CounterExample-Guided
Abstraction Refinement

(CEGAR)

Martin Franzle®
(with many slides () S. Ratschan®)

& Carl von Ossietzky Universitat, Oldenburg, Germany
® Gzech Academy of Sciences, Prague, Czech Rep.

02917: CEGAR for HS — p.1/32

The problem

* Abstraction is a powerful method for verifying systems

* maps complex system (e.g., infinite state) to simpler system
(e.g., finite Kripke structure)

* simpler model may be amenable to automatic
state-exploratory verification
* but finding the right abstraction is hard
* may be too coarse ~~ verification fails
* may be too fine ~~ state-space exploration impossible
* may even be too fine in some places and too coarse in others

02917: CEGAR for HS — p.2/32

The idea

In manual verification, we often add information on demand:
* Upon a failing proof, we analyze the reasons and
* add preconditions as necessary.

Can we do the same within abstraction-based model checking?

* Upon a failing proof, let the model-checker analyze the reasons
and

* refine the abstraction as necessary.

02917: CEGAR for HS —p.3/32

Abstraction Refinement

Idea:

* conservatively approximate the hybrid system by a finite Kripke
structure (the abstraction)

o o (’ .
* if abstraction safe, done

e while abstraction not safe, refine it

* counter-example based: refine to remove a given spurious
counter-example (Clarke et al. 03, Alur et al. 03)

02917: CEGAR for HS — p.4/32

Basic CEGAR

02917: CEGAR for HS — p.5/32

Spurious counterexample

Def:

Def:

Let A > C be an homomorphic abstraction wrt. abstraction
function h. Let ¢ be an VCTL formula and m = (cy,c,...) be an
anchored path of C witnessing violation of ¢ on C.

Then 7t is called a counterexample for ¢ on C.

Furthermore, h(mt) = (h(c), h(cz),...) then is an anchored path
of A which violates ¢, i.e. a counterexample on A. We do then
call h(m) the abstract counterexample corresponding to 7t and
we call 7t the concrete counterexample corresponding to h().

If T4 IS @ counterexample on the abstraction A > C which has
no corresponding concrete counterexample on C then we call
TtA & SpuUrious counterexample.

02917: CEGAR for HS — p.6/32

Abstraction Refinement

Def: If C < A’ < A then A and A’ are called abstraction of C and
A’ is called an abstraction refinement of A.

Idea: Whenever there is a spurious counterexample in A, identify an
abstraction refinement A’ that lacks that particular spurious
counterexample.

02917: CEGAR for HS — p.7/32

CEGAR algorithm (simple version: invariants)

To verify C = AGp do

1.

build finite Kripke structure A > C,

2. model-check A = AGp,
3.
4. otherwise validate the counterexample on C, i.e., find a

if this holds then report C = AGp and stop,

corresponding concrete counterexample,

If a corresponding concrete counterexample exists then report
C i~ AGp and stop,

otherwise use the spurious counterexample to refine A and
restart from 2.

02917: CEGAR for HS —p.8/32

The crucial ingredients of CEGAR

* Model checking,
* validation/concretization of counterexample,
* guided refinement of abstraction.

02917: CEGAR for HS —p.9/32

Validation of counterexample

Given: A = C and an abstract counterexample ¢ = (a;, ay,...,an,)
on A.

Alg: Provided we can effectively manipulate pre-images of the
abstraction morphism h, proceed as follows:

1. Compute S; :=h '(a;) N I, where I¢ is the set of initial
states of C,

2. Fori=2ton, compute S; :=h '(a;) N Post(Si_1).
Abort as soon as some S; becomes ().

In this case, the counterexample has been shown to be
spurious.

3. In case of proper termination of the loop, the counterexample
IS real.

N.B. Assumes that h—'(a;), Post(S;), and their intersections are
computable (in the sense of an effective emptiness test)!

02917: CEGAR for HS — p.10/32

State splitting

Idea: For a set C; = h~'(a;) of concrete states represented by an abstract state
ai occurring in the spurious counterexample, split it into

Ci N Post(h~'(ai_1)) and C; \ Post(h~'(a;_1)), provided both non-empty
(orinto Cy NIcand Cy \Icincasei=1).

Approach: Replace a; by two states a;” and a; representing
C; N Post(h~'(ai_1)) and C; \ Post(h~'(a;_1)), resp.

Technique: Replace the Kripke structure A = (V,E,L,I) by A’ = (V/,E/ L', 1)
with
* V' =V\{ai}U{a{, q
* E'= EN(V' xV)U{(a,a;7),(a;,a)}U{(a,a{) | (a,a;) € E}U
{((l, ai) ‘ (Cl, ai) S E,(l # ai—1}U{(a?—>a)> (ai_aa) ‘ (ai>a) < E}

o /i Liv) ifveV,
”"){L(aa tvefaf, o),

a. }, where the latter are € V,

o [/ _ | ifCiﬂIC:@,
I\{a;}U{ai} otherwise.

02917: CEGAR for HS — p.11/32

Resulting morphism

if c € C;N Post(h "(ai_1)),
if c € C;\ Post(h™'(ai_1)),
) otherwise.

(af
P
L h(c

h'(c) = ¢ a;

02917: CEGAR for HS — p.12/32

Refining E’: transition pruning

Observation: Pre- and post-images of h'~'(a;") or h/~'(a;) may well
have empty intersections with sets that the pre- or post-set of
h'~'(a;) did intersect with.

In such cases, E’ contains spurious edges.

Solution: Remove such edges by pruning E’ to

E” ={(s,t) € E' | Post(h/'(s)) N h'~'(t) # 0}

02917: CEGAR for HS — p.13/32

CEGAR algorithm (simple version: invariants)

To verify C = AGp do
1. build finite Kripke structure A > C,
2. model-check A = AGp,
3. if this holds then report C = AGp and stop,
4

. otherwise validate the counterexample on C, i.e., find a
corresponding concrete counterexample,

5. if a corresponding concrete counterexample exists then report
C i~ AGp and stop,

6. otherwise use the spurious counterexample to split states in A,
/. perform transition pruning on the resulting refinement A’,
8. goto 2.

Concrete version is just an example, variants of split/prune rules abound.

02917: CEGAR for HS — p.14/32

Application to hybrid systems

* Above procedure is effective if h='(a;), Post(S;), and their
Intersections are computable (in the sense of an effective
emptiness test).

* This is in general not true for hybrid systems.

= Need to embed an appropriate form of approximation of the
above sets into CEGAR.

02917: CEGAR for HS — p.15/32

CEGAR on hybrid states

Conservative approximation of state sets

02917: CEGAR for HS — p.16/32

Application to hybrid systems

e “Naive” CEGAR procedure is effective if h~'(a;), Post(S;), and
their intersections are computable (in the sense of an effective
emptiness test).

* |n general not true for hybrid systems, thus embed an
appropriate form of approximation of the above sets into
CEGAR.

* Main difficulty is computation of successor states: explicit
(jumps) and implicit transitions (flows, defined by ODE)

* Multiple shapes of overapproximation can be used
* various effective representations of subsets of R™:
rectangular boxes, zonotopes, polyhedra, ellipsoids, .. .,
* multiple techniques for conservatively approximating hybrid
transitions (jumps & flows)
* can be combined to obtain an adaptive CEGAR algorithm
* e.g., proceeds from coarse to fine, investing computational
effort to increase precision when necessary.

02917: CEGAR for HS — p.17/32

Computing successors

* CEGAR algorithm applies different approximations of successor
computation in sequence,

* proceeds from coarse to fine, investing more computational
effort to increase precision only when necessary,

* hope is that crucial deductions (absence of counterexamples,
non-concretizability of a certain counter-example) can often be
obtained on coarse abstractions,

* CEGAR needs to compute different relative successors
Succ(X,Y) = Post(X) NY, where X, Y € P (R™).

* Can approximate these by any operation
SUCC:P(R™) x P (R") — P (R"™) with
1. Overapproximation: SUCC(X,Y) D Post(X) N,
2. Reasonability: SUCC(X,Y) C Y.

02917: CEGAR for HS — p.18/32

Validation of counterexample

Given: A > C and an abstract counterexample ¢ = (a;,ay,...,a,)
on A.

Alg: For a sequence of successively tighter overapproximations

(SUCC)im
1.
2.

,,,,, 1, proceed as follows:
Start with 1 = 1, i.e., the coarsest approximation.

Compute S! := overapprox;(h~'(aj) NIc), where I¢ is the
set of initial states of C,

. Forj =2ton, compute S} := SUCC;(S} ;,h~'(ay))

Abort as soon as some S} becomes .
In this case, the counterexample is spurious.

. In case of proper termination of the inner loop, restart at 1.

withi:=1+ 1, i.e., the next finer approximation, if 1 < k.

. If the inner loop terminates regularly for i = k, then the

abstract counterexample can’t be refuted by any of the
overapproximations. (Probably is real.)

02917: CEGAR for HS — p.19/32

HSolver

Overapproximation via Constraint-based Reasoning

Stefan Ratschan, Czech Academy of Sciences
Shikun She, MPIl, Saarbricken

02917: CEGAR for HS — p.20/32

Starting Point: Interval Grid Method

Stursberg/Kowalewski et. al., one-mode case:

N i T
) A A A
' v v v
rN i T
) 4 A A
' v v v
rIN r\ T

5, —1]4% € [-5,1]

* put transitions between all neighboring hyperrectangles (boxes),
mark all as initial/unsafe

* remove impossible transitions/marks (interval arithmetic check
on boundaries/boxes)

Result: finite abstraction

Interval arithmetic

Is a method for calculating an interval covering the possible values
of a real operator if its arguments range over intervals:

la, Al i b, B]
[a,A] - [b,B]
min ([a, Al, [b, B])

@)

sin ([a, Al)

@)

f (la, Al,[b,B],...)

= [a+Db, A+ B]

= [min{ab, aB, Ab, AB}, max{ab, aB, Ab, AB}]

— Imin{a, b}, min{A, B}]

min{sinx | x € [a, Al},
_ max{sinx | x € [a, A]}

minlf(%) | X € [a, Al x
max{f(x) | X [a,A]

Theorem: For each term t with free variables V:
b, Bl x...} C t(v1H[aA]vzH[bB])

tv—X) | X € la, Al X

b, B] x ..
b, B] x ..

3
3

02917: CEGAR for HS — p.22/32

Is the approximation tight?

1. In the limit: yes!

t(_))H%) — t(\)] 2 [XUX]])VZH [X2>XZ])'°°)
tvi— x) = Iimot(wH[x1—e,x1+e],v2H[xz—e,xz+e],...)
E—

provided t is uniformly continuous.
2. In general: No! If a < A then
x —x(x = [a,A]) = [a,A] = [a,A] = [a—A,A—a] # [0,0]

of interval arithmetic:

& Tight bounds only if each variable
occurs at most once!

02917: CEGAR for HS — p.23/32

Interval Grid Method Il

Check safety on resulting finite abstraction

if safe: finished, otherwise: refine grid;
continue until success

More modes: separate grid for each mode

Jumps: also check using interval arithmetic

02917: CEGAR for HS — p.24/32

Discussion

Advantages:
* can deal with constants that are only known up to intervals

* interval tests cheap (e.g., compare to explicit computation of
continuous reach sets, or full decision procedures)

Disadvantages:

* may require a very fine grid to provide an affirmative answer
(curse of dimensionality)

* ignores the continuous behavior within the grid elements

Let's remove them!

02917: CEGAR for HS — p.25/32

Removing Disadvantages

reflect more information in abstraction without creating more boxes
by splitting

Observation: we do not need to include information on unreachable
state space, remove such parts from boxes

02917: CEGAR for HS — p.26/32

Reach Set Pruning

A point in a box B can be reachable
* from the initial set via a flow in B
e from a jump via a flow in B

* from a neighboring box via a flow in B

B

formulate corresponding constraints, remove all points from box that

do not fulfill one of these constraints

02917: CEGAR for HS — p.27/32

Constraints in Specification

We specify system using constraints:

e Flow(s,X,X) (€.9., s = of £ — % = xsin(x) + 1
* "purely syntactic!
* even implicit and algebraic!

* Jump(s,x,s’,x’) (e.g.,
(s=0f£fAx>10) — (s'=onAx'=0))

* Init(s, x)

02917: CEGAR for HS — p.28/32

Reachability Constraints

Lemma (n-dimensional mean value theorem): For a box B,
mode s, if a point (y1,...,yn) € B is reachable from a point
(x1,...,%xn) € B via a flow in B then

EltERZO /\ Ela1,...,ak,c'11,...,ak[(a1,...,ak) € BA

1<i<n

Flow(s, (a,...,ax), (aq,...,ay)) Ayi =x; + a; - t]

Denote this constraint by flowg(s, X, y).

02917: CEGAR for HS — p.29/32

Reachability Constraints

Lemma: For a box B C R¥, mode s, if §j € B is reachable from the
initial set via a flow in B then

Ix € B [Init(s,x) A flowg(s, X, y)]

Lemma: For abox B C R¥, mode s, §y € B, (s,y) is reachable from
a jump from a box B* and mode s* via a flow in B then

Ix*e€B*3IX € B [Jump(s™,x*,s,x) A\ flows(s, X, y)]

02917: CEGAR for HS — p.30/32

Reachability Constraints

Lemma: For a box B C R¥, mode s, if §j € B is reachable from a
neighboring box over a face F of B and a flow in B then

3x € F [incomingg(s, X) A flowg(s, x,y)],
where incoming(s, x) is of the form
I%q, .., X [Flow(s, X, (%1,..., %)) A %5 1 0]

where r € {<,>},j € {1,...,k} depends on the face F

7]

X1

for corners etc. a little bit more involved

02917: CEGAR for HS — p.31/32

Using Constraints

After substituting definitions, getting rid of quantifiers, interval
constraint propagation algorithms can remove parts from boxes not
fulfilling such constraints.

4 5

* correct handling of rounding errors
* almost negligible time

* result not necessarily tight (but tight for flowg(s, X, y) in linear
case)

http://rsolver.sourceforge.net

02917: CEGAR for HS — p.32/32

