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Verification flow
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Verification flow

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)

Yes/No

Formulae are

• extremely large arithmetic formulae with a rich Boolean structure

• over an undecidable domain, but approximation sufficient due to robustness
of algorithms against manufacturing tolerances, rounding errors, . . .
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Verification flow

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)

Yes/No

Formulae are

• extremely large arithmetic formulae with a rich Boolean structure

⇒ Lazy Theorem Proving

• over an undecidable domain, but approximation sufficient due to robustness
of algorithms against manufacturing tolerances, rounding errors, . . .

⇒ Interval Constraint Solving
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Satisfiability solving for decidable theories:

Lazy theorem proving & DPLL(T)
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The Lazy TP Scheme: LinSAT

Davis Putnam Linear Programming

x

y
Input formula:

Φ = (e → C ∧ D)

∧
(

f → A ∧ B
)

(

f ∨ g ∨ e
)

∧

∧

∧

∧

∧

∧

∧ (D → (x ≤ 7))

(C → (x + y ≤ 5))

(B → (2x − 4y ≤ −7))

(A → (4x − 2y ≥ 9))

(e → (C ∨ D) ∧ g)

(

g ∨ f
)

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.
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The Lazy TP Scheme: LinSAT

Linear ProgrammingDavis Putnam

y

x

Input formula:

Φ = (e → C ∧ D)

∧
(

f → A ∧ B
)

∧
(

f ∨ g ∨ e
)

∧
(

g ∨ f
)

∧ (e → (C ∨ D) ∧ g)

∧ (A → (4x − 2y ≥ 9))

∧ (B → (2x − 4y ≤ −7))

∧ (C → (x + y ≤ 5))

∧ (D → (x ≤ 7))

2e+ C+D ≥ 2

2f+A+ B ≥ 2

f+ g+ e ≥ 1

g+ f ≥ 1

3e+ 2g+ C+D ≥ 3

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.
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The Lazy TP Scheme: LinSAT

y

x

Davis Putnam Linear Programming

C+D ≥ 2

2f+A+ B ≥ 2

f+ g ≥ 1

g+ f ≥ 1

e

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.
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The Lazy TP Scheme: LinSAT

C

D

Davis Putnam Linear Programming

Deduce

y

x

2f+A+ B ≥ 2

f+ g ≥ 1

g+ f ≥ 1

e

C, D

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.
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The Lazy TP Scheme: LinSAT

C

D

Davis Putnam Linear Programming

x

y

Deduce

A+ B ≥ 2

e

C, D

f

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.
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The Lazy TP Scheme: LinSAT

D

B

C

Irreducible infeasible subsystem is 

Conflict !

A

Davis Putnam Linear Programming

y

x

Deduce

Deduce

Learned conflict clause: A+ B+ C ≥ 1

{A, B, C}

e

C, D

f

A, B

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.
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The Lazy TP Scheme: LinSAT

D

C

Davis Putnam Linear Programming

y

x

Learned conflict clause:

Deduce

Deduce

g ≥ 1

g ≥ 1

A+ B+ C ≥ 1

e

C, D

f f

A, B

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.
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The Lazy TP Scheme: LinSAT

D

C

Conflict !

Davis Putnam Linear Programming

y

x

Learned conflict clause:

Deduce

DeduceDeduce

A+ B+ C ≥ 1

e

C, D

f f

A, B g, g

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.
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The Lazy TP Scheme: LinSAT

y

x

Davis Putnam Linear Programming

Learned conflict clause:

Deduce

DeduceDeduce

2f+A+ B ≥ 2

g+ f ≥ 1

2g+ C+D ≥ 3

A+ B+ C ≥ 1

e

C, D

f f

A, B g, g

e

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.
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The Lazy TP Scheme: LinSAT

Learned conflict clause:

A
D

B

Deduce

Deduce

Deduce

Deduce from conflict cl.

DeduceDeduce

Davis Putnam Linear Programming

y

x

e e

C, D

f f

A, B g, g

g, f, A, B

C

D

A+ B+ C ≥ 1

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.
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Deciding the conjunctive T -problems

For T being linear arithmetic over R, this can be done by linear

programming:
n
∧

i=1

m∑

j=1

Ai,jxj ≤ bj iff Ax ≤ b

 Solving LP maximize cTx

subject to Ax ≤ b

with arbitrary c provides consistency information.
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Deciding the conjunctive T -problems

For T being linear arithmetic over R, this can be done by linear

programming:
n
∧

i=1

m∑

j=1

Ai,jxj ≤ bj iff Ax ≤ b

 Solving LP maximize cTx

subject to Ax ≤ b

with arbitrary c provides consistency information.

To cope with systems C containing strict inequations
∑m

j=1Ai,jxj<bj,

one

• introduces a slack variable ε,

• replaces
∑m

j=1Ai,jxj<bj by
∑m

j=1Ai,jxj+ε ≤bj,

• solves the resultant LP L, maximizing the objective function ε

 C is satisfiable iff L is satisfiable with optimum solution > 0.
02917: Arithmetic Satisfiability Solving – p.6/38



Extracting reasons for T -conflicts

Goal: In case that the original constraint system

C =

(

∧k

i=1

∑n

j=1 Ai,jxj ≤ bi

∧
∧n

i=k+1

∑n

j=1 Ai,jxj < bi

)

is infeasible, we want a subset I ⊆ {1, . . . , n} such that

• the subsystem C|I of the constraint system containing only

the conjuncts from I also is infeasible,

• yet the subsystem is irreducible in the sense that any proper

subset J of I designates a feasible system C|J.

Such an irreducible infeasible subsystem (IIS) is a prime

implicant of all the possible reasons for failure of the constraint

system C.
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Extracting IIS

Provided constraint system C contains only non-strict inequations,

• extraction of IIS can be reduced to finding extremal solutions of

a dual system of linear inequations, similar to Farkas’ Lemma

(Gleeson & Ryan 1990; Pfetsch, 2002)
• to keep the objective function bounded, one can use dual LP

maximize wTy

subject to ATy = 0

bTy = 1

y ≥ 0

where wi =

{
−1 if bi ≤ 0,

0 if bi > 0

• choice of w guarantees boundedness of objective function

=⇒ optimal solution exists whenever the LP is feasible.

! For such a solution, I = {i | yi 6= 0} is an IIS.
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Extensions & Optimizations

DPLL(T): If the T solver can itself do fwd. inference, it cannot only

prune the search tree through conflict detection, but also

through constraint propagation:

1. SAT solver assigns truth values to subset C ⊂ A of the set A

of constraints occurring in the input formula,

2. T solver finds them to be consistent and to imply a truth

value assignment to further T constraints D ⊆ A \ C,

3. these truth-value assignments are performed in the SAT

solver store before resuming SAT solving.
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Satisfiability solving in

undecidable arithmetic domains

iSAT algorithm (AVACS consortium 2006–)
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Classical Lazy TP Layout

DPLL−SAT

+ conflict−driven learning

+ non−chronol. backtrack.
reasoner

Arithmetic

arithmetic
constraint system

explanation:
(minimal) infeasible
subsystem

consistent:
yes / no
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Classical Lazy TP Layout

DPLL−SAT

+ conflict−driven learning

+ non−chronol. backtrack.
reasoner

Arithmetic

arithmetic
constraint system

explanation:
(minimal) infeasible
subsystem

consistent:
yes / no

Problems with extending it to richer arithmetic domains:

• undecidability: answer of arithmetic reasoner no longer

two-valued; don’t know cases arise

• explanations: how to generate (nearly) minimal infeasible

subsystems of undecidable constraint systems?
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Algorithmic basis:

Interval constraint propagation

(Hull consistency version)
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• “Forward” interval propagation yields justification for constraint satisfaction:

x ∈ [−2, 2]

∧ y ∈ [−2, 2]

2

6

y

≤

+

∧

x

[−2, 2]

[0, 4]

[−2, 6]

[−2, 2]

h2

h1

satisfied in box

h2 ≤ 6 is

⇓
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• Interval propagation (fwd & bwd) yields witness for unsatisfiability:

2

6

y

≤

+

∧

x

[3, 4]

[9, 16]

[9, 19]

[0, 3]

h2

h1

unsat. in box

h2 ≤ 6 is

⇓

x ∈ [3, 4]

∧ y ∈ [0, 3]
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:

2

6

y

≤

+

∧

x

[−10, 10]

[0, 100]

[−10, 110]

[−10, 10]

h2

h1

∧ y ∈ [−10, 10]

x ∈ [−10, 10]
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:

2

6

y

≤

+

∧

x

[−4, 4]

[0, 16]

[−10, 6]

[−10, 6]

h2

h1

⇓

∧ y ∈ [−10, 10]

x ∈ [−10, 10]

∧ y ∈ [−10, 6]

x ∈ [−4, 4]
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Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6  

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:

Constraint is not satisfied

by the contracted box!

2

6

y

≤

+

∧

x

[−4, 4]

[0, 16] [−10, 6]

h2

h1

∧ y ∈ [−10, 6]

x ∈ [−4, 4]

[−10, 22]
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Interval contraction

Backward propagation yields rectangular overapproximation of

non-rectangular pre-images.

Thus, interval contraction provides a highly incomplete deduction
system:

x ∈ [0, ∞)

∧ h =̂ x · y

∧ h > 5

=⇒
x ∈ (0, ∞)

∧ y ∈ (0, ∞)
=⇒ h ∈ (0, ∞) 6=⇒ h > 5
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Interval contraction

Backward propagation yields rectangular overapproximation of

non-rectangular pre-images.

Thus, interval contraction provides a highly incomplete deduction
system:

x ∈ [0, ∞)

∧ h =̂ x · y

∧ h > 5

=⇒
x ∈ (0, ∞)

∧ y ∈ (0, ∞)
=⇒ h ∈ (0, ∞) 6=⇒ h > 5

 enhance through branch-and-prune approach.

02917: Arithmetic Satisfiability Solving – p.14/38



Schema of Interval-CP based CS Alg.

Given: Constraint set C = {c1, . . . , cn},

initial box (= cartesian product of intervals) B in R
|free(C)|

Goal: Find box B ′ ⊆ B containing satisfying valuations throughout

or show non-existence of such B ′.

Alg.: 1. L := {B}

2. If L 6= ∅ then take some box b :∈ L,

otherwise report “unsatisfiable” and stop.

3. Use contraction to determine a sub-box b ′ ⊆ b.

4. If b ′ = ∅ then set L := L \ {b}, goto 2.

5. Use forward interval propagation to determine whether all

constraints are satisfied throughout b ′; if so then report b ′ as

satisfying and stop.

6. If b ′ ⊂ b then set L := L \ {b} ∪ {b ′}, goto 2.

7. Split b into subboxes b1 and b2, set L := L \ {b} ∪ {b1, b2},

goto 2.
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Schema of Interval-CP based CS Alg. / DPLL

Given: Constraint / clause set C = {c1, . . . , cn},

initial box (= cartesian product of intervals) B in R
|free(C)| / B

|free(C)|

Goal: Find box B ′ ⊆ B containing satisfying valuations throughout

or show non-existence of such B ′.

Alg.: 1. L := {B}

2. If L 6= ∅ then take some box b :∈ L,

otherwise report “unsatisfiable” and stop.

3. Use contraction to determine a sub-box b ′ ⊆ b. (Unit Prop.)

4. If b ′ = ∅ then set L := L \ {b}, goto 2.

5. Use forward interval propagation to determine whether all

constraints are satisfied throughout b ′; if so then report b ′ as

satisfying and stop.

6. If b ′ ⊂ b then set L := L \ {b} ∪ {b ′}, goto 2.

7. Split b into subboxes b1 and b2, set L := L \ {b} ∪ {b1, b2},

goto 2.
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Schema of Interval-CP based CS Alg. / DPLL

Given: Constraint / clause set C = {c1, . . . , cn},

initial box (= cartesian product of intervals) B in R
|free(C)| / B

|free(C)|

Goal: Find box B ′ ⊆ B containing satisfying valuations throughout

or show non-existence of such B ′.

Alg.: 1. L := {B}

2. If L 6= ∅ then take some box b :∈ L, (LIFO)

otherwise report “unsatisfiable” and stop.

3. Use contraction to determine a sub-box b ′ ⊆ b. (Unit Prop.)

4. If b ′ = ∅ then set L := L \ {b}, goto 2.

5. Use forward interval propagation to determine whether all

constraints are satisfied throughout b ′; if so then report b ′ as

satisfying and stop.

6. If b ′ ⊂ b then set L := L \ {b} ∪ {b ′}, goto 2.

7. Split b into subboxes b1 and b2, set L := L \ {b} ∪ {b1, b2},

goto 2.
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Observation

DPLL-SAT and interval-CP based CS are inherently similar:

DPLL-SAT Interval-based CS

Propagation: contraction in lattice

{false,true}

{false}

{}

{true} contraction in lattice

of intervals over R

of Boolean intervals

Split: split of Boolean interval [false,true] split of interval over R

This suggests a tighter integration than lazy TP:

common algorithms should be shared,

others should be lifted to both domains.
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iSAT algorithm

Tight integration of DPLL and ICP
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Lazy TP: Tightening the Interaction

Arithmetic

reasoner

DPLL−SAT

+ conflict−driven learning

+ non−chronol. backtrack.

arithmetic
constraint system

consistent:
yes / no

explanation:
(minimal) infeasible
subsystem
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Lazy TP: Tightening the Interaction

Arithmetic

reasoner

DPLL−SAT

+ conflict−driven learning

+ non−chronol. backtrack.

arithmetic
constraint system

consistent:
yes / no

explanation:
(minimal) infeasible
subsystem
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Lazy TP: Tightening the Interaction

propagation

Arithmetic

constraint
+ conflict−driven learning

+ non−chronol. backtrack.propagation

Boolean

constraint

DPLL−SAT
control flow

enters / removes constraints &

triggers individual constraint propagations

reports narrowing results

Arithmetic

reasoner

DPLL−SAT

+ conflict−driven learning

+ non−chronol. backtrack.

arithmetic
constraint system

consistent:
yes / no

explanation:
(minimal) infeasible
subsystem
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Properties of Modified Layout

propagation

Arithmetic

constraint
+ conflict−driven learning

+ non−chronol. backtrack.propagation

Boolean

constraint

DPLL−SAT
control flow

triggers individual constraint propagations

reports narrowing results

enters / removes constraints &

• SAT engine has introspection into CP
• thus can keep track of inferences and their reasons

can use recent SAT mechanisms for generalizing reasons of

conflicts and learning them, thus pruning the search tree

02917: Arithmetic Satisfiability Solving – p.19/38



Properties of Modified Layout

propagation

Arithmetic

constraint
+ conflict−driven learning

+ non−chronol. backtrack.propagation

Boolean

constraint

DPLL−SAT
control flow

triggers individual constraint propagations

reports narrowing results

enters / removes constraints &

• SAT engine has introspection into CP
• thus can keep track of inferences and their reasons

can use recent SAT mechanisms for generalizing reasons of

conflicts and learning them, thus pruning the search tree

preoccupation towards depth-first search (inherited from DPLL)
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The CP Mechanisms

Interpretation of variables: Each variable x is interpreted by two

intervals x ↑⊇ x ↓:

Interval denotes CP mechanisms

x ↑ justifying interval Fwd. propagation among

. ↑ intervals (wrt. some order)

x ↓ implied interval Fwd. and bwd. narrowing

among . ↓ intervals

Constraint propagation:

• h ≤ const: Narrow h ↓ to h ↓ ′:= h ↓ ∩[const,∞).

• x = y⊕ z: Apply the contractors of all reshufflings.

Conflicts: Materialize by contracting a . ↓ interval to ∅.

Constraint satisfaction: Shows by h ↑ satisfying the constraint.
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DPLL on a search lattice D

1. Start from the most general assignment σ⊥ ≡ ⊥.

2. (Propagation) If there is a not yet satisfied clause containing

exactly one elementary formula φ with value 6= false then

enqueue contract(φ). Repeat 2 if possible.

3. (Perform updates) If implication queue non-empty then dequeue

contract(φ) and perform it. If this assigns ⊤ to some entailed

variable then backtrack (if applicable, otherwise return

“unsatisfiable”). If all clauses become true, report “satisfiable”.

Enqueue contract(ψ) for all affected atoms ψ and repeat 3

unless queue empty. Thereafter proceed with 2, if applicable.

4. (Split) Select an arbitrary variable x with non-maximal (in

D \ {⊤}) value occurring in an unsatisfied elementary formula in

an unsatisfied clause.

Take x ′, x ′′ ∈ D \ {⊤} s.t. x := x ′ ⊓ x ′′. Enqueue x := x ′. Store

alternative x := x ′′ as backtrack alternative. Goto 3.
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Optimizations inherited from DPLL:

• conflict-driven learning

• non-chronological backtracking

• watched literal scheme

• restarts
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Conflict-Driven Learning in DPLL: Example

A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z
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Conflict-Driven Learning in DPLL: Example

a
=0

a

B

b = 1
A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z
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Conflict-Driven Learning in DPLL: Example

D

E

C

c
=1 d = 1, e = 1

a
=0

a

B

b = 1
A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z
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Conflict-Driven Learning in DPLL: Example

yx Z

x
=0 y = 0, z = 1

D

E

C

c
=1 d = 1, e = 1

a
=0

a

B

b = 1
A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z
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Conflict-Driven Learning in DPLL: Example

f

G

g

f
=0 g = 1, g = 0

yx Z

x
=0 y = 0, z = 1

D

E

C

c
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Conflict-Driven Learning in DPLL: Example
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Conflict-driven learning in multi-valued case

Works like a charme w/o fundamental modifications:

• Decision variables coincide to interval splits;

the assigned values to asserted bounds x ≥ c, x > c, x < c,
x ≤ c;

• Implications correspond to contractions;

• Reasons to sets of asserted atoms giving rise to a contraction.

Through embedding into SAT, we get

conflict-driven learning and non-

chronological backtracking for free!
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Learning: Principle

z

y

x

x > 0
x < 3
y > 2
y < 5
z > 0
z < 2
x > y
z = x*y
y = z+x
...
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Learning: Principle
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Refutes other candidate boxes and constraint combinations immediately.
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Optimizations for DP:

Watched literal scheme
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Watched literals

Boolean SAT: Within each (not yet satisfied) clause, watch two

unassigned literals:

x ∨ y ∨ ¬z ∨ a

true false ↑ ↑
watch watch

Clause needs only be visited if one of the watched lieterals gets

assigned with wrong polarity. Otherwise clause either satisfied

or still satisfiable.
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Watched literals

Lattice-SAT: Within each clause, watch two undecided elementary

formulae:

x ≥ 4 ∨ z+ x=̂y ∨ y ≥ 1 ∨ a > 4

(2, 3) (0, 1), (2, 3), (1, 3) (1, 3) (2, 5)

false ↑ true ↑
watch watch

Clause needs only be visited if a variable in the observed parts

becomes assigned:

• visit if a’s upper bound is reduced

(would suffice to visit if reduced to 4 or below)

• visit if x’s, y’s, or z’s interval is narrowed

(would actually suffice to visit if (z ⊕ x) ∩ y becomes empty)

02917: Arithmetic Satisfiability Solving – p.28/38



Enforcing termination
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Enforcing termination

• SAT on an infinitely deep lattice may digress into an infinite sequence of
splits.
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Enforcing termination

• SAT on an infinitely deep lattice may digress into an infinite sequence of
splits.

• This can be avoided if splitting depth within a SAT-solver run is bounded a
priori:

1. Select a bound on splitting depth,

2. run lattice-SAT and learn a pseudo-conflict closing the branch whenever

current search path has reached maximum number of splits,

3. report any solution thus found or any certificate of unsatisfiability thus
found (sound results due to monotonicity!),

4. if problem remained unsolved then
(a) reopen closed branches through deletion of pseudo-conflicts,
(b) restart SAT with larger splitting depth.
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Enforcing termination

• SAT on an infinitely deep lattice may digress into an infinite sequence of
splits.

• This can be avoided if splitting depth within a SAT-solver run is bounded a
priori:

1. Select a bound on splitting depth,

2. run lattice-SAT and learn a pseudo-conflict closing the branch whenever

current search path has reached maximum number of splits,

3. report any solution thus found or any certificate of unsatisfiability thus
found (sound results due to monotonicity!),

4. if problem remained unsolved then
(a) reopen closed branches through deletion of pseudo-conflicts,
(b) restart SAT with larger splitting depth.

• Due to conflict-driven learning, restarts do never reexplore paths already
solved with lower splitting depth!
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iSAT in practice:

Benchmark results
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The impact of learning: no. of conflicts
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Size: Limited to
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by solver without
learning

=⇒ enormous pruning of search space already on small examples
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The impact of learning: runtime
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iSAT in practice

Formula syntax
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Constraint solving: single formula mode

DECL

int [1, 100] a, b, c;

EXPR

a*a + b*b = c*c;

• Two sections:

1. Variable declarations (keyword “DECL”)

2. Constraint (keyword “EXPR”)

• Variables can be bounded integers (“int”), bounded reals

(“float”), or Booleans (“boole”)

• integers and reals come with declarations of bounded ranges:

int [-17, 123] a, b;

int [13,54045] c;

float [-9999.9999,3.1415927] alpha,omega;
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iSAT: type consistency

• boole is identified with int [0,1]

• floats and ints can be freely mixed within constraints,

• constraint evaluation is always in (safely outward rounding) float

arithmetic,

• the restriction to int only confines the search lattice:

• interval split: [a, b]  [a, z] ∪ [z+ 1, b] with z ∈ Z,

• strengthened propagation: . . .  [a, b]  [⌈a⌉, ⌊b⌋].
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Sample constraints

x + y * 2 >= 5 + 2 * y;

x / y > 10 xor !a;

abs(nrt(x,5)) < 2.545;

Note that any type of fixedpoint equation is possible:

• (a + x / y) = x

and that type constraints can (voluntarily or accidentially) destroy

referential transparency:

• (a + x / y) = x for float[...]x,y vs.

• i = x / y; (a + i) = x for float[...]x,y;int[...]i.
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Interpreting the results

iSAT (a.k.a. HySAT 2) returns

unsatisfiable: all possible interval assignments, and hence all

possible real-valued assignments, have been refuted,

candidate solution box found: an interval box has been found which is

free of conflict and sufficiently small (below the selected

minimum split width).

The publicly available version of iSAT

• does not yet contain a check for actual existence of a satisfying

solution in the candidate box,

• for real-valued problems, safer information may be obtained by

restarting with smaller bounds on interval width in splitting and

on progress in deduction,

• for integer-valued problems, “candidate solution box found” can

generally be identified with “solution found”.
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