Symbolic Methods

Symbolic state-space traversal for finite-state systems

Martin Fränzle

Carl von Ossietzky Universität Dpt. of CS Res. Grp. Hybrid Systems Oldenburg, Germany

What you'll learn

- reduced ordered binary decision diagrams
- symbolic methods for state reachability
 - SAT-based procedures for bounded state reachability
 - full reachability via BDDs
- symbolic CTL model checking

Reduced ordered binary decision diagrams

(RO)BDDs

Binary decision diagrams

An ordered decision tree for $(a \Leftrightarrow b) \land (c \Leftrightarrow d)$:

Size exponential in number of variables!

ROBDDs

Obs.: A lot of the tests in the decision diagram are redundant.

Idea: Combine equivalent sub-cases,

- i.e. reduce size of the diagram by
- 1. omitting nodes that have equivalent left and right sons,
- 2. sharing common sub-trees:
 - remove duplicate terminal nodes; share instead
 - remove duplicate internal nodes; share instead

Def.: The decision diagrams obtained by above rules are called reduced ordered binary decision diagrams (ROBDDs).

May expect good performance if many substructures are equivalent!

ROBDDs

An ROBDD for $(a \Leftrightarrow b) \land (c \Leftrightarrow d)$, using node order a < b < c < d:

Note how variable order affects size: Using a < c < b < d would yield a layer with 4 nodes. For n-bit comparison, we obtain a layer with 2^n nodes if poor order is chosen, yet maximum layer width 2 with appropriate order.

ROBDDS: Some properties

- Given a variable ordering, ROBDDs provide a canonical representation for Boolean functions
 - simple equivalence check, once the ROBDDs have been built:
 - linear in size of BDDs
 - O(1) if sharing across BDDs is used
- Applying a connective to two ROBDDs can be done by simultaneous recursive descent through the two ROBDDs (+acceleration by dynamic programming)
 - (if x then ϕ_t else ϕ_e) \wedge (if x then ψ_t else ψ_e) \equiv (if x then $\phi_t \wedge \psi_t$ else $\phi_e \wedge \psi_e$)
 - \rightarrow efficient
 - \rightarrow can construct ROBDDs for non-trivial circuits
 - Variable order strongly affects size.
 - need reordering heuristics,
 - even then, some circuits don't permit any good order:
 e.g., multipliers yield exponentially sized BDDs

Negation:

Operation: Constructs from an ROBDD B an ROBDD not(B)with $f_{not(B)} = \neg f_B$, where f_B is the truth function encoded by B.

Algorithm: Swap the terminal nodes:

- node 0 is replaced with 1
- node 1 is replaced with 0.

Complexity: O(1).

ROBDD operations

Boolean junctors:

Operation: Constructs from two ROBDDs B_1, B_2 and a Boolean junctor \oplus an ROBDD apply (\oplus, B_1, B_2) with $f_{apply}(\oplus, B_1, B_2) = f_{B_1} \oplus f_{B_2}$.

Algorithm: Recursively proceed as follows:

- If both B_1 and B_2 are terminal nodes then yield terminal node $f_{B_1} \oplus f_{B_2}$.
- If the top nodes of B_1 and B_2 agree on their variable v then
 - 1. compute $L = apply(\oplus, left(B_1), left(B_2))$,
 - 2. compute $R = apply(\oplus, right(B_1), right(B_2))$,
 - 3. build the OBDD (v, L, R),
 - 4. reduce it.
- If the top nodes of B_1 and B_2 have different variables v_1, v_2 with $v_1 < v_2$ in the variable order then
 - 1. compute $L = apply(\oplus, left(B_1), B_2)$,
 - 2. compute $R = apply(\oplus, right(B_1), B_2)$,
 - 3. build the OBDD (v, L, R),
 - 4. reduce it.

Complexity: $O(|B_1| \cdot |B_2|)$ if memoization is used to save recomputations which may arise due to sharing of subgraphs.

Quantification:

Operation: Constructs from an ROBDD B and a variable ν an ROBDD $exists(\nu, B)$ with $f_{exist(\nu, B)} = \exists \nu.f_B$.

Algorithm:

- 1. Replace each sub-BDD of B which has a root node n labeled with v by the ROBDD apply(\lor , left(n), right(n)).
- 2. Reduce the resulting BDD.

Complexity: $O(|B|^2)$.

Note that BDDs obtained by quantifying *multiple* variables may thus grow exponentially in the number of quantified variables.

Symbolic techniques II:

State reachability in finite-state reactive systems

The general framework

Mapping models to formulae (essence of)

- Each control location s is assigned a proposition p_s;
 each symbolic variable v is assigned [log₂ |dom v|] propositional variables;
- for describing transitions, propositional variables are duplicated:
 - undecorated version encodes pre-state,
 - primed version encodes post-state,

$$s \quad g / v := e \quad t \quad \mapsto \quad \phi_{tr} \equiv p_s \land [g] \land [v' = e] \land p'_t$$

proposit. encodings
$$trans(x, x') \equiv \bigwedge_{s \text{ state}} \left(p_s \implies \bigvee_{tr \text{ transition from } s} \phi_{tr} \right)$$

- similar for describing initial state set, yielding predicate init(x).
 - Translation can be done componentwise, using conjunction for encoding parallel composition.
 - This saves computing the automaton product!

Verification/Falsification

Given: Transition pred. trans(x, x'), initial state pred. init(x), conj. invar. $\phi(x)$.

QBF-based algorithm:

- 1. Start with $R_0(x) = init(x)$.
- 2. Test for satisfiability of $R_i(x) \land \neg \varphi(x)$. If test succeeds then report violation of goal.
- 3. Else build $R_{i+1}(x) = R_i(x) \vee \exists \tilde{x}. (R_i(\tilde{x}) \wedge trans(\tilde{x}, x)).$
- 4. Test whether $R_{i+1}(x) \implies R_i(x)$. If so then report satisfaction of goal. Otherwise continue from step 2, with i + 1 instead of i.

BF-based algorithm:

1. For given $\mathfrak{i}\in\mathbb{N}$ check for satisfiability of

 $\neg \left(\begin{array}{c} \operatorname{init}(x_0) \wedge \operatorname{trans}(x_0, x_1) \wedge \ldots \wedge \operatorname{trans}(x_{i-1}, x_i) \\ \Rightarrow \quad \varphi(x_0) \wedge \ldots \wedge \varphi(x_i) \end{array} \right).$

If test succeeds then report violation of goal.

2. Otherwise repeat with larger i.

Algorithms by example

Model:

VAR
$$x : \{0 \dots 3\}$$
; INIT $x = 0$; NEXT $x := 3 - x$

Conjectured Invar.: ALWAYS x = 0

BDD-based model-checking:

- Normalization within each step of graph coloring.
 - 1. Keeps size of intermediate representations compact.
 - 2. Detects saturation of graph coloring.

SAT-based model-checking:

- Purely syntactic expansion, followed by satisfiability check.
- Size of syntactic expansion grows rapidly. E.g. wrt. number of propositional variables used for characterizing n step reachability:

+ $\underbrace{auxbits}_{>90\%} \times (n+1)$

• Tackles \approx 1.000.000 *propositions*, most of which are auxiliary.

[Use cases: verification of high-level models w. limited arithmetic.]

• Tackles \approx 500 state bits

Symbolic methods III:

Beyond reachability

The pre operator

Observation: Given

- a predicative encoding S of a state set (with free variables \vec{x}),
- a predicative encoding T of the transition relation (with free variables \vec{x}, \vec{x}'),

the set *pre*(S) of states that have a successor in (i.e., satisfying) S can be expressed symbolicly using QBF operators:

$$pre(S) = \exists \vec{x}' . \mathsf{T} \land S[\vec{x}'/\vec{x}]$$

This can be used for determining all sequential predecessors of a whole set of states in one sweep, thus implementing predecessor colouring "in parallel".

Symbolic CTL model checking

Using the *pre* operator, CTL model checking can be performed by any QBF engine, e.g. by BDDs:

Formula	Algorithm	Result
propos. P	return [P]	Formula f _P denoting P-states
ΕΧφ	return <i>pre</i> (f_{Φ})	Formula $f_{EX\Phi}$ denoting all
		states satisfying EX ϕ
EG φ	Incrementally build	Formula $f_{EG\phi} = S_n$ denoting
	$S_0 = f_{\Phi}$	all states satisfying EG ϕ
	$S_{i+1} = f_{\Phi} \wedge pre(S_i)$	
	until $(S_n \iff S_{n+1})$ holds	
φ EU ψ	Incrementally build	Formula $f_{\varphi \in U\psi} = S_n$ denoting
	$S_0 = f_{\psi}$	all states satisfying $\varphi {\sf EU}\psi$
	$S_{i+1} = f_{\psi} \vee (f_{\varphi} \wedge pre(S_i))$	
	until $(S_n \iff S_{n+1})$ holds	

If I characterizes initial states then I \implies f_{ϕ} is to be checked finally.