
CounterExample-Guided

Abstraction Refinement

(CEGAR)

Martin Fränzle
a

(with many slides c© S. Ratschanb)

a Carl von Ossietzky Universität, Oldenburg, Germany

b Czech Academy of Sciences, Prague, Czech Rep.

02917: CEGAR for HS – p.1/32



The problem

• Abstraction is a powerful method for verifying systems

• maps complex system (e.g., infinite state) to simpler system

(e.g., finite Kripke structure)

• simpler model may be amenable to automatic

state-exploratory verification

• but finding the right abstraction is hard

• may be too coarse verification fails

• may be too fine state-space exploration impossible

• may even be too fine in some places and too coarse in others

02917: CEGAR for HS – p.2/32



The idea

In manual verification, we often add information on demand:

• Upon a failing proof, we analyze the reasons and

• add preconditions as necessary.

Can we do the same within abstraction-based model checking?

• Upon a failing proof, let the model-checker analyze the reasons

and

• refine the abstraction as necessary.

02917: CEGAR for HS – p.3/32



Abstraction Refinement

Idea:

• conservatively approximate the hybrid system by a finite Kripke

structure (the abstraction)

2 3

• if abstraction safe, done

• while abstraction not safe, refine it

• counter-example based: refine to remove a given spurious

counter-example (Clarke et al. 03, Alur et al. 03)

02917: CEGAR for HS – p.4/32



Basic CEGAR

02917: CEGAR for HS – p.5/32



Spurious counterexample

Def: Let A ≻ C be an homomorphic abstraction wrt. abstraction

function h. Let φ be an ∀CTL formula and π = (c1, c2 . . .) be an

anchored path of C witnessing violation of φ on C.

Then π is called a counterexample for φ on C.

Furthermore, h(π) = (h(c1), h(c2), . . .) then is an anchored path

of A which violates φ, i.e. a counterexample on A. We do then

call h(π) the abstract counterexample corresponding to π and

we call π the concrete counterexample corresponding to h(π).

Def: If πA is a counterexample on the abstraction A ≻ C which has

no corresponding concrete counterexample on C then we call

πA a spurious counterexample.

02917: CEGAR for HS – p.6/32



Abstraction Refinement

Def: If C ≺ A ′ ≺ A then A and A ′ are called abstraction of C and

A ′ is called an abstraction refinement of A.

Idea: Whenever there is a spurious counterexample in A, identify an

abstraction refinement A ′ that lacks that particular spurious

counterexample.

02917: CEGAR for HS – p.7/32



CEGAR algorithm (simple version: invariants)

To verify C |= AGp do

1. build finite Kripke structure A ≻ C,

2. model-check A |= AGp,

3. if this holds then report C |= AGp and stop,

4. otherwise validate the counterexample on C, i.e., find a

corresponding concrete counterexample,

5. if a corresponding concrete counterexample exists then report

C 6|= AGp and stop,

6. otherwise use the spurious counterexample to refine A and

restart from 2.

02917: CEGAR for HS – p.8/32



The crucial ingredients of CEGAR

• Model checking,

• validation/concretization of counterexample,

• guided refinement of abstraction.

02917: CEGAR for HS – p.9/32



Validation of counterexample

Given: A ≻ C and an abstract counterexample φ = (a1, a2, . . . , an)

on A.

Alg: Provided we can effectively manipulate pre-images of the

abstraction morphism h, proceed as follows:

1. Compute S1 := h−1(a1) ∩ IC, where IC is the set of initial

states of C,

2. For i = 2 to n, compute Si := h−1(ai) ∩ Post(Si−1).

Abort as soon as some Si becomes ∅.

In this case, the counterexample has been shown to be

spurious.

3. In case of proper termination of the loop, the counterexample

is real.

N.B. Assumes that h−1(ai), Post(Si), and their intersections are

computable (in the sense of an effective emptiness test)!
02917: CEGAR for HS – p.10/32



State splitting

Idea: For a set Ci = h−1(ai) of concrete states represented by an abstract state

ai occurring in the spurious counterexample, split it into

Ci ∩ Post(h−1(ai−1)) and Ci \ Post(h−1(ai−1)), provided both non-empty

(or into C1 ∩ IC and C1 \ IC in case i = 1).

Approach: Replace ai by two states a+

i
and a−

i
representing

Ci ∩ Post(h−1(ai−1)) and Ci \ Post(h−1(ai−1)), resp.

Technique: Replace the Kripke structure A = (V, E, L, I) by A ′ = (V ′, E ′, L ′, I ′)

with
• V ′ = V \ {ai} ∪ {a+

i
, a−

i
}, where the latter are 6∈ V,

• E ′ = E ∩ (V ′ × V ′) ∪ {(a+

i
, a−

i
), (a−

i
, a+

i
)} ∪ {(a, a+

i
) | (a, ai) ∈ E}∪

{(a, a−

i
) | (a, ai) ∈ E, a 6= ai−1} ∪ {(a+

i
, a), (a−

i
, a) | (ai, a) ∈ E}

• L ′(v) =

{

L(v) if v ∈ V,

L(ai) if v ∈ {a+

i
, a−

i
},

• I ′ =

{

I if Ci ∩ IC = ∅,

I \ {ai} ∪ {a+

i
} otherwise.

02917: CEGAR for HS – p.11/32



Resulting morphism

h ′(c) =






a+

i if c ∈ Ci ∩ Post(h−1(ai−1)),

a−

i if c ∈ Ci \ Post(h−1(ai−1)),

h(c) otherwise.

02917: CEGAR for HS – p.12/32



Refining E
′: transition pruning

Observation: Pre- and post-images of h ′−1(a+

i ) or h ′−1(a−

i ) may well

have empty intersections with sets that the pre- or post-set of

h ′−1(ai) did intersect with.

In such cases, E ′ contains spurious edges.

Solution: Remove such edges by pruning E ′ to

E ′′ = {(s, t) ∈ E ′ | Post(h ′−1(s)) ∩ h ′−1(t) 6= ∅}

02917: CEGAR for HS – p.13/32



CEGAR algorithm (simple version: invariants)

To verify C |= AGp do

1. build finite Kripke structure A ≻ C,

2. model-check A |= AGp,

3. if this holds then report C |= AGp and stop,

4. otherwise validate the counterexample on C, i.e., find a

corresponding concrete counterexample,

5. if a corresponding concrete counterexample exists then report

C 6|= AGp and stop,

6. otherwise use the spurious counterexample to split states in A,

7. perform transition pruning on the resulting refinement A ′,

8. goto 2.

Concrete version is just an example, variants of split/prune rules abound.

02917: CEGAR for HS – p.14/32



Application to hybrid systems

• Above procedure is effective if h−1(ai), Post(Si), and their

intersections are computable (in the sense of an effective

emptiness test).

• This is in general not true for hybrid systems.

⇒ Need to embed an appropriate form of approximation of the

above sets into CEGAR.

02917: CEGAR for HS – p.15/32



CEGAR on hybrid states

Conservative approximation of state sets

02917: CEGAR for HS – p.16/32



Application to hybrid systems

• “Naive” CEGAR procedure is effective if h−1(ai), Post(Si), and

their intersections are computable (in the sense of an effective

emptiness test).
• In general not true for hybrid systems, thus embed an

appropriate form of approximation of the above sets into

CEGAR.
• Main difficulty is computation of successor states: explicit

(jumps) and implicit transitions (flows, defined by ODE)

• Multiple shapes of overapproximation can be used
• various effective representations of subsets of R

n:

rectangular boxes, zonotopes, polyhedra, ellipsoids, . . .,
• multiple techniques for conservatively approximating hybrid

transitions (jumps & flows)
• can be combined to obtain an adaptive CEGAR algorithm

• e.g., proceeds from coarse to fine, investing computational

effort to increase precision when necessary.

02917: CEGAR for HS – p.17/32



Computing successors

• CEGAR algorithm applies different approximations of successor

computation in sequence,

• proceeds from coarse to fine, investing more computational

effort to increase precision only when necessary,

• hope is that crucial deductions (absence of counterexamples,

non-concretizability of a certain counter-example) can often be

obtained on coarse abstractions,

• CEGAR needs to compute different relative successors

Succ(X, Y) = Post(X) ∩ Y, where X, Y ∈ P (Rn).

• Can approximate these by any operation

SUCC : P (Rn) × P (Rn) → P (Rn) with

1. Overapproximation: SUCC(X, Y) ⊇ Post(X) ∩ Y,

2. Reasonability: SUCC(X, Y) ⊆ Y.

02917: CEGAR for HS – p.18/32



Validation of counterexample

Given: A ≻ C and an abstract counterexample φ = (a1, a2, . . . , an)

on A.

Alg: For a sequence of successively tighter overapproximations

(SUCCi)i=1,...,k, proceed as follows:

1. Start with i = 1, i.e., the coarsest approximation.

2. Compute Si
1 := overapproxi(h

−1(a1) ∩ IC), where IC is the

set of initial states of C,

3. For j = 2 to n, compute Si
j := SUCCi(S

i
j−1, h

−1(ai))

Abort as soon as some Si
j becomes ∅.

In this case, the counterexample is spurious.

4. In case of proper termination of the inner loop, restart at 1.

with i := i + 1, i.e., the next finer approximation, if i < k.

5. If the inner loop terminates regularly for i = k, then the

abstract counterexample can’t be refuted by any of the

overapproximations. (Probably is real.)

02917: CEGAR for HS – p.19/32



HSolver

Overapproximation via Constraint-based Reasoning

Stefan Ratschan, Czech Academy of Sciences

Shikun She, MPII, Saarbrücken

02917: CEGAR for HS – p.20/32



Starting Point: Interval Grid Method

Stursberg/Kowalewski et. al., one-mode case:

1 2 3

[−5,−1]4ẋ ∈ [−5, 1]

• put transitions between all neighboring hyperrectangles (boxes),

mark all as initial/unsafe

• remove impossible transitions/marks (interval arithmetic check

on boundaries/boxes)

Result: finite abstraction 02917: CEGAR for HS – p.21/32



Interval arithmetic

Is a method for calculating an interval covering the possible values

of a real operator if its arguments range over intervals:

[a,A]
◦

+ [b,B] = [a + b,A + B]

[a,A]
◦
· [b,B] = [min{ab, aB,Ab,AB}, max{ab, aB,Ab,AB}]

◦

min ([a,A], [b,B]) = [min{a, b}, min{A,B}]

◦

sin ([a,A]) =

[

min{sin x | x ∈ [a,A]},

max{sin x | x ∈ [a,A]}

]

◦

f ([a,A], [b,B], . . .) =

[

min{f(~x) | ~x ∈ [a,A] × [b,B] × . . .},

max{f(~x) | ~x ∈ [a,A] × [b,B] × . . .}

]

Theorem: For each term t with free variables ~v:

{t(~v 7→ ~x) | ~x ∈ [a,A]×[b,B]×. . .} ⊆
◦

t (v1 7→ [a,A], v2 7→ [b,B], . . .)

02917: CEGAR for HS – p.22/32



Is the approximation tight?

1. In the limit: yes!

t(~v 7→ ~x) =
◦

t (v1 7→ [x1, x1], v2 7→ [x2, x2], . . .)

t(~v 7→ ~x) = lim
ε→0

◦

t (v1 7→ [x1 − ε, x1 + ε], v2 7→ [x2 − ε, x2 + ε], . . .)

provided t is uniformly continuous.

2. In general: No! If a < A then

x − x(x 7→ [a,A]) = [a,A]
◦

− [a,A] = [a − A,A − a] 6= [0, 0]

Dependency problem of interval arithmetic:

Tight bounds only if each variable

occurs at most once!

02917: CEGAR for HS – p.23/32



Interval Grid Method II

Check safety on resulting finite abstraction

if safe: finished, otherwise: refine grid;

continue until success

More modes: separate grid for each mode

Jumps: also check using interval arithmetic

02917: CEGAR for HS – p.24/32



Discussion

Advantages:

• can deal with constants that are only known up to intervals

• interval tests cheap (e.g., compare to explicit computation of

continuous reach sets, or full decision procedures)

Disadvantages:

• may require a very fine grid to provide an affirmative answer

(curse of dimensionality)

• ignores the continuous behavior within the grid elements

Let’s remove them!

02917: CEGAR for HS – p.25/32



Removing Disadvantages

reflect more information in abstraction without creating more boxes

by splitting

Observation: we do not need to include information on unreachable

state space, remove such parts from boxes

3

02917: CEGAR for HS – p.26/32



Reach Set Pruning

A point in a box B can be reachable

• from the initial set via a flow in B

• from a jump via a flow in B

• from a neighboring box via a flow in B

Init

B

formulate corresponding constraints, remove all points from box that

do not fulfill one of these constraints

02917: CEGAR for HS – p.27/32



Constraints in Specification

We specify system using constraints:

• Flow(s,~x, ~̇x) (e.g., s = off → ẋ = x sin(x) + 1 . . . )

• ˙ purely syntactic!

• even implicit and algebraic!

• Jump(s,~x, s ′,~x ′) (e.g.,

(s = off∧ x ≥ 10) → (s ′ = on∧ x ′ = 0))

• Init(s,~x)

02917: CEGAR for HS – p.28/32



Reachability Constraints

Lemma (n-dimensional mean value theorem): For a box B,

mode s, if a point (y1, . . . , yn) ∈ B is reachable from a point

(x1, . . . , xn) ∈ B via a flow in B then

∃t ∈ R≥0

∧

1≤i≤n

∃a1, . . . , ak, ȧ1, . . . , ȧk[(a1, . . . , ak) ∈ B ∧

Flow(s, (a1, . . . , ak), (ȧ1, . . . , ȧk)) ∧ yi = xi + ȧi · t]

xi

yi

ta
time

0 t

Denote this constraint by flowB(s,~x,~y).

02917: CEGAR for HS – p.29/32



Reachability Constraints

Lemma: For a box B ⊆ R
k, mode s, if ~y ∈ B is reachable from the

initial set via a flow in B then

∃~x ∈ B [Init(s,~x) ∧ flowB(s,~x,~y)]

Lemma: For a box B ⊆ R
k, mode s, ~y ∈ B, (s,~y) is reachable from

a jump from a box B∗ and mode s∗ via a flow in B then

∃~x∗∈B∗∃~x ∈ B [Jump(s∗,~x∗, s,~x) ∧ flowB(s,~x,~y)]

02917: CEGAR for HS – p.30/32



Reachability Constraints

Lemma: For a box B ⊆ R
k, mode s, if ~y ∈ B is reachable from a

neighboring box over a face F of B and a flow in B then

∃~x ∈ F [incomingF(s,~x) ∧ flowB(s,~x,~y)] ,

where incoming(s,~x) is of the form

∃ẋ1, . . . , ẋk[Flow(s,~x, (ẋ1, . . . , ẋk)) ∧ ẋj r 0]

where r ∈ {≤,≥}, j ∈ {1, . . . , k} depends on the face F

B

F

~y

~x

for corners etc. a little bit more involved

02917: CEGAR for HS – p.31/32



Using Constraints

After substituting definitions, getting rid of quantifiers, interval

constraint propagation algorithms can remove parts from boxes not

fulfilling such constraints.

4 5

• correct handling of rounding errors

• almost negligible time

• result not necessarily tight (but tight for flowB(s,~x,~y) in linear

case)

http://rsolver.sourceforge.net
02917: CEGAR for HS – p.32/32


