
Symbolic Methods

Symbolic state-space traversal

for finite-state systems

Martin Fränzle

Carl von Ossietzky Universität

Dpt. of CS

Res. Grp. Hybrid Systems

Oldenburg, Germany

02917: Symbolic Methods for Finite State II – p.1/19

What you’ll learn

• reduced ordered binary decision diagrams

• symbolic methods for state reachability

• SAT-based procedures for bounded state reachability

• full reachability via BDDs

• symbolic CTL model checking

02917: Symbolic Methods for Finite State II – p.2/19

Reduced ordered binary decision diagrams

(RO)BDDs

02917: Symbolic Methods for Finite State II – p.3/19

Binary decision diagrams

An ordered decision tree for (a ⇔ b) ∧ (c ⇔ d):

false true

0

d

1

d

0

d

000

c c

0

d

00

d

0

d

0 10

c c

bb

d

a

1 0 1

d

Size exponential in number of variables!

02917: Symbolic Methods for Finite State II – p.4/19

ROBDDs

Obs.: A lot of the tests in the decision diagram are redundant.

Idea: Combine equivalent sub-cases,

i.e. reduce size of the diagram by

1. omitting nodes that have equivalent left and right sons,

2. sharing common sub-trees:
• remove duplicate terminal nodes; share instead
• remove duplicate internal nodes; share instead

Def.: The decision diagrams obtained by above rules are called

reduced ordered binary decision diagrams (ROBDDs).

May expect good performance if many

substructures are equivalent!

02917: Symbolic Methods for Finite State II – p.5/19

ROBDDs

An ROBDD for (a ⇔ b) ∧ (c ⇔ d), using node order a < b < c < d:

1

c

d d

b

a

b

0

Note how variable order affects size: Using a < c < b < d would yield a
layer with 4 nodes.
For n-bit comparison, we obtain a layer with 2n nodes if poor order is
chosen, yet maximum layer width 2 with appropriate order.

02917: Symbolic Methods for Finite State II – p.6/19

ROBDDS: Some properties

Given a variable ordering, ROBDDs provide a canonical

representation for Boolean functions
• simple equivalence check, once the ROBDDs have been built:

• linear in size of BDDs
• O(1) if sharing across BDDs is used

Applying a connective to two ROBDDs can be done by

simultaneous recursive descent through the two ROBDDs
(+acceleration by dynamic programming)
• (if x then φt else φe) ∧ (if x then ψt else ψe) ≡

(if x then φt ∧ψt else φe ∧ψe)

→ efficient

→ can construct ROBDDs for non-trivial circuits

Variable order strongly affects size.

• need reordering heuristics,

• even then, some circuits don’t permit any good order:
e.g., multipliers yield exponentially sized BDDs

02917: Symbolic Methods for Finite State II – p.7/19

ROBDD operations

Negation:
Operation: Constructs from an ROBDD B an ROBDD not(B)

with fnot(B) = ¬fB, where fB is the truth function encoded by

B.

Algorithm: Swap the terminal nodes:
• node 0 is replaced with 1
• node 1 is replaced with 0.

Complexity: O(1).

02917: Symbolic Methods for Finite State II – p.8/19

ROBDD operations
Boolean junctors:

Operation: Constructs from two ROBDDs B1, B2 and a Boolean junctor ⊕ an

ROBDD apply(⊕, B1, B2) with fapply(⊕,B1,B2) = fB1
⊕ fB2

.

Algorithm: Recursively proceed as follows:
• If both B1 and B2 are terminal nodes then yield terminal node
fB1

⊕ fB2
.

• If the top nodes of B1 and B2 agree on their variable v then

1. compute L = apply(⊕, left(B1), left(B2)),
2. compute R = apply(⊕, right(B1), right(B2)),
3. build the OBDD (v, L, R),

4. reduce it.
• If the top nodes of B1 and B2 have different variables v1, v2 with
v1 < v2 in the variable order then
1. compute L = apply(⊕, left(B1), B2),
2. compute R = apply(⊕, right(B1), B2),
3. build the OBDD (v, L, R),

4. reduce it.
• ...

Complexity: O(|B1| · |B2|) if memoization is used to save recomputations

which may arise due to sharing of subgraphs.
02917: Symbolic Methods for Finite State II – p.9/19

ROBDD operations

Quantification:
Operation: Constructs from an ROBDD B and a variable v an

ROBDD exists(v, B) with fexist(v,B) = ∃v.fB.

Algorithm:

1. Replace each sub-BDD of B which has a root node n

labeled with v by the ROBDD apply(∨, left(n), right(n)).

2. Reduce the resulting BDD.

Complexity: O(|B|2).

Note that BDDs obtained by quantifying multiple variables

may thus grow exponentially in the number of quantified variables.

02917: Symbolic Methods for Finite State II – p.10/19

Symbolic techniques II:

State reachability in

finite-state reactive systems

02917: Symbolic Methods for Finite State II – p.11/19

The general framework

Model level

Formula

level

Trace level

Translator

Finite state
model

Prove engine

Approval/

Conjectured
state invariant

Logical
formulae

error trace

02917: Symbolic Methods for Finite State II – p.12/19

Mapping models to formulae (essence of)

• Each control location s is assigned a proposition ps;

each symbolic variable v is assigned ⌈log2 |dom v|⌉ propositional variables;

• for describing transitions, propositional variables are duplicated:

- undecorated version encodes pre-state,

- primed version encodes post-state,

g / v := e ts 7→ φtr ≡ ps ∧ [g]
︸︷︷︸

∧ [v ′ = e]
︸ ︷︷ ︸

proposit. encodings

∧ p ′

t

trans(x, x ′) ≡
∧

s state

(

ps =⇒
∨

tr transition from s

φtr

)

• similar for describing initial state set, yielding predicate init(x).

• Translation can be done componentwise, using conjunction for
encoding parallel composition.

⇒ This saves computing the automaton product!

02917: Symbolic Methods for Finite State II – p.13/19

Verification/Falsification

Given: Transition pred. trans(x, x ′), initial state pred. init(x), conj. invar. φ(x).

QBF-based algorithm:

1. Start with R0(x) = init(x).

2. Test for satisfiability of Ri(x) ∧ ¬φ(x). If test succeeds then report violation

of goal.

3. Else build Ri+1(x) = Ri(x) ∨ ∃x̃. (Ri(x̃) ∧ trans(x̃, x)).

4. Test whether Ri+1(x) =⇒ Ri(x). If so then report satisfaction of goal.

Otherwise continue from step 2, with i+ 1 instead of i.

BF-based algorithm:

1. For given i ∈ N check for satisfiability of

¬

(

init(x0) ∧ trans(x0, x1) ∧ . . .∧ trans(xi−1, xi)

⇒ φ(x0) ∧ . . .∧φ(xi)

)

.

If test succeeds then report violation of goal.

2. Otherwise repeat with larger i.

02917: Symbolic Methods for Finite State II – p.14/19

Algorithms by example

Model: VAR x : {0 . . . 3}; INIT x = 0; NEXT x := 3 − x

Conjectured Invar.: ALWAYSx = 0

QBF: BDD-based MC

R0

low(x)

0 1

hi(x)

R1

low(x)

0 1

hi(x) hi(x)

R2

low(x)

0 1

hi(x) hi(x)
&

low(x)

0 1

hi(x) hi(x)

1 0

hi(x)

low(x)low(x)

0 1

hi(x)

low(x)

0 1

hi(x) hi(x)

l0 ∧ h0 ∧

(l0 ∨ h0)

l0 ∧ h0 ∧ l1 = l0 ∧ h1 = h0 ∧

(l0 ∨ h0 ∨ l1 ∨ h1)

. . . ∧ . . . ∧ l2 = l1 ∧ h2 = h1 ∧

(. . . ∨ . . . ∨ l2 ∨ h2)

BF: SAT-based BMC

02917: Symbolic Methods for Finite State II – p.15/19

Comparison

BDD-based model-checking:

• Normalization within each step of
graph coloring.

⇓
1. Keeps size of intermediate

representations compact.

2. Detects saturation of graph
coloring.

• Tackles ≈ 500 state bits

SAT-based model-checking:

• Purely syntactic expansion,
followed by satisfiability check.

⇓
• Size of syntactic expansion grows

rapidly. E.g. wrt. number of

propositional variables used for
characterizing n step reachability:

statebits × (n+ 1)
+ auxbits

︸ ︷︷ ︸
>90%

× n

• Tackles ≈ 1.000.000 propositions,
most of which are auxiliary.

[Use cases: verification of high-level models w. limited arithmetic.]

02917: Symbolic Methods for Finite State II – p.16/19

Symbolic methods III:

Beyond reachability

02917: Symbolic Methods for Finite State II – p.17/19

The pre operator

Observation: Given

• a predicative encoding S of a state set (with free variables ~x),

• a predicative encoding T of the transition relation

(with free variables ~x,~x ′),

the set pre(S) of states that have a successor in (i.e., satisfying) S

can be expressed symbolicly using QBF operators:

pre(S) = ∃~x ′.T ∧ S[~x ′/~x]

This can be used for determining all sequential predecessors of a

whole set of states in one sweep, thus implementing predecessor

colouring “in parallel”.

02917: Symbolic Methods for Finite State II – p.18/19

Symbolic CTL model checking
Using the pre operator, CTL model checking can be performed by

any QBF engine, e.g. by BDDs:

Formula Algorithm Result

propos. P return [P] Formula fP denoting P-states

EXφ return pre(fφ) Formula fEXφ denoting all

states satisfying EXφ

EGφ Incrementally build Formula fEGφ = Sn denoting

S0 = fφ

Si+1 = fφ ∧ pre(Si)

all states satisfying EGφ

until (Sn ⇐⇒ Sn+1) holds

φ EUψ Incrementally build Formula fφEUψ = Sn denoting

S0 = fψ

Si+1 = fψ ∨ (fφ ∧ pre(Si))

all states satisfying φ EUψ

until (Sn ⇐⇒ Sn+1) holds

If I characterizes initial states then I =⇒ fφ is to be checked finally.

02917: Symbolic Methods for Finite State II – p.19/19

