
Satisfiability Solving in Arithmetic Domains

Martin Fränzle

Dept. of CS, Carl von Ossietzky Universität Oldenburg, Germany

02917: Arithmetic Satisfiability Solving – p.1/38

Hybrid Systems

Plant

ControlAnalog
switch

Continuous
controllers

D/A

Discrete
supervisor

A/D

Plant

observable
state

environmental

influence

disturbances ("noise")

control

selection

setpoints

active control law

setpoints
part of
observable
state

task selection

02917: Arithmetic Satisfiability Solving – p.2/38

Hybrid Systems

Loads of
continuous
computations

interleaved
with discrete
decisions

Plant

ControlAnalog
switch

Continuous
controllers

D/A

Discrete
supervisor

A/D

Plant

observable
state

environmental

influence

disturbances ("noise")

control

selection

setpoints

active control law

setpoints
part of
observable
state

task selection

02917: Arithmetic Satisfiability Solving – p.2/38

Verification flow

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)

Yes/No

02917: Arithmetic Satisfiability Solving – p.3/38

Verification flow

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)

Yes/No

Formulae are

• extremely large arithmetic formulae with a rich Boolean structure

• over an undecidable domain, but approximation sufficient due to robustness
of algorithms against manufacturing tolerances, rounding errors, . . .

02917: Arithmetic Satisfiability Solving – p.3/38

Verification flow

Hybrid System Effective VerificationModel
BackendEncoding

component

component
continuous

A/D, D/A

component
discrete

formula

FOL(R,Z,+,...)

Boolean

FOL(R,+,*,...)

Yes/No

Formulae are

• extremely large arithmetic formulae with a rich Boolean structure

⇒ Lazy Theorem Proving

• over an undecidable domain, but approximation sufficient due to robustness
of algorithms against manufacturing tolerances, rounding errors, . . .

⇒ Interval Constraint Solving

02917: Arithmetic Satisfiability Solving – p.3/38

Satisfiability solving for decidable theories:

Lazy theorem proving & DPLL(T)

02917: Arithmetic Satisfiability Solving – p.4/38

The Lazy TP Scheme: LinSAT

Davis Putnam Linear Programming

x

y
Input formula:

Φ = (e → C ∧ D)

∧
(

f → A ∧ B
)

(

f ∨ g ∨ e
)

∧

∧

∧

∧

∧

∧

∧ (D → (x ≤ 7))

(C → (x + y ≤ 5))

(B → (2x − 4y ≤ −7))

(A → (4x − 2y ≥ 9))

(e → (C ∨ D) ∧ g)

(

g ∨ f
)

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.

02917: Arithmetic Satisfiability Solving – p.5/38

The Lazy TP Scheme: LinSAT

Linear ProgrammingDavis Putnam

y

x

Input formula:

Φ = (e → C ∧ D)

∧
(

f → A ∧ B
)

∧
(

f ∨ g ∨ e
)

∧
(

g ∨ f
)

∧ (e → (C ∨ D) ∧ g)

∧ (A → (4x − 2y ≥ 9))

∧ (B → (2x − 4y ≤ −7))

∧ (C → (x + y ≤ 5))

∧ (D → (x ≤ 7))

2e+ C+D ≥ 2

2f+A+ B ≥ 2

f+ g+ e ≥ 1

g+ f ≥ 1

3e+ 2g+ C+D ≥ 3

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.

02917: Arithmetic Satisfiability Solving – p.5/38

The Lazy TP Scheme: LinSAT

y

x

Davis Putnam Linear Programming

C+D ≥ 2

2f+A+ B ≥ 2

f+ g ≥ 1

g+ f ≥ 1

e

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.

02917: Arithmetic Satisfiability Solving – p.5/38

The Lazy TP Scheme: LinSAT

C

D

Davis Putnam Linear Programming

Deduce

y

x

2f+A+ B ≥ 2

f+ g ≥ 1

g+ f ≥ 1

e

C, D

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.

02917: Arithmetic Satisfiability Solving – p.5/38

The Lazy TP Scheme: LinSAT

C

D

Davis Putnam Linear Programming

x

y

Deduce

A+ B ≥ 2

e

C, D

f

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.

02917: Arithmetic Satisfiability Solving – p.5/38

The Lazy TP Scheme: LinSAT

D

B

C

Irreducible infeasible subsystem is

Conflict !

A

Davis Putnam Linear Programming

y

x

Deduce

Deduce

Learned conflict clause: A+ B+ C ≥ 1

{A, B, C}

e

C, D

f

A, B

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.

02917: Arithmetic Satisfiability Solving – p.5/38

The Lazy TP Scheme: LinSAT

D

C

Davis Putnam Linear Programming

y

x

Learned conflict clause:

Deduce

Deduce

g ≥ 1

g ≥ 1

A+ B+ C ≥ 1

e

C, D

f f

A, B

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.

02917: Arithmetic Satisfiability Solving – p.5/38

The Lazy TP Scheme: LinSAT

D

C

Conflict !

Davis Putnam Linear Programming

y

x

Learned conflict clause:

Deduce

DeduceDeduce

A+ B+ C ≥ 1

e

C, D

f f

A, B g, g

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.

02917: Arithmetic Satisfiability Solving – p.5/38

The Lazy TP Scheme: LinSAT

y

x

Davis Putnam Linear Programming

Learned conflict clause:

Deduce

DeduceDeduce

2f+A+ B ≥ 2

g+ f ≥ 1

2g+ C+D ≥ 3

A+ B+ C ≥ 1

e

C, D

f f

A, B g, g

e

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.

02917: Arithmetic Satisfiability Solving – p.5/38

The Lazy TP Scheme: LinSAT

Learned conflict clause:

A
D

B

Deduce

Deduce

Deduce

Deduce from conflict cl.

DeduceDeduce

Davis Putnam Linear Programming

y

x

e e

C, D

f f

A, B g, g

g, f, A, B

C

D

A+ B+ C ≥ 1

Backtrack search

1. traversing possible truth-value assignments of Boolean part

2. incrementally (de-)constructing a conjunctive arithmetic constraint system

3. querying external solver to determine consistency of arithm. constr. syst.

02917: Arithmetic Satisfiability Solving – p.5/38

Deciding the conjunctive T -problems

For T being linear arithmetic over R, this can be done by linear

programming:
n
∧

i=1

m∑

j=1

Ai,jxj ≤ bj iff Ax ≤ b

 Solving LP maximize cTx

subject to Ax ≤ b

with arbitrary c provides consistency information.

02917: Arithmetic Satisfiability Solving – p.6/38

Deciding the conjunctive T -problems

For T being linear arithmetic over R, this can be done by linear

programming:
n
∧

i=1

m∑

j=1

Ai,jxj ≤ bj iff Ax ≤ b

 Solving LP maximize cTx

subject to Ax ≤ b

with arbitrary c provides consistency information.

To cope with systems C containing strict inequations
∑m

j=1Ai,jxj<bj,

one

• introduces a slack variable ε,

• replaces
∑m

j=1Ai,jxj<bj by
∑m

j=1Ai,jxj+ε ≤bj,

• solves the resultant LP L, maximizing the objective function ε

 C is satisfiable iff L is satisfiable with optimum solution > 0.
02917: Arithmetic Satisfiability Solving – p.6/38

Extracting reasons for T -conflicts

Goal: In case that the original constraint system

C =

(

∧k

i=1

∑n

j=1 Ai,jxj ≤ bi

∧
∧n

i=k+1

∑n

j=1 Ai,jxj < bi

)

is infeasible, we want a subset I ⊆ {1, . . . , n} such that

• the subsystem C|I of the constraint system containing only

the conjuncts from I also is infeasible,

• yet the subsystem is irreducible in the sense that any proper

subset J of I designates a feasible system C|J.

Such an irreducible infeasible subsystem (IIS) is a prime

implicant of all the possible reasons for failure of the constraint

system C.

02917: Arithmetic Satisfiability Solving – p.7/38

Extracting IIS

Provided constraint system C contains only non-strict inequations,

• extraction of IIS can be reduced to finding extremal solutions of

a dual system of linear inequations, similar to Farkas’ Lemma

(Gleeson & Ryan 1990; Pfetsch, 2002)
• to keep the objective function bounded, one can use dual LP

maximize wTy

subject to ATy = 0

bTy = 1

y ≥ 0

where wi =

{
−1 if bi ≤ 0,

0 if bi > 0

• choice of w guarantees boundedness of objective function

=⇒ optimal solution exists whenever the LP is feasible.

! For such a solution, I = {i | yi 6= 0} is an IIS.
02917: Arithmetic Satisfiability Solving – p.8/38

Extensions & Optimizations

DPLL(T): If the T solver can itself do fwd. inference, it cannot only

prune the search tree through conflict detection, but also

through constraint propagation:

1. SAT solver assigns truth values to subset C ⊂ A of the set A

of constraints occurring in the input formula,

2. T solver finds them to be consistent and to imply a truth

value assignment to further T constraints D ⊆ A \ C,

3. these truth-value assignments are performed in the SAT

solver store before resuming SAT solving.

02917: Arithmetic Satisfiability Solving – p.9/38

Satisfiability solving in

undecidable arithmetic domains

iSAT algorithm (AVACS consortium 2006–)

02917: Arithmetic Satisfiability Solving – p.10/38

Classical Lazy TP Layout

DPLL−SAT

+ conflict−driven learning

+ non−chronol. backtrack.
reasoner

Arithmetic

arithmetic
constraint system

explanation:
(minimal) infeasible
subsystem

consistent:
yes / no

02917: Arithmetic Satisfiability Solving – p.11/38

Classical Lazy TP Layout

DPLL−SAT

+ conflict−driven learning

+ non−chronol. backtrack.
reasoner

Arithmetic

arithmetic
constraint system

explanation:
(minimal) infeasible
subsystem

consistent:
yes / no

Problems with extending it to richer arithmetic domains:

• undecidability: answer of arithmetic reasoner no longer

two-valued; don’t know cases arise

• explanations: how to generate (nearly) minimal infeasible

subsystems of undecidable constraint systems?

02917: Arithmetic Satisfiability Solving – p.11/38

Algorithmic basis:

Interval constraint propagation

(Hull consistency version)

02917: Arithmetic Satisfiability Solving – p.12/38

Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

02917: Arithmetic Satisfiability Solving – p.13/38

Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• “Forward” interval propagation yields justification for constraint satisfaction:

x ∈ [−2, 2]

∧ y ∈ [−2, 2]

2

6

y

≤

+

∧

x

[−2, 2]

[0, 4]

[−2, 6]

[−2, 2]

h2

h1

satisfied in box

h2 ≤ 6 is

⇓

02917: Arithmetic Satisfiability Solving – p.13/38

Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• Interval propagation (fwd & bwd) yields witness for unsatisfiability:

2

6

y

≤

+

∧

x

[3, 4]

[9, 16]

[9, 19]

[0, 3]

h2

h1

unsat. in box

h2 ≤ 6 is

⇓

x ∈ [3, 4]

∧ y ∈ [0, 3]

02917: Arithmetic Satisfiability Solving – p.13/38

Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:

2

6

y

≤

+

∧

x

[−10, 10]

[0, 100]

[−10, 110]

[−10, 10]

h2

h1

∧ y ∈ [−10, 10]

x ∈ [−10, 10]

02917: Arithmetic Satisfiability Solving – p.13/38

Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:

2

6

y

≤

+

∧

x

[−4, 4]

[0, 16]

[−10, 6]

[−10, 6]

h2

h1

⇓

∧ y ∈ [−10, 10]

x ∈ [−10, 10]

∧ y ∈ [−10, 6]

x ∈ [−4, 4]

02917: Arithmetic Satisfiability Solving – p.13/38

Interval Constraint Solving (1)

• Complex constraints are rewritten to “triplets” (primitive constraints):

x2 + y ≤ 6

c1 : h1 =̂ x ∧ 2

c2 : ∧ h2 =̂h1 + y

∧ h2 ≤ 6

• Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:

Constraint is not satisfied

by the contracted box!

2

6

y

≤

+

∧

x

[−4, 4]

[0, 16] [−10, 6]

h2

h1

∧ y ∈ [−10, 6]

x ∈ [−4, 4]

[−10, 22]

02917: Arithmetic Satisfiability Solving – p.13/38

Interval contraction

Backward propagation yields rectangular overapproximation of

non-rectangular pre-images.

Thus, interval contraction provides a highly incomplete deduction
system:

x ∈ [0, ∞)

∧ h =̂ x · y

∧ h > 5

=⇒
x ∈ (0, ∞)

∧ y ∈ (0, ∞)
=⇒ h ∈ (0, ∞) 6=⇒ h > 5

02917: Arithmetic Satisfiability Solving – p.14/38

Interval contraction

Backward propagation yields rectangular overapproximation of

non-rectangular pre-images.

Thus, interval contraction provides a highly incomplete deduction
system:

x ∈ [0, ∞)

∧ h =̂ x · y

∧ h > 5

=⇒
x ∈ (0, ∞)

∧ y ∈ (0, ∞)
=⇒ h ∈ (0, ∞) 6=⇒ h > 5

 enhance through branch-and-prune approach.

02917: Arithmetic Satisfiability Solving – p.14/38

Schema of Interval-CP based CS Alg.

Given: Constraint set C = {c1, . . . , cn},

initial box (= cartesian product of intervals) B in R
|free(C)|

Goal: Find box B ′ ⊆ B containing satisfying valuations throughout

or show non-existence of such B ′.

Alg.: 1. L := {B}

2. If L 6= ∅ then take some box b :∈ L,

otherwise report “unsatisfiable” and stop.

3. Use contraction to determine a sub-box b ′ ⊆ b.

4. If b ′ = ∅ then set L := L \ {b}, goto 2.

5. Use forward interval propagation to determine whether all

constraints are satisfied throughout b ′; if so then report b ′ as

satisfying and stop.

6. If b ′ ⊂ b then set L := L \ {b} ∪ {b ′}, goto 2.

7. Split b into subboxes b1 and b2, set L := L \ {b} ∪ {b1, b2},

goto 2.

02917: Arithmetic Satisfiability Solving – p.15/38

Schema of Interval-CP based CS Alg. / DPLL

Given: Constraint / clause set C = {c1, . . . , cn},

initial box (= cartesian product of intervals) B in R
|free(C)| / B

|free(C)|

Goal: Find box B ′ ⊆ B containing satisfying valuations throughout

or show non-existence of such B ′.

Alg.: 1. L := {B}

2. If L 6= ∅ then take some box b :∈ L,

otherwise report “unsatisfiable” and stop.

3. Use contraction to determine a sub-box b ′ ⊆ b. (Unit Prop.)

4. If b ′ = ∅ then set L := L \ {b}, goto 2.

5. Use forward interval propagation to determine whether all

constraints are satisfied throughout b ′; if so then report b ′ as

satisfying and stop.

6. If b ′ ⊂ b then set L := L \ {b} ∪ {b ′}, goto 2.

7. Split b into subboxes b1 and b2, set L := L \ {b} ∪ {b1, b2},

goto 2.

02917: Arithmetic Satisfiability Solving – p.15/38

Schema of Interval-CP based CS Alg. / DPLL

Given: Constraint / clause set C = {c1, . . . , cn},

initial box (= cartesian product of intervals) B in R
|free(C)| / B

|free(C)|

Goal: Find box B ′ ⊆ B containing satisfying valuations throughout

or show non-existence of such B ′.

Alg.: 1. L := {B}

2. If L 6= ∅ then take some box b :∈ L, (LIFO)

otherwise report “unsatisfiable” and stop.

3. Use contraction to determine a sub-box b ′ ⊆ b. (Unit Prop.)

4. If b ′ = ∅ then set L := L \ {b}, goto 2.

5. Use forward interval propagation to determine whether all

constraints are satisfied throughout b ′; if so then report b ′ as

satisfying and stop.

6. If b ′ ⊂ b then set L := L \ {b} ∪ {b ′}, goto 2.

7. Split b into subboxes b1 and b2, set L := L \ {b} ∪ {b1, b2},

goto 2.

02917: Arithmetic Satisfiability Solving – p.15/38

Observation

DPLL-SAT and interval-CP based CS are inherently similar:

DPLL-SAT Interval-based CS

Propagation: contraction in lattice

{false,true}

{false}

{}

{true} contraction in lattice

of intervals over R

of Boolean intervals

Split: split of Boolean interval [false,true] split of interval over R

This suggests a tighter integration than lazy TP:

common algorithms should be shared,

others should be lifted to both domains.

02917: Arithmetic Satisfiability Solving – p.16/38

iSAT algorithm

Tight integration of DPLL and ICP

02917: Arithmetic Satisfiability Solving – p.17/38

Lazy TP: Tightening the Interaction

Arithmetic

reasoner

DPLL−SAT

+ conflict−driven learning

+ non−chronol. backtrack.

arithmetic
constraint system

consistent:
yes / no

explanation:
(minimal) infeasible
subsystem

02917: Arithmetic Satisfiability Solving – p.18/38

Lazy TP: Tightening the Interaction

Arithmetic

reasoner

DPLL−SAT

+ conflict−driven learning

+ non−chronol. backtrack.

arithmetic
constraint system

consistent:
yes / no

explanation:
(minimal) infeasible
subsystem

02917: Arithmetic Satisfiability Solving – p.18/38

Lazy TP: Tightening the Interaction

propagation

Arithmetic

constraint
+ conflict−driven learning

+ non−chronol. backtrack.propagation

Boolean

constraint

DPLL−SAT
control flow

enters / removes constraints &

triggers individual constraint propagations

reports narrowing results

Arithmetic

reasoner

DPLL−SAT

+ conflict−driven learning

+ non−chronol. backtrack.

arithmetic
constraint system

consistent:
yes / no

explanation:
(minimal) infeasible
subsystem

02917: Arithmetic Satisfiability Solving – p.18/38

Properties of Modified Layout

propagation

Arithmetic

constraint
+ conflict−driven learning

+ non−chronol. backtrack.propagation

Boolean

constraint

DPLL−SAT
control flow

triggers individual constraint propagations

reports narrowing results

enters / removes constraints &

• SAT engine has introspection into CP
• thus can keep track of inferences and their reasons

can use recent SAT mechanisms for generalizing reasons of

conflicts and learning them, thus pruning the search tree

02917: Arithmetic Satisfiability Solving – p.19/38

Properties of Modified Layout

propagation

Arithmetic

constraint
+ conflict−driven learning

+ non−chronol. backtrack.propagation

Boolean

constraint

DPLL−SAT
control flow

triggers individual constraint propagations

reports narrowing results

enters / removes constraints &

• SAT engine has introspection into CP
• thus can keep track of inferences and their reasons

can use recent SAT mechanisms for generalizing reasons of

conflicts and learning them, thus pruning the search tree

preoccupation towards depth-first search (inherited from DPLL)

02917: Arithmetic Satisfiability Solving – p.19/38

The CP Mechanisms

Interpretation of variables: Each variable x is interpreted by two

intervals x ↑⊇ x ↓:

Interval denotes CP mechanisms

x ↑ justifying interval Fwd. propagation among

. ↑ intervals (wrt. some order)

x ↓ implied interval Fwd. and bwd. narrowing

among . ↓ intervals

Constraint propagation:

• h ≤ const: Narrow h ↓ to h ↓ ′:= h ↓ ∩[const,∞).

• x = y⊕ z: Apply the contractors of all reshufflings.

Conflicts: Materialize by contracting a . ↓ interval to ∅.

Constraint satisfaction: Shows by h ↑ satisfying the constraint.

02917: Arithmetic Satisfiability Solving – p.20/38

DPLL on a search lattice D

1. Start from the most general assignment σ⊥ ≡ ⊥.

2. (Propagation) If there is a not yet satisfied clause containing

exactly one elementary formula φ with value 6= false then

enqueue contract(φ). Repeat 2 if possible.

3. (Perform updates) If implication queue non-empty then dequeue

contract(φ) and perform it. If this assigns ⊤ to some entailed

variable then backtrack (if applicable, otherwise return

“unsatisfiable”). If all clauses become true, report “satisfiable”.

Enqueue contract(ψ) for all affected atoms ψ and repeat 3

unless queue empty. Thereafter proceed with 2, if applicable.

4. (Split) Select an arbitrary variable x with non-maximal (in

D \ {⊤}) value occurring in an unsatisfied elementary formula in

an unsatisfied clause.

Take x ′, x ′′ ∈ D \ {⊤} s.t. x := x ′ ⊓ x ′′. Enqueue x := x ′. Store

alternative x := x ′′ as backtrack alternative. Goto 3.

02917: Arithmetic Satisfiability Solving – p.21/38

Optimizations inherited from DPLL:

• conflict-driven learning

• non-chronological backtracking

• watched literal scheme

• restarts

02917: Arithmetic Satisfiability Solving – p.22/38

Conflict-Driven Learning in DPLL: Example

A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z

02917: Arithmetic Satisfiability Solving – p.23/38

Conflict-Driven Learning in DPLL: Example

a
=0

a

B

b = 1
A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z

02917: Arithmetic Satisfiability Solving – p.23/38

Conflict-Driven Learning in DPLL: Example

D

E

C

c
=1 d = 1, e = 1

a
=0

a

B

b = 1
A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z

02917: Arithmetic Satisfiability Solving – p.23/38

Conflict-Driven Learning in DPLL: Example

yx Z

x
=0 y = 0, z = 1

D

E

C

c
=1 d = 1, e = 1

a
=0

a

B

b = 1
A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z

02917: Arithmetic Satisfiability Solving – p.23/38

Conflict-Driven Learning in DPLL: Example

f

G

g

f
=0 g = 1, g = 0

yx Z

x
=0 y = 0, z = 1

D

E

C

c
=1 d = 1, e = 1

a
=0

a

B

b = 1
A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z

02917: Arithmetic Satisfiability Solving – p.23/38

Conflict-Driven Learning in DPLL: Example

f

G

g

f
=0 g = 1, g = 0

yx Z

x
=0 y = 0, z = 1

D

E

C

c
=1 d = 1, e = 1

a
=0

a

B

b = 1
A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z

02917: Arithmetic Satisfiability Solving – p.23/38

Conflict-Driven Learning in DPLL: Example

f

G

g

f
=0 g = 1, g = 0

yx Z

x
=0 y = 0, z = 1

D

E

C

c
=1 d = 1, e = 1

a
=0

a

B

b = 1
A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z

02917: Arithmetic Satisfiability Solving – p.23/38

Conflict-Driven Learning in DPLL: Example

A + c + F

f

G

g

f
=0 g = 1, g = 0

yx Z

x
=0 y = 0, z = 1

D

E

C

c
=1 d = 1, e = 1

a
=0

a

B

b = 1
A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z

02917: Arithmetic Satisfiability Solving – p.23/38

Conflict-Driven Learning in DPLL: Example

F

G

g

A + c + F

y

x
=0

x Z

y = 0, z = 1

c
=1

C

D

E

d = 1, e = 1

a
=0

a

B

b = 1
A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z

02917: Arithmetic Satisfiability Solving – p.23/38

Conflict-Driven Learning in DPLL: Example

F

G

g

A + c + F

y

x
=0

x Z

y = 0, z = 1

c
=1

C

D

E

d = 1, e = 1

a
=0

a

B

b = 1
A + B

A + c + D

A + d + E

c + F + G

d + F + g

f + G

f + g

X + y

e + Y + Z

02917: Arithmetic Satisfiability Solving – p.23/38

Conflict-driven learning in multi-valued case

Works like a charme w/o fundamental modifications:

• Decision variables coincide to interval splits;

the assigned values to asserted bounds x ≥ c, x > c, x < c,
x ≤ c;

• Implications correspond to contractions;

• Reasons to sets of asserted atoms giving rise to a contraction.

Through embedding into SAT, we get

conflict-driven learning and non-

chronological backtracking for free!

02917: Arithmetic Satisfiability Solving – p.24/38

Learning: Principle

z

y

x

x > 0
x < 3
y > 2
y < 5
z > 0
z < 2
x > y
z = x*y
y = z+x
...

02917: Arithmetic Satisfiability Solving – p.25/38

Learning: Principle

z

y

x

x > 0
x < 3
y > 2
y < 5
z > 0
z < 2
x > y
z = x*y
y = z+x
...

x > y

y > 2

x > 2

02917: Arithmetic Satisfiability Solving – p.25/38

Learning: Principle

z

y

x

x > 0
x < 3
y > 2
y < 5
z > 0
z < 2
x > y
z = x*y
y = z+x
...

x > y

y > 2

x > 2

z = x*y

x > 2

z < 2

y > 2

02917: Arithmetic Satisfiability Solving – p.25/38

Learning: Principle

z

y

x

x > 0
x < 3
y > 2
y < 5
z > 0
z < 2
x > y
z = x*y
y = z+x
...

x > y

y > 2

x > 2

z = x*y

x > 2

z < 2

y > 2

02917: Arithmetic Satisfiability Solving – p.25/38

Learning: Principle

z

y

x

x > 0
x < 3
y > 2
y < 5
z > 0
z < 2
x > y
z = x*y
y = z+x
...

x > y

y > 2

x > 2

z = x*y

x > 2

z < 2

y > 2

02917: Arithmetic Satisfiability Solving – p.25/38

Learning: Principle

z

y

x

x > 0
x < 3
y > 2
y < 5
z > 0
z < 2
x > y
z = x*y
y = z+x
...

x > y

y > 2

x > 2

z = x*y

x > 2

z < 2

y > 2

Refutes other candidate boxes and constraint combinations immediately.

02917: Arithmetic Satisfiability Solving – p.25/38

Optimizations for DP:

Watched literal scheme

02917: Arithmetic Satisfiability Solving – p.26/38

Watched literals

Boolean SAT: Within each (not yet satisfied) clause, watch two

unassigned literals:

x ∨ y ∨ ¬z ∨ a

true false ↑ ↑
watch watch

Clause needs only be visited if one of the watched lieterals gets

assigned with wrong polarity. Otherwise clause either satisfied

or still satisfiable.

02917: Arithmetic Satisfiability Solving – p.27/38

Watched literals

Lattice-SAT: Within each clause, watch two undecided elementary

formulae:

x ≥ 4 ∨ z+ x=̂y ∨ y ≥ 1 ∨ a > 4

(2, 3) (0, 1), (2, 3), (1, 3) (1, 3) (2, 5)

false ↑ true ↑
watch watch

Clause needs only be visited if a variable in the observed parts

becomes assigned:

• visit if a’s upper bound is reduced

(would suffice to visit if reduced to 4 or below)

• visit if x’s, y’s, or z’s interval is narrowed

(would actually suffice to visit if (z ⊕ x) ∩ y becomes empty)

02917: Arithmetic Satisfiability Solving – p.28/38

Enforcing termination

02917: Arithmetic Satisfiability Solving – p.29/38

Enforcing termination

• SAT on an infinitely deep lattice may digress into an infinite sequence of
splits.

02917: Arithmetic Satisfiability Solving – p.30/38

Enforcing termination

• SAT on an infinitely deep lattice may digress into an infinite sequence of
splits.

• This can be avoided if splitting depth within a SAT-solver run is bounded a
priori:

1. Select a bound on splitting depth,

2. run lattice-SAT and learn a pseudo-conflict closing the branch whenever

current search path has reached maximum number of splits,

3. report any solution thus found or any certificate of unsatisfiability thus
found (sound results due to monotonicity!),

4. if problem remained unsolved then
(a) reopen closed branches through deletion of pseudo-conflicts,
(b) restart SAT with larger splitting depth.

02917: Arithmetic Satisfiability Solving – p.30/38

Enforcing termination

• SAT on an infinitely deep lattice may digress into an infinite sequence of
splits.

• This can be avoided if splitting depth within a SAT-solver run is bounded a
priori:

1. Select a bound on splitting depth,

2. run lattice-SAT and learn a pseudo-conflict closing the branch whenever

current search path has reached maximum number of splits,

3. report any solution thus found or any certificate of unsatisfiability thus
found (sound results due to monotonicity!),

4. if problem remained unsolved then
(a) reopen closed branches through deletion of pseudo-conflicts,
(b) restart SAT with larger splitting depth.

• Due to conflict-driven learning, restarts do never reexplore paths already
solved with lower splitting depth!

02917: Arithmetic Satisfiability Solving – p.30/38

iSAT in practice:

Benchmark results

02917: Arithmetic Satisfiability Solving – p.31/38

The impact of learning: no. of conflicts

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

Examples:
BMC of

• train ctrl.
• bounc. ball
• gingerbread

map
• oscillatory

logistic map

Intersect. of geo-
metric bodies

Size: Limited to
some 100 var.s
by solver without
learning

=⇒ enormous pruning of search space already on small examples

02917: Arithmetic Satisfiability Solving – p.32/38

The impact of learning: runtime

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g
 [
s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g
 [
s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g
 [
s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g
 [
s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g
 [
s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g
 [
s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g
 [
s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g
 [
s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g
 [
s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
it
h
o
u
t
le

a
rn

in
g
 [
s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out Examples:
BMC of

• train ctrl.
• bounc. ball
• gingerbread

map
• oscillatory

logistic map

Intersect. of geo-
metric bodies

Size:
Up to 2400 var.s,

≫ 103 Boolean
connectives.

[2.5 GHz AMD Opteron, 4 GByte physical memory, Linux]

02917: Arithmetic Satisfiability Solving – p.33/38

iSAT in practice

Formula syntax

02917: Arithmetic Satisfiability Solving – p.34/38

Constraint solving: single formula mode

DECL

int [1, 100] a, b, c;

EXPR

a*a + b*b = c*c;

• Two sections:

1. Variable declarations (keyword “DECL”)

2. Constraint (keyword “EXPR”)

• Variables can be bounded integers (“int”), bounded reals

(“float”), or Booleans (“boole”)

• integers and reals come with declarations of bounded ranges:

int [-17, 123] a, b;

int [13,54045] c;

float [-9999.9999,3.1415927] alpha,omega;

02917: Arithmetic Satisfiability Solving – p.35/38

iSAT: type consistency

• boole is identified with int [0,1]

• floats and ints can be freely mixed within constraints,

• constraint evaluation is always in (safely outward rounding) float

arithmetic,

• the restriction to int only confines the search lattice:

• interval split: [a, b] [a, z] ∪ [z+ 1, b] with z ∈ Z,

• strengthened propagation: . . . [a, b] [⌈a⌉, ⌊b⌋].

02917: Arithmetic Satisfiability Solving – p.36/38

Sample constraints

x + y * 2 >= 5 + 2 * y;

x / y > 10 xor !a;

abs(nrt(x,5)) < 2.545;

Note that any type of fixedpoint equation is possible:

• (a + x / y) = x

and that type constraints can (voluntarily or accidentially) destroy

referential transparency:

• (a + x / y) = x for float[...]x,y vs.

• i = x / y; (a + i) = x for float[...]x,y;int[...]i.

02917: Arithmetic Satisfiability Solving – p.37/38

Interpreting the results

iSAT (a.k.a. HySAT 2) returns

unsatisfiable: all possible interval assignments, and hence all

possible real-valued assignments, have been refuted,

candidate solution box found: an interval box has been found which is

free of conflict and sufficiently small (below the selected

minimum split width).

The publicly available version of iSAT

• does not yet contain a check for actual existence of a satisfying

solution in the candidate box,

• for real-valued problems, safer information may be obtained by

restarting with smaller bounds on interval width in splitting and

on progress in deduction,

• for integer-valued problems, “candidate solution box found” can

generally be identified with “solution found”.

02917: Arithmetic Satisfiability Solving – p.38/38

