, Closing, Closed, Opening, Open.
Computation Tree Logic
Syntax of CTL

We start from a countable set AP of atomic propositions. The CTL formulae are then defined inductively:

- Any proposition $p \in AP$ is a CTL formula.
- The symbols \perp and \top are CTL formulae.
- If ϕ and ψ are CTL formulae, so are
 - $\neg \phi$, $\phi \land \psi$, $\phi \lor \psi$, $\phi \rightarrow \psi$
 - $EX \phi$, $AX \phi$
 - $EF \phi$, $AF \phi$
 - $EG \phi$, $AG \phi$
 - $\phi EU \psi$, $\phi AU \psi$
Semantics (informal)

- **E** and **A** are path quantifiers:
 - **A**: for all paths in the computation tree...
 - **E**: for some path in the computation tree...

- **X**, **F**, **G** und **U** are temporal operators which refer to the path under investigation, as known from LTL:
 - **Xφ** (Next): evaluate φ in the next state on the path
 - **Fφ** (Finally): φ holds for some state on the path
 - **Gφ** (Globally): φ holds for all states on the path
 - **φUψ** (Until): φ holds on the path at least until ψ holds

N.B. Path quantifiers and temporal operators are compound in CTL: there never is an isolated path quantifier or an isolated temporal operator. There is a lot of things you can’t express in CTL because of this...
CTL formulae are interpreted over Kripke structures.

A Kripke structure K is a quadruple $K = (V, E, L, I)$ with

- V a set of vertices (interpreted as system states),
- $E \subseteq V \times V$ a set of edges (interpreted as possible transitions),
- $L \in V \rightarrow \mathcal{P}(AP)$ labels the vertices with atomic propositions that apply in the individual vertices,
- $I \subseteq V$ is a set of initial states.
A path π in a Kripke structure $K = (V, E, L, I)$ is an edge-consistent infinite sequence of vertices:

- $\pi \in V^\omega$,
- $(\pi_i, \pi_{i+1}) \in E$ for each $i \in \mathbb{N}$.

Note that a path need not start in an initial state!

The labelling L assigns to each path π a propositional trace

$$tr_\pi = L(\pi) \overset{\text{def}}{=} \langle L(\pi_0), L(\pi_1), L(\pi_2), \ldots \rangle$$

that *path formulae* ($X\phi, F\phi, G\phi, \phi U \psi$) can be interpreted on.
Let $K = (V, E, L, I)$ be a Kripke structure and $v \in V$ a vertex of K.

- $v, K \models \top$
- $v, K \not\models \bot$
- $v, K \models p$ for $p \in AP$ iff $p \in L(v)$
- $v, K \models \neg \phi$ iff $v, K \not\models \phi$,
- $v, K \models \phi \land \psi$ iff $v, K \models \phi$ and $v, K \models \psi$,
- $v, K \models \phi \lor \psi$ iff $v, K \models \phi$ or $v, K \models \psi$,
- $v, K \models \phi \Rightarrow \psi$ iff $v, K \not\models \phi$ or $v, K \models \psi$.
Semantics (contd.)

• \(v, K \models \mathsf{EX} \phi \) iff there is a path \(\pi \) in \(K \) s.t. \(v = \pi_1 \) and \(\pi_2, K \models \phi \),

• \(v, K \models \mathsf{AX} \phi \) iff all paths \(\pi \) in \(K \) with \(v = \pi_1 \) satisfy \(\pi_2, K \models \phi \),

• \(v, K \models \mathsf{EF} \phi \) iff there is a path \(\pi \) in \(K \) s.t. \(v = \pi_1 \) and \(\pi_i, K \models \phi \) for some \(i \),

• \(v, K \models \mathsf{AF} \phi \) iff all paths \(\pi \) in \(K \) with \(v = \pi_1 \) satisfy \(\pi_i, K \models \phi \) for some \(i \) (that may depend on the path),

• \(v, K \models \mathsf{EG} \phi \) iff there is a path \(\pi \) in \(K \) s.t. \(v = \pi_1 \) and \(\pi_i, K \models \phi \) for all \(i \),

• \(v, K \models \mathsf{AG} \phi \) iff all paths \(\pi \) in \(K \) with \(v = \pi_1 \) satisfy \(\pi_i, K \models \phi \) for all \(i \),

• \(v, K \models \phi \mathsf{EU} \psi \), iff there is a path \(\pi \) in \(K \) s.t. \(v = \pi_1 \) and some \(k \in \mathbb{N} \) s.t. \(\pi_i, K \models \phi \) for each \(i < k \) and \(\pi_k, K \models \psi \),

• \(v, K \models \phi \mathsf{AU} \psi \), iff all paths \(\pi \) in \(K \) with \(v = \pi_1 \) have some \(k \in \mathbb{N} \) s.t. \(\pi_i, K \models \phi \) for each \(i < k \) and \(\pi_k, K \models \psi \).

A Kripke structure \(K = (V, E, L, I) \) satisfies \(\phi \) iff all its initial states satisfy \(\phi \), i.e. iff \(is, K \models \phi \) for all \(is \in I \).
CTL Model Checking

Explicit-state algorithm
Rationale

We will extend the idea of verification/falsification by exhaustive state-space exploration to full CTL.

- Main technique will again be breadth-first search, i.e. graph coloring.
- Need to extend this to other modalities than AG.
- Need to deal with nested modalities.
Model-checking CTL: General layout

Given: a Kripke structure $K = (V, E, L, I)$ and a CTL formula ϕ

Core algorithm: find the set $V_\phi \subseteq V$ of vertices in K satisfying ϕ by
1. for each atomic subformula p of ϕ, mark the set $V_p \subseteq V$ of vertices in K satisfying ϕ
2. for increasingly larger subformulae ψ of ϕ, synthesize the marking $V_\psi \subseteq V$ of nodes satisfying ψ from the markings for ψ's immediate subformulae
until all subformulae of ϕ have been processed (including ϕ itself)

Result: report “$K \models \phi$” iff $V_\phi \supseteq I$
The tautologies

$$\phi \lor \psi \iff \neg(\neg \phi \land \neg \psi)$$
$$AX \phi \iff \neg EX \neg \phi$$
$$AG \phi \iff \neg EF \neg \phi$$
$$EF \phi \iff \top \land EU \phi$$
$$EG \phi \iff \neg AF \neg \phi$$
$$\phi AU \psi \iff \neg((\neg \psi) EU \neg(\phi \lor \psi)) \land AF \psi$$

indicate that we can rewrite each formula to one only containing atomic propositions, \neg, \land, EX, EU, AF.

After preprocessing, our algorithm need only tackle these!
Given: A finite Kripke structure with vertices V and edges E and a labelling function L assigning atomic propositions to vertices. Furthermore an atomic proposition p to be checked.

Algorithm: Mark all vertices that have p as a label.

Complexity: $O(|V|)$
Model-checking CTL: $\neg \phi$

Given: A set V_ϕ of vertices satisfying formula ϕ.

Algorithm: Mark all vertices not belonging to V_ϕ.

Complexity: $O(|V|)$
Model-checking CTL: $\phi \land \psi$

Given: Sets V_ϕ and V_ψ of vertices satisfying formulae ϕ or ψ, resp.

Algorithm: Mark all vertices belonging to $V_\phi \cap V_\psi$.

Complexity: $O(|V|)$
Given: Set V_ϕ of vertices satisfying formulae ϕ.

Algorithm: Mark all vertices that have a successor state in V_ϕ.

Complexity: $O(|V| + |E|)$
Model-checking CTL: $\phi E U \psi$

Given: Sets V_ϕ and V_ψ of vertices satisfying formulae ϕ or ψ, resp.

Algorithm: Incremental marking by

1. Mark all vertices belonging to V_ψ.
2. Repeat
 if there is a state in V_ϕ that has some successor state marked then mark it also
 until no new state is found.

Termination: Guaranteed due to finiteness of $V_\phi \subset V$.

Complexity: $O(|V| + |E|)$ if breadth-first search is used.
Given: Set V_ϕ of vertices satisfying formula ϕ.

Algorithm: Incremental marking by
1. Mark all vertices belonging to V_ϕ.
2. Repeat
 - if there is a state in V that has all successor states marked
 then mark it also
 until no new state is found.

Termination: Guaranteed due to finiteness of V.

Complexity: $O(|V| \cdot (|V| + |E|))$.
Model-checking CTL: \(\text{EG} \phi \), for efficiency

Given: Set \(V_\phi \) of vertices satisfying formula \(\phi \).

Algorithm: Incremental marking by

1. Strip Kripke structure to \(V_\phi \)-states:
 \[
 (V, E) \rightsquigarrow (V_\phi, E \cap (V_\phi \times V_\phi)).
 \]
 \(\rightsquigarrow \) **Complexity:** \(O(|V| + |E|) \)

2. Mark all states belonging to loops in the reduced graph.
 \(\rightsquigarrow \) **Complexity:** \(O(|V_\phi| + |E_\phi|) \) by identifying *strongly connected components*.

3. Repeat
 - if there is a state in \(V_\phi \) that has *some* successor states marked then mark it also
 - until no new state is found.
 \(\rightsquigarrow \) **Complexity:** \(O(|V_\phi| + |E_\phi|) \)

Complexity: \(O(|V| + |E|) \).
Theorem: It is decidable whether a finite Kripke structure \((V, E, L, I)\) satisfies a CTL formula \(\phi\).

The complexity of the decision procedure is \(O(|\phi| \cdot (|V| + |E|))\), i.e.

- linear in the size of the formula, given a fixed Kripke structure,
- linear in the size of the Kripke structure, given a fixed formula.

However, size of Kripke structure is exponential in number of parallel components in the system model.
Appendix

Fair Kripke Structures &
Fair CTL Model Checking
A fair Kripke structure is a pair \((K, \mathcal{F})\), where

- \(K = (V, E, L, I)\) is a Kripke structure
- \(\mathcal{F} \subseteq \mathcal{P}(V)\) is a set of vertex sets, called a fairness condition.

A fair path \(\pi\) in a fair Kripke structure \(((V, E, L, I), \mathcal{F})\) is an edge-consistent infinite sequence of vertices which visits each set \(F \in \mathcal{F}\) infinitely often:

- \(\pi \in V^\omega\),
- \((\pi_i, \pi_{i+1}) \in E\) for each \(i \in \mathbb{N}\),
- \(\forall F \in \mathcal{F}. \exists \infty i \in \mathbb{N}. \pi_i \in F\).

Note the similarity to (generalized) Büchi acceptance!
Fair CTL: Semantics

- $v, K, \mathcal{F} \models_F \text{EX} \phi$ iff there is a fair path π in K s.t. $v = \pi_0$ and $\pi_1, K, \mathcal{F} \models_F \phi$,
- $v, K, \mathcal{F} \models_F \text{AX} \phi$ iff all fair paths π in K with $v = \pi_0$ satisfy $\pi_1, K, \mathcal{F} \models_F \phi$,
- $v, K, \mathcal{F} \models_F \text{EF} \phi$ iff there is a fair path π in K s.t. $v = \pi_0$ and $\pi_i, K, \mathcal{F} \models_F \phi$ for some i,
- $v, K, \mathcal{F} \models_F \text{AF} \phi$ iff all fair paths π in K with $v = \pi_0$ satisfy $\pi_i, K, \mathcal{F} \models_F \phi$ for some i (that may depend on the fair path),
- $v, K, \mathcal{F} \models_F \text{EG} \phi$ iff there is a fair path π in K s.t. $v = \pi_0$ and $\pi_i, K, \mathcal{F} \models_F \phi$ for all i,
- $v, K, \mathcal{F} \models_F \text{AG} \phi$ iff all fair paths π in K with $v = \pi_0$ satisfy $\pi_i, K, \mathcal{F} \models_F \phi$ for all i,
- $v, K, \mathcal{F} \models_F \phi \text{ EU } \psi$, iff there is a fair path π in K s.t. $v = \pi_0$ and some $k \in \mathbb{N}$ s.t. $\pi_i, K, \mathcal{F} \models_F \phi$ for each $i < k$ and $\pi_k, K, \mathcal{F} \models_F \psi$,
- $v, K, \mathcal{F} \models_F \phi \text{ AU } \psi$, iff all fair paths π in K with $v = \pi_0$ have some $k \in \mathbb{N}$ s.t. $\pi_i, K, \mathcal{F} \models_F \phi$ for each $i < k$ and $\pi_k, K, \mathcal{F} \models_F \psi$.

A fair Kripke structure $((V, E, L, I), \mathcal{F})$ satisfies ϕ, denoted $((V, E, L, I), \mathcal{F}) \models_F \phi$, iff all its initial states satisfy ϕ, i.e. iff $i_s, K, \mathcal{F} \models_F \phi$ for all $i_s \in I$.

02917: CTL & Model Checking – p.33/37
Lemma: Given a fair Kripke structure $(((V, E, L, I), F)$, the set $Fair \subseteq V$ of states from which a fair path originates can be determined algorithmically.

Alg.: This is a problem of finding adequate SCCs:
1. Find all SCCs in K.
2. Select those SCCs that do contain at least one state from each fairness set $F \in \mathcal{F}$.
3. Find all states from which at least one of the selected SCCs is reachable.
Model-checking fair CTL: $\text{E} \text{X} \phi$

Given: Set V_ϕ of vertices fairly satisfying formulae ϕ.

Algorithm: Mark all vertices that have a successor state in $V_\phi \cap \text{Fair}$.

Note that the intersection with Fair is necessary even though the states in V_ϕ fairly satisfy ϕ:

- ϕ may be an atomic proposition, in which case fairness is irrelevant;
- ϕ may start with an A path quantifier that is trivially satisfied by non-existence of a fair path.
Model-checking fair CTL: $\phi \textsf{EU} \psi$

Given: Sets V_{ϕ} and V_{ψ} of vertices fairly satisfying formulae ϕ or ψ, resp.

Algorithm: Incremental marking by

1. Mark all vertices belonging to $V_{\psi} \cap \textit{Fair}$.
2. Repeat
 - if there is a state in V_{ϕ} that has some successor state marked then mark it also
 until no new state is found.
Model-checking fair CTL: $\text{EG} \phi$

Given: Set V_ϕ of vertices fairly satisfying formula ϕ.

Algorithm: Incremental marking by

1. Strip Kripke structure to V_ϕ-states:
 \[(V, E) \sim \to (V_\phi, E \cap (V_\phi \times V_\phi)) \].

2. Mark all states that can reach a *fair* SCC in the *reduced* graph.
 (Same algorithm as for finding the set $Fair$, yet applied to the reduced graph.)